Causal Set Kinematics: Reconstructing Spacetime from Randomly Embedded Posets

Sumati Surya Raman Research Institute

Non-Regular Spacetime Geometry, ESI, March, 2023

Outline

- The Hawking-King-Macarthy-Malament Theorem
- The Causal Set Paradigm : locally finite posets replace spacetime
- Properties of the Continuum Approximation
 - Local Lorentz invariance
 - Non-locality
 - The Fundamental Conjecture
- Geometric Reconstruction: dimension, topology, curvature from Order
- Some thoughts on GH distance for 2d orders using the null distance function..

Hawking, King, McCarthy: 1976

Malament: 1977

Theorem:

If a chronological bijection exists between two future and past distinguishing spacetimes then they are conformally isometric .

Causal Bijection: $f: (M_1, \prec_1) \to (M_2, \prec_2), \quad f(x) \prec_2 f(y) \Leftrightarrow x \prec_1 y, \forall x, y \in M_1$ Causal Bijection: $f: (M_1, \prec_1) \to (M_2, \prec_2), \quad f(x) \prec_2 f(y) \Leftrightarrow x \prec_1 y, \forall x, y \in M_1$ Chronological Bijection \Rightarrow Causal Bijection if they are future and past distinguishing —Kronheimer and Penrose, 1967

Conformal Isometry : $F: (M_1, g_1) \rightarrow (M_2, g_2), \quad F \circ g_1 = \Omega^2 g_2$

The existence of a chronological bijection implies that the dimension and more generally, the topology are the same (the latter iff s.c violating regions satisfy an additional condition).

-- Parrikar and Surya: 2011

<u>Acyclic:</u>

 $x \prec y \Rightarrow y \not\prec x$ Transitive:

 $\begin{aligned} x \prec y, y \prec z \Rightarrow x \prec z \\ \underline{\text{Locally Finite:}} \\ |\operatorname{Fut}(x) \cap \operatorname{Past}(y)| < \infty \end{aligned}$

Finite number of spacetime atoms in a finite spacetime volume

Causal Set Paradigm

Continuum Approximation: $C \sim (M, g)$ 2.

Poisson Sprinkling

$$P_{V}(n) = \frac{(\rho V)^{n}}{n!} e^{-\rho V}$$
$$\langle n \rangle = \rho V, \quad \Delta n = \sqrt{\rho V}$$

Poisson Point Process, Faithful Embedding, etc

• $n \sim \rho V$ correspondence has to be diffeo invariant:

• Random discretisation via a Poisson sprinkling process:

•
$$P_V(n) = \frac{(\rho V)^n}{n!} e^{-\rho V}$$
,

- $\langle n \rangle = \rho V$: correspondence works in the mean.
- $\Delta n = \sqrt{\rho V}$ is Poisson optimal? Saravani and Aslanbeigi 2014
- Given a causal (distinguising) spacetime (M,g), extract an ensemble $\{C\}_{
 ho}$
- We will say $C \sim_{\rho} (M,g)$ is a faithful embedding at density ρ if :
 - $C \hookrightarrow (M, g)$ is order preserving
 - n_V : number of points in spacetime volume V is a random variable

•
$$P_V(n) = \frac{(\rho V)^n}{n!} e^{-\rho V}$$

• Important feature of the Poisson sprinkling: Statistical independence of process in disjoint regions of (M, g)

Lorentz Invariance

 $\Omega \xrightarrow{\Lambda} \Omega$

 $H \longrightarrow H$

SO(3,1) is non-compact

- Ω : space of all Poisson sprinklings into (M, g)
- Poisson process gives a probability measure μ on Ω : (Ω, Σ, μ)
- μ is volume preserving and therefore Lorentz invariant
- Set of all f.d. timelike directions forms a unit hyperbola $H \subset \mathbb{M}^d$
- A good direction map $D: \Omega \rightarrow H$ should be equivariant:

<u>Theorem</u> :

There is no measurable map $D: \Omega \to H$ which is equivariant, i.e., $D \circ \Lambda = \Lambda \circ D$.

<u>Proof:</u>

If such a map existed, then $\mu_D = \mu \circ D^{-1}$ is a Lorentz invariant probability measure on H which is not possible since is H non-compact.

Non-Locality

Notation: ≺, ≤ : as usual ≺_L: Link/nearest neighbour/cover #: spacelike related

- Let $C \sim_{\rho} (M, g)$ (causal, finite volume spacetime region)
- Define Links: $e \prec_L e'$, iff $e \prec e' \& \exists e'', e \prec e'' \prec e'$
- $Prob(e \prec_L e') = P_{V(e,e')}(n = 0) = \exp(-\rho V(e, e'))$: links lie all along the light cone
- Causal sets $C \sim_{\rho} (M, g)$ are graphs without a fixed valency : no tangent spaces!

• Spacelike hypersurfaces ~ Antichains: $\mathcal{A} = \{e \mid \forall e, e', e \# e'\}$ are non-Cauchy:

- $\exists e, e' \in C$, st $Fut(e) \cup Past(e) = Fut(e') \cup Past(e')$: not itself future or past distinguishing
- Since Poisson is uniform wrt spacetime volume $V \Rightarrow$ sets of measure zero are not realised:

• An almost Lorentzian Length space: (C, \prec, T) , T is the length of the longest chain

The Fundamental Conjecture

$$\text{ If } C \sim_{\rho} (M,g) \And C \sim_{\rho} (M',g') \Rightarrow (M,g) \simeq_{\rho} (M',g') \\$$

- $(M,g) \simeq_{\rho} (M',g')$: what does this mean?
- Closeness of Lorentzian spacetimes via GH convergence : which distance function to use?

— Bombelli, 2000, Bombelli and Noldus, 2004

-Burtscher and Allen, 2021,

--Kunzinger and Steinbauer, 2021

- Can we define ρ -closeness?
- Convergence in $\rho \to \infty$ limit : direct limits, nets, poset of posets : (M, g) is the reference spacetime.
 - -- Bombelli and Meyer, 1989
 - -- Minguzzi and Suhr , 2022

-- Muller, 2022

Conjecture: Causal sets contain all **physically** relevant information, i.e., upto the discreteness scale

Geometric Reconstruction from Random Order

- Labelling of a causal set $L: C \to \mathbb{N}$ is the analogue of diffeomorphisms
- Order invariants are label invariants (example: Number of linked pairs N_0)
- IF: Geometric/Topological observable $\mathcal{O} \leftrightarrow$ Order invariant \mathcal{U}
- *O* -Hauptvermutung:
 - $C \hookrightarrow_{\rho} (M, g)$ and $C \hookrightarrow_{\rho} (M', g')$
 - Then $(M,g)\simeq_{\mathcal{O}}(M',g')$ if $\langle \mathcal{U} \rangle = \rho^m \mathcal{O}$
- How should we identify the right order invariants \mathscr{U} ?

Good Guess work — at least to start with!

- Poisson process $P_{v}(n)$: $(M,g) \rightarrow \{C\}$
- C samples (M, g) uniformly at random at density ρ

Examples:

• Myrheim-Meyer Dimension Estimator :

— Myrheim, 1978, Meyer, 1987

- Let $(\mathbb{D}^d, \eta) \rightarrow_{\rho} \{C\}, \quad \langle n \rangle = \rho \operatorname{vol}(\mathbb{D}^d), \mathbb{D}^d$ a flat causal diamond
- Number of relations $e \prec e'$, $\langle R \rangle = \rho^2 \int_{\mathbb{D}^d} dx_1 \int_{J^+(x_1) \cap \mathbb{D}^d} dx_2 = \langle n \rangle^2 \frac{\Gamma(d+1)\Gamma(d/2)}{4\Gamma(3d/2)}$
- Ordering fraction $\langle r \rangle = \frac{2\langle R \rangle}{\langle n \rangle^2} = f(d)$: read off the spacetime dimension!
- Mid-point scaling dimension: $2^d = V/V_{-}$, V_{-} is the largest smallest volume for the mid-point of V
- Time-like Distance: Maximise the length of a chain:

— Brightwell and Gregory, 1987

• $e \prec e'$, a chain or total order $c = \{e, e_1, \dots e_{k-1}, e'\}, l(c) = k$

• Topological Invariants : Homology from thickened anti chains

— Major, Rideout and Surya, 2006,2007,2009

 $C \hookrightarrow (M = \Sigma \times I, g), \quad \Sigma : \text{compact}$

- Maximal antichain \mathscr{A} : has only the discrete topology
- $\mathcal{T}_k(\mathcal{A}) = \{e \mid |\operatorname{Past}(e)| \le k\}$
- Future most elements: $\mathcal{M}_k \subset \mathcal{T}_k(\mathcal{A})$
- $e \in \mathcal{M}_k, \mathcal{B}_k(e) = \text{Past}(e) \cap \mathcal{A}$
- $\{\mathscr{B}_k\}$ covers \mathscr{A} . Construct nerve simplicial complex $\mathscr{N}_k(\mathscr{A})$

 \mathscr{A}

• For large enough ρ, k , using the De Rham-Weil Theorem $\mathcal{N}_k(\mathscr{A})$ is homological to Σ

 $\mathcal{N}_k(\mathcal{A})$

 \mathscr{A}

-Eichhorn, Mizera & Surya, 2017 -Eichhorn, Surya & Versteegen, 2018, 2019

• The Discrete Einstein-Hilbert or Benincasa-Dowker-Glaser Action(s)

$$\frac{1}{\hbar}S_{BDG}^{(d)}(C) = \mu\left(n + \sum_{j=0}^{j_{max}}\lambda_{j}N_{j}\right), N_{i} = \# \text{ of i-element intervals}$$

$$S_{BDG}^{(4)} = \frac{4}{\sqrt{6}}\left(n - N_{0} + 9N_{1} - 16N_{2} + 8N_{3}\right)$$

$$\lim_{\rho_{c} \to \infty} \hbar \frac{l_{c}^{2}}{l_{p}^{2}}\langle S_{BDG} \rangle = S_{EH} + \text{ bdry terms}$$

$$\ln \mathbb{M}^{d}: \lim_{N \to \infty} \frac{1}{\hbar}\langle S_{BDG} \rangle = \frac{1}{l_{p}^{d-2}} \operatorname{vol}(\mathcal{J}^{(d-2)}),$$
- Benincasa & Dowker, 2010,
- Dowker & Glaser, 2012,
- Glaser, 2014
-

- $\bullet\,$ Gibbons-Hawking-York Boundary Term for Spatial Σ
 - Consider $C \hookrightarrow_{\rho} (M = \Sigma \times I, g)$, Σ compact
 - Let Σ_f be future spatial boundary of $(M = \Sigma \times I, g)$
 - Future most antichain $\mathscr{A}_+ \subset C$
 - Let $\mathscr{A}_1 = \{e \mid | \operatorname{Fut}(e) \cap C | = 1\}$

•
$$S_{CBT}^{(d)}[\mathscr{A}_{+}] \equiv \frac{a_{d}}{\Gamma\left(\frac{2}{d}\right)} \left(d \times |\mathscr{A}_{1}| - |\mathscr{A}_{+}| \right)$$

•
$$\lim_{\rho \to \infty} \left(\frac{l_{p}}{l} \right)^{d-2} \left\langle \mathsf{S}_{CBT}^{(d)} \right\rangle = \frac{1}{l_{p}^{d-2}} \int_{\Sigma} d^{d-1}x \sqrt{h} \ K = S_{GHY}(\Sigma, M^{-}),$$

—Buck, Dowker, Jubb, Surya, 2016

-- Machet and Wang, 2020

Many other examples in the literature..

Uniformly sampled discreteness contains a lot of information!

- Kleitman and Rothschild, Trans AMS, 1975

Typical posets in Ω_n

 Ω_n : sample space of all n-element causal sets

 $|\Omega_n| \sim 2^{\frac{n^2}{4} + \frac{3n}{2} + o(n)}$

Typical causal sets are Kleitmann-Rothschild (KR):

• 3 layers:
$$\mathbb{L}_k$$
, $k = 1,2,3$, $|\mathbb{L}_{1,3}| \sim \frac{n}{4}$, $|\mathbb{L}_2| \sim \frac{n}{2}$

Onset of asymptotic regime $n \sim 100$

- J. Henson, D. Rideout, R. Sorkin and S.Surya, JEM, 2015

 $|\Omega_{KR}| \sim 2^{\frac{n^2}{4} + \frac{3n}{2} + o(n)}$

A KR poset is not continuum-like $\sim n/4$ $\sim n/2$ $\langle R \rangle \sim \frac{3}{16}n^2$

- Does not arise from a typical Poisson sprinkling into any continuum (M, g)
 - Myrheim-Myer Continuum Dimension is fractional :

$$\frac{\langle R \rangle}{n^2} = \frac{\Gamma(d+1)\Gamma(d/2)}{4\Gamma(3d/2)} \Rightarrow \frac{\Gamma(d_{KR}+1)\Gamma(d_{KR}/2)}{4\Gamma(3d_{KR}/2)} = \frac{3}{16} \Rightarrow d_{KR} \sim 2.5$$

- Maximal time-like distance $H_{KR} = 3$
- Interval Abundances are not like the continuum:

The layered hierarchy

-D. Dhar, JMP, 1978 - Promel, Steger, Taraz 2001

- *K*-layered poset: $C = \mathbb{L}_1 \sqcup \mathbb{L}_2 \dots \mathbb{L}_K : e \prec e', e \in \mathbb{L}_k, e' \in \mathbb{L}_{k'} \Rightarrow k < k'$
- $|\Omega_n^{(K)}| \sim 2^{c(d)n^2 + o(n^2)}$, $c(d) \le 1/4$, d = ordering fraction,
- Dominant hierarchy: $|\Omega_n^{(3)}| > |\Omega_n^{(2)}| > |\Omega_n^{(4)}| > |\Omega_n^{(5)}| \dots$

While order Invariants are defined for all causal sets, they only carry geometric significance for continuum like causal sets

Some Thoughts on null distance and GH distance..

- Sormani-Vega Null distance function on causal sets
 - \bullet Time functions from maximal anti-chain ${\mathscr A}$
 - i. strip-off maximal sets in $Past(\mathscr{A})$ and minimal sets in $Fut(\mathscr{A})$
 - ii. OR obtain from Future/Past volume to \mathscr{A}
- How can one obtain a GH distance function on the space of causal sets?

GH-like distance on the space of 2d orders

-Work in progress with Alan Daniel Santosh

• $S = (1, 2, ..., n), U = (u_1, ..., u_n), V = (v_1, ..., v_n), u_i \in S, v_i \in S$

• 2d order
$$C = U \cap V : e_i = (u_i, v_i) \prec e_j = (u_j, v_j) \Leftrightarrow u_i < u_j, v_i < v_j$$

- Examples:
- $u_1 < u_2 \dots < u_n, v_1 < v_2 \dots < v_n \Rightarrow C$ is a chain
- $u_1 < u_2 \dots < u_n, v_n < v_{n-1} \dots < v_1 \Rightarrow C$ is an antichain
- U, V randomly sampled : random 2d order $\sim (\mathbb{D}^2, \eta)$
- Every 2d order can be embedded as a 2d order into the light cone lattice $\,\mathscr{L}\,$
- The null distance function on $\mathscr{L}: d_N(a, b) = \frac{1}{2}(|u_b u_a| + |v_b v_a|)$
- $A, B \subseteq \mathcal{L}, \quad d_H(A, B) = \sup_{a \in A} \inf_{b \in B} d_N(a, b)$
- Let $c_1, c_2 \in \Omega_{2d}$, $\mathscr{C}_i : c_i \hookrightarrow \mathscr{L}$, $d_{GH}(c_1, c_2) \equiv \inf_{\mathscr{C}_i} d_H^{\leftrightarrow}(\mathscr{C}_1(c_1), \mathscr{C}_2(c_2))$

Preliminary calculations...

•
$$d_{GH}(a_n, a_{n+1}) = 1$$
, $d_{GH}(c_n, c_{n+1}) = 1$

•
$$d_{GH}(a_n, c_n) = m$$
, $n = 2m$ or $n = 2m + 1$

•
$$d_{GH}(B_2, c_n) = \frac{n}{4}, \quad d_{GH}(B_2, a_n) = \frac{n}{4} + \frac{1}{2}$$

•
$$d_{GH}(KR, c_n) \leq \frac{n}{4}$$
, $d_{GH}(KR, a_n) = \frac{n}{6}$

•
$$d_{GH}(L_4, c_n) \le \frac{n}{8}, \quad d_{GH}(L_4, a_n) \le \frac{3n}{8}$$

- Distance between Antichain a_n and Chain c_n grows the fastest
- Distance between the K-layer poset -- does it get closer to c_n than a_n as K increases?

<u>Conjecture</u>: For any $\epsilon > 0$ there exists *n* such that any two different realisations of random 2d orders P_n, P'_n are such that $d_{GH}(P_n, P'_n) \le \epsilon$

Thank you!