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• Surfaces in R3 of constant negative Gaussian curvature were

associated to the Sine-Gordon equation (SG), since 1862 (E.Bour)

uxt = sinu or ux1x1−ux2x2 = sinu

• A geometric tranformation of such surfaces provided the an-

alytic 1-parameter Bäcklund transformation (BT) for the SG.

• This is an integrable 1-parameter transformation that pro-

vides new solutions of the SG, starting with a given one.



Soliton solutions of the SG

u = 4arctan(ex1) u =−4arctan(coshx1/x2)



Corresponding surfaces:Pseudosphere and its BT θ = π/2



Bianchi’s permutability theorem



Superposition formula

Bianchi: the composition of Bäcklund transformation is com-

mutative and provides a Superposition formula.

u1
θ2−→ u12 −→

θ1
↗

θ1
↗

θ3
↘

u
θ2−→ u2 u123
θ3
↘

θ3
↘

θ1
↗

u3
θ2−→ u23 −→

• After a first integration of BT, the superposition formula gives

infinitely many new solutions algebraically for the SGE.



• In the 70s there was a renewed interest in the SG and also in

other equations that were investigated due to their applica-

tions and mainly due to the existence of soliton solutions.

• Solitons were first observed by Scott Russel (1834).

• Such solutions propagate without changing their shape and

also preserve their shape after colliding with other solitons.



Other equations with soliton solutions

For example:

Korteweg-de Vries (KdV) equation (waves on shallow wa-

ter)

ut = uxxx+6uux.

Non linear Schödinger equation (fluids,nonlinear optics)

iqt+qxx±2|q|2q = 0,

rewritten in real form by considering (q = u+ iv){
ut+vxx+2κ(u2+v2)v = 0,
−vt+uxx+2κ(u2+v2)u = 0.



Differential equations which describe pseudo-spherical or

spherical surfaces

• PDEs (or systems of PDEs) describing pseudospherical (pss)

or spherical surfaces (ss) are characterized by the fact that

their generic solutions provide metrics on non empty open

subsets of R2, with Gaussian curvature K = −1 or K = 1, re-

spectively. This is an intrinsic property.

• This concept is a generalization of the definition of differen-

tial equations describing pss, first introduced in 1986 by S. S.

Chern, T. .



• This definition was inspired by Sasaki’s observation (1979),

that a class of nonlinear differential equations, such as KdV,

MKdV and SG, which can be solved by the AKNS inverse

scattering method, was related to pss.

• Nowadays, it is known that the class of PDEs describing pss

is, in fact, larger than the AKNS class.

• Besides the notion of differential equations describing pss,

Chern- T. introduced a systematic procedure of cha-

racterizing and classifying such equations.



• Since the 80s, this procedure has been used to obtain classifi-

cation results of several classes of partial differential (systems

of) equations describing pss or ss, in a series of papers by:

Beals, Castro-Silva, Cavalcante, Chern, Ding, Catalano, Gomes,

Jorge, Kamran, Kelmer, Oliveira-Silva, Rabelo, Reyes, T. .



Remarkable properties of PDEs describing pss or ss

•Within the universe of PDEs such equations are geometrically

in two equivalence classes, due to a basic geometric fact:

Given two points of two Riemannian manifolds, with the

same dimension and same constant (sectional) curvature,

there is always an isometry between neighborhoods of

those points.

⇒Theoretical existence of local transformations between generic

solutions of equations describing pss (resp. ss).



Characterizations of (systems) PDEs describing pss or ss

A differential equations describes pss (resp. ss)

m

it defines a metric ds2 on an open subset U ⊂ R2, with constant

Gaussian curvature K =−1, (resp.K = 1).

m

It is the compatibility condition of an associated sl(2,R)-valued

(resp. su(2)) linear problem, also referred to as a zero curvature

representation.



The importance of the associated linear problem

This characterization implies that those equations may present

properties such as:

• Bäcklund transformations.

• Superposition formulae.

• An infinite number of conservation laws.

• They are natural candidates for being solved by the Inverse

Scattering Method.

• The equations are in a certain sense “integrable”.



• A 1-parameter Bäcklund transformations may be obtained

the symmetries of the linear problem. They provide solutions

of the PDE starting from a given one.

• Superposition formulae obtained by the permutability of Bäcklund

transformations.

• The Inverse Scattering Method (ISM) applied to the linear

problem may give solutions for a given initial condition.

The ISM was introduced by Gardner, Greene, Krushkal and

Miura (1967) and reformulated in terms of a Riemann-Hilbert

problem by Beals and Coifman (1984).

• Geometry may provide conservation laws for the PDE.



Definition. A differential equation for a real-valued function

u(x, t) is said to describe a pseudo-spherical surface (pss)

m

∃ smooth functions fij, depending on u and its derivatives, such

that the 1− forms
ω1 = f11 dx+ f12 dt,
ω2 = f21 dx+ f22 dt,
ω3 = f31 dx+ f32 dt,

define a metric ds2 = ω2
1 +ω2

2 on U ⊂R2, whose Gaussian cur-

vature is constant K =−1, i.e.,
dω1 = ω3∧ω2,
dω2 = ω1∧ω3,
dω3 = ω1∧ω2.



Examples. a) A function u(x, t) satisfies the sine-Gordon equa-

tion uxt = sinu⇔
ω1 =

1
η

sinudt,
ω2 = η dx+ 1

η
cosudt,

ω3 = ux dx
satisfy the structure equations with K =−1.

b) A function u(x, t) satisfies the modified Korteweg de-Vries

equation (MKDV)

ut = uxxx+
3
2

u2ux

⇔ the forms
ω1 =−ηux dt,
ω2 = η dx+(1

2ηu2+η3)dt,
ω3 = udx+(uxx+

1
2u3+η2u)dt,

satisfy the structure equations with K =−1.



Associated Linear Problems

• A differential equation E for u(x, t) describes p.s.s⇔ it is the

integrability condition for a linear problem for ψ
∂ψ

∂x
= A ψ

∂ψ

∂ t
= B ψ,

where A and B are the sl(2, IR) valued functions

A =
1
2

(
f21 f11− f31

f11+ f31 − f21

)
B =

1
2

(
f22 f12− f32

f12+ f32 − f22,

)
and ωi = fi1dx+ fi2dt, i.e. E describes p.s.s⇔ the structure

equations for K =−1 hold⇔ E is equivalent to
∂A
∂ t
− ∂B

∂x
+[A,B] = 0.



• A differential equation E for u(x, t) describes a p.s.s ⇔ it is

the integrability condition for the linear problem
∂φ

∂x
= Āφ

∂φ

∂ t
= B̄φ ,

where

Ā =

 0 f11 f21

f11 0 f31

f21 − f31 0

 B̄ =

 0 f12 f22

f12 0 f32

f22 − f32 0


and ωi = fi1dx+ fi2dt, i.e. E describes pss ⇔ the structure

equations for K =−1 hold⇔ E is equivalent to

∂ Ā
∂ t
− ∂ B̄

∂x
+[Ā, B̄] = 0.



One has similar linear problems for PDEs that describe ss.

Examples

• Sine-Gordon equation

uxt = sinu

is the compatibility condition for the linear problem for V

∂V
∂x

=
1
2

(
η −ux

ux −η

)
V,

∂V
∂ t

=
1

2η

(
cosu sinu
sinu −cosu

)
V.



• The non linear Scrödinger (NLS−) equation describes pss{
ut+vxx−2(u2+v2)v = 0,
−vt+uxx−2(u2+v2)u = 0.

It is the compatibility condition of the linear problem for V

∂V
∂x

=

(
−v u−η

u+η v

)
V,

∂V
∂ t

=

(
2ηv−ux −2ηu+ vx+2η2+u2+ v2

−2ηu+ vx−2η2−u2− v2 −2ηv+ux

)
V.

• Changing the red sign, we get NLS+ that describes ss.

• The linear problems are determined by the functions fi j.



Conservation laws (Chern, T. , 1986); (Cavalcante, T. , 1988)

Geometric properties of a surface with constant K =−1 imply

Proposition. For any differential equation that describes p.s.s.,

with ωi = fi1dx+ fi2dt, there is an integrable system for φ

φx = f31+ f11 sinφ + f21 cosφ ,

φt = f32+ f12 sinφ + f22 cosφ .

For any such solution φ , there is a closed form

C = ( f11 cosφ − f21 sinφ)dx+( f12 cosφ − f22 sinφ)dt

If fi j are analytic functions of a parameter η at zero, then φ(x, t,η)

and C are analytic in η . Infinite number of Conservation laws

may be obtained by considering the coefficients of η in C .



Classes of PDEs that describe pss or ss

• A particular case f21 = η , a parameter and f11 and f31 inde-

pendent of η (AKNS)

• Chern, T. (1986) considered the problem of classifying

the evolution equations of the form

ut = F
(

u,ux, . . . ,
∂ ku
∂xk

)
,

which describe p.s.s., under the assumption that f21 = η (no

assumption on f11 or f31). Ex: Burgers, KdV, MKdV, etc.

• Jorge, T. (1987) classification problem, with f21 = η , for

equations of type utt = F(u,ux,uxx,ut).

• Rabelo (1989) classified classes of equations of type uxt = F.



• Among so many classes of differential equations describing

pss, in particular, the equation

uxt = u+(u3)xx.

was obtained by Rabelo in his thesis (1989). Nowadays it is

known as the “short pulse equation”.

• In 2004, it appeared in non linear optics.

• Schäfer-Wayne showed that it describes the propagation of

ultra-short light pulses in silica optical fibers. Important for

trasmission of data.



The short pulse equation is contained in the family of equations

{ut− [αg(u)+β ]ux}x = εg′(u)

where g(u) satisfies g′′+µg = θ , ε =±1 and µ,α,β ,θ are

real constants, describes pss.

• By considering such a function g and appropriate values for

the constant α, β , θ and µ , one gets the sine-Gordon equa-

tion, the sinh-Gordon equation, the Liouville equation, and

the short pulse equation.

• Beals, Rabelo, T. (1989) The associated linear problem

was used to apply the ISM to solve the equation only for ε = 1.



• Kamran, T. (1995) gave a complete characterization of

the evolution equations of type ut = F(u,ux, · · · ,∂ ku/∂xk). which

describe p.s.s.(no restriction on fij).

• Reyes (1998) considered differential equations of type ut = F(x,u,ux, · · · ,∂ ku/∂xk).

• The complete characterization results (Kamran, T. ) can be

used for:

1. Check if a given differential equation describes a pss.

2. Generate huge classes of differential equations that describe

pss. (with potencial applications to engineering or physics).



Fifth order evolution equations Gomes V.P. (JDE 2010)

ut = uxxxxx+G(u,ux,uxx,uxxxx)

with the assumption

f21 = µ2 f11+η2, f31 = µ3 f11+η3.

• The main results divide the classification into four theorems.

• The differential equations involve arbitrary differential func-

tions depending on u and ux (infinite dimensional).

• The associated linear problems depend on the parameters µ

and η .



Examples of equations obtained by choosing the arbitrary

functions

1. Kaup-Kupershmidt equation

ut = uxxxxx+5uuxxx+
25
2

uxuxx+5u2ux

2. Sawada-Kotera equation

ut = uxxxxx+5uuxxx+5uxuxx+5u2ux

3.

ut = uxxxxx−2uuxxx−uxuxx−ux

4. The fifth order KdV equation

ut = uxxxxx+10uuxxx+20uxuxx+30u2ux



Fouth order evolution equations

Catalano-Ferraioli, T. (JDE 2014)

Differential equations that describe pseudospherical surfaces were

considered of type

ut = uxxxx+G(u,ux,uxx,uxxx)

with associated 1-forms ωi = fi1 dx+ fi2 dt, i = 1,2,3, where

fp1 = µp f11+ηp, p = 2,3.

• Classification results into 4 large types of equations involving

arbitrary functions (infinite dimensional).



Some examples (choosing the arbitrary functions):

1. The fourth order member of Burgers hyerarchy.

2. ut = uxxxx−uuxxx− 3
2u3ux.

3. ut = uxxxx−2uuxx−u2
x.

4. ut = uxxxx+uxxx+uux+u2/2 .

5. A modified Kuramoto-Sivashinsky equation.

ut = uxxxx+m1uxxx+m2uxx−uux+m0u2,

where m0 6= 0. The limiting case, when m0→ 0, provides the

Kuramoto-Sivashinsky equation.



Castro-Silva, T. (JDE 2015) Classification results for equa-

tions of type

ut−uxxt = λuuxxx+G(u,ux,uxx), λ ∈ R,

that describe ss or pss.

Very large families of equations are contained in this class.

Examples:

• The class of equations

ut−uxxt = m1ψ +m2ψx, m1, m2 ∈ R\{0},

where ψ(u,ux) 6= 0 is an arbitrary differentiable function of

u, ux (infinite dimensional).



• The family of equations

ut−uxxt = λ (uuxxx+uxuxx−2uux−m1u2+m1uuxx)+

−m2(u−uxx)+m1ψ +ψx,

where λm2
1+m2

2 6= 0 and ψ(u,ux) is an arbitrary differentiable

function (infinite dimensional), describes pss.

Choosing λ = 1, m1 = 2, m2 = 0 and ψ = u2
x− 2uux + u2, this

family reduces to the Degasperis-Procesi equation,

ut−uxxt = uuxxx−4uux+3uxuxx.



• The three-parameter family of equations

ut−uxxt = λ (uuxxx+2uuxx−3uux−m2ux)+m1euux(u2
x+uxx+2u+m2),

where λ 2+m2
1 6= 0 and m2 ∈ R, describes pss.

– When λ = 1 and m1 = 0, it reduces to Camassa-Holm equa-

tion,

ut−uxxt = uuxxx+2uuxx−3uux−m2ux,

– m2 is related to the critical shallow water wave speed.

– When m2 = 0, the equation has the so called peakon solu-

tions



Remark

The classification results are constructive in the sense that:

• each PDE (or family of PDEs) that describes pss or ss is pre-

sented with the corresponding functions fi j explicitly given.

• This provides explicitly the one (or more) parameter linear

problem whose integrability condition is the PDE.



Quasilinear second order partial differential equations

Catalano, Castro-Silva, T. (JDE 2020)

Classification results for second order equations of parabolic,

hyperbolic or elliptic type

utt = A(u,ux,ut)uxx+B(u,ux,ut)uxt +C(u,ux,ut),

describing pss or ss, provide large families of such equations.

Some particular examples included in this classification

1. For any differentiable functions h and ` of u(x, t)

utt = (h(u))xx+(`(u))xt

describes pss.



2.

utt =
2

u2+m
[δuxt−u(u2

t +1)]

describes pss or ss (with distinct associated linear problems).

It generalizes the short pulse equation (m = 0).

3.

utt = m2uxx+m(up)x− (up)t,

where p is an integer, describes pss or ss.

4. A 1-parameter family of equations that reduces to the con-

stant astigmatism equation

utt =
uxx

u2 −2
u2

x

u3−2

describes pss or ss.



SYSTEMS of PDEs describing pss or ss

Ding, T. (JDE 2002)

Classification results gave families of first order systems:

1. {
ut = (2up)x+4vp,
vt = (2vp)x−2up.

where p = p(u,v) 6= 0 arbitrary diff. describes ss.

2. {
ut = 2h,
vt = hx−uh.

where h = h(u,v) 6= 0 arbitrary diff. describes pss

3. {
ut = (u2+v2)ux+u2+v2+1,
vt = 2uvux+(u2+3v2)vx.



Motivated by the following second order examples:

• The nonlinear Schrödinger equation;

• the Heisenberg ferromagnet model;

• the Schrödinger flow of maps into S2 ⊂ R3 ss;

• the Schrödinger flow of maps into H2 ⊂ R2+1, pss.



Classification results for second order systems of type{
ut =−vxx+H11(u,v)ux+H12(u,v)vx+H13(u,v),
vt = uxx+H21(u,v)ux+H22(u,v)vx+H23(u,v).

provided{
ut =−vxx+δγ[(u2+v2)u]x+αux+δσ(u2+v2)v+βv,
vt = uxx+δγ[(u2+v2)v]x+αvx−δσ(u2+v2)u−βu,

where δ = 1 (resp. δ =−1), α , β , γ and σ ∈ R are such that

σ≥ 0 if γ= 0.

• This is a 4-parameter family of equations. Particular choices

of the parameters reduce to the well known systems.



Some recent results for SYSTEMS Kelmer, T. (JDE 2022)

• Classification results for systems of type{
uxt = F (u,ux,v,vx) ,
vxt = G(u,ux,v,vx) ,

describing pss and ss. These results involve parameters and ar-

bitrary differentiable function ψ(ux,vx). A particular case of an

infinite family of systems provides

Example. The Konno-Oono coupled integrable dispersionless

system {
uxt =−2vvx,
vxt = 2vux,

describes pss.



• Explicit examples of conservation laws

The Pholmeyer-Lund-Regge type system{
uxt = 2uvux−u,
vxt =−2uvvx− v,

describes pss and the first two closed forms are given by

[−2u(u+ v)x−1]dx+[2u2v2−2ut(u+ v)]dt;

[(u3+u2v−ut)(ux+ vx)+u2]dx+[(u+ v)(u2v−ut +
1
3u3)t−u2

t ]dt;

etc.

· · ·

· · ·



For the Konno-Oono coupled system{
uxt =−2vvx,
vxt = 2vux,

the first two closed forms are given by√
u2

x + v2
x dx;

−1
4
(uxvxx−uxxvx)

2

[u2
x + v2

x]
5/2 dx+

ux√
u2

x + v2
x

dt;

· · ·

· · ·

· · ·



Bäcklund transformations and Superposition for elliptic

equations

• The classical theory of surfaces in R3 with Gaussian curva-

ture −1, was extended to surfaces in R3
1 (Lorentzian space).

• In particular, the surfaces in L3 with Gaussian curvature −1,

correspond to solutions of elliptic sine-Gordon and elliptic

sinh-Gordon equations.

• These equations also describe several physical phenomena.

• The geometric theory provided Bäcklund transformations and

superposition formulae.



• F. Kelmer, L. A Rodrigues, T. (2022).

Bäcklund Transformations from solutions of the elliptic sine-

Gordon equation (ESG) into solutions of the elliptic sinh-Gordon

(ESHG) equation and viceversa.

αx1x1 +αx2x2 = sinα

αx1x1 +αx2x2 = sinhα

Explicit solutions can be obtained by applying these transforma-

tions.



• F. Kelmer, T. (2023) Superposition formulae (composition

of Bäcklund transformations) for the elliptic sine-Gordon equa-

tions and sinh-Gordon equations.

Unusual compared to Bianchi’s formulae for the SGE.

ESHG ESG ESHG ESG

α1
φ2−→ α12 −→

φ1

↗
φ1

↗
φ3

↘
α

φ2−→ α2 α123
φ3

↘
φ3

↘
φ1

↗
α3

φ2−→ α23 −→

ESG ESHG ESG ESHG

α1
φ2−→ α12 −→

φ1

↗
φ1

↗
φ3

↘
α

φ2−→ α2 α123
φ3

↘
φ3

↘
φ1

↗
α3

φ2−→ α23 −→

•We need the superposition formula to produce new solutions

of the same equation.



Explicit solutions. Start with the trivial sol α = 0 of the ESHG.

Apply BT with distinct parameters get solutions of the ESG.

Superposition formula provides a solution of the ESHG defined

on the complement of two curves.



Some generalizations to higher dimensions

Ablowitz, Aminov, Barbosa, Beals, Campos, Dajczer, Ferreira,

T. , Terng, Tojeiro

• Systems of PDEs whose solutions are related to n-dimensional

submanifolds Mn of constant sectional curvature K contained

in space forms (RN, SN or HN) of curvature K̄ and K 6= K̄.

• Their intrinsic version in terms of metrics defined on open

subsets of Rn with constant sectional curvature.

• Bäcklund Transformations, Superposition formulae.

• ISM applied to the systems.



T H A N K Y O U !

pseudospherical surface
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