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Practical Information

On the following pages we have collected some useful information regarding your stay at the ESI. If
your are interested in participating in ES activities, look at our page about doing research at the
ESI. If you are organizing a programme or workshop, please find further details under info for
organizers.

discussions about thermal NCQFT at ESI, documented on ESI website
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Some things | learned from Harald

» A good working atmosphere is the basis for good research.

» Personal energy conservation does not exist: The more energy
you invest, the more you get out (in the right circumstances)

» A good model/example is worth at least as much as a general
theory (in QFT, the examples are the hard part anyway)

» Integrable models, NCQFT

Many thanks, and Happy Birthday, Harald!
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Overview of talk

Describe QFT models that are build from two ingredients:
o Twist

@ Localization

Starting point: Hilbert space H over C and linear operator
T " HOH--HH.

So far, no conditions on T'.

Aim: Build a Fock space and then quantum fields from 7.
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Twisted Fock spaces

» Define T}, := 19(-"D) @ T @ 18(n~k~1) on 3"
» Quantum symmetrizers (~ quantum groups)

P = 3 ora(n), PP =14T + T+ T\To + Ty + TVTLT

TES,

P (1@ PN+ Ty + T Ty + ...+ Ty To,).
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Twisted Fock spaces

» Define T}, := 19(-"D) @ T @ 18(n~k~1) on 3"
» Quantum symmetrizers (~ quantum groups)

P = 3 ora(n), PP =14T + T+ T\To + Ty + TVTLT

TES,
P (1@ PN+ Ty + T Ty + ...+ Ty To,).

» T-twisted Fock space (Nichols algebra)

Fr(H) = @ H®"ker P\
n=0

T =0: Fo(H) = Boltzmann Fock space over H

@ T =F (tensor flip): Fr(#) = Bose Fock space over H
T =-F: F_p(#) = Fermi Fock space over H

T =qF: Fqr(H) = g-deformed Fock space over H

@ many more examples 7/18
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Positivity
» Natural inner product on “n-particle space” H®"/ ker P}")
([0], [@]) 1 = (W, PV D) 3on.

needs to be positive ~ P\ > 0.

Definition: T twist :< P%") >0. Strict twist: also ker P\ = {0}.

» Twists are selfadjoint, T'=T", because P:(FQ) =1+T>0.

» Simple examples: T =0 = P%") =1, and
T = +F = P{™ =(anti-)symmetrization

» More examples ... ?
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H=L*R%dp), (Tf)(p.q)=e?""f(q,p),

with @ antisymmetric real matrix, is a unitary twist.
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H= LQ(Rdv dp)a (Tf)(pv q) = eip~9q : e—p~Ape—q-Aq : f(Qap)v

with 6 antisymmetric real matrix and A >0, is a twist.
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Theorem ( )
LetT=T*ec B(H®H).

@ If|T| <5 orT>0, then T is a strict twist.

@ If T satisfies the Yang-Baxter Equation and |T| <1, then T is a
twist. Strict for |T'| < 1.

Reminder: Yang-Baxter Equation (YBE)
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Theorem ( )
LetT=T*ec B(H®H).

@ If|T| <5 orT>0, then T is a strict twist.

@ If T satisfies the Yang-Baxter Equation and |T| <1, then T is a
twist. Strict for |T'| < 1.

Reminder: Yang-Baxter Equation (YBE)

//_ //
X‘/>

TVIT =TT 15

Many examples from R-matrices (integrable models), real selfconjugate
objects in C*-tensor categories, ...

From now on: H Hilbert space, T" arbitrary twist.
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Field operators

For every one-particle vector £ € H, have

ar (&) : Fr(H) - Fr(H), (V] ~ [E@ 7] creation operator
ar(€) = T-adjoint of ap(€) annihilation operator
or(€) =arp(§) +ar(§) field operator
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Field operators
For every one-particle vector £ € H, have
ar(§) : Fr(H) - Fr(H), (U]~ [€® V] creation operator
ar(§) := T-adjoint of ar (&) annihilation operator
o1 (§) = ar(§) +ar(§) field operator

these satisfy T-depdendent “twisted” commutation relations.
e The “n-point functions”

(Q,d7(&1) 1 (€n)S2)

can be expressed in diagrammatical form:

4.1 6,1
2 1 5 2
o w8
(&1,&2) (€1,82) - (€3,64) (30T (£2®61),T(E4®E5) ® &)
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Example: Six-point function

(€, d7(&1) 01 (&6)S2) =
61 61 61 6 1 6 1
Ay B R
43 43 43 43 43
61 61 61 61 6 1 6 1
A e A
43 473 43 43 43 43
61 61 6 1
o2

4 3 4 3 4 3
6 1
) 2
4 3
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Field algebras and Locality

Note that & — ¢ () is only real linear.
Given a real linear subspace H c H, consider algebra generated by fields,

L7 (H) := {Polynomials in ¢7(h), he H}".
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Field algebras and Locality
Note that & — ¢ () is only real linear.
Given a real linear subspace H c H, consider algebra generated by fields,
L7 (H) := {Polynomials in ¢7(h), he H}".
Desired Interpretation:

» Lr(H) describes quantum fields in a theory with “interaction” T
that are localized in a spacetime region encoded in H.

» Extremely non-local example: T =0, H = R-span{ONB}.
— Then Ly (H) =free group factor.
> QFT example: T=F, H = L*(R*, dj,(p)),

H={f: freal supp f c O}
— Then Ly (H) =algebra of free Klein-Gordon field localized in O.

Minimal requirement: L1 (H) should comply with the Reeh-Schlieder
Theorem: Want

e Lr(H)Q is a dense subspace (£ cyclic), and

e Lp(H) contains no vacuum annihilators (2 separating)
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Standard subspaces

We need to understand when € is cyclic and separating for L7 (H ).

@ For Q cyclic (“large” algebra), need H +iH c H dense.

@ For 2 separating (“small” algebra), need H niH = {0}.
(Otherwise 2ar (h) = ¢r(h) +idr(ih) € Lo (H))

Such closed real subspaces H are called standard subspaces (basis of
modular theory).
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Standard subspaces

We need to understand when € is cyclic and separating for L7 (H ).

@ For Q cyclic (“large” algebra), need H +iH c H dense.

@ For Q) separating (“small” algebra), need H niH = {0}.
(Otherwise 2ar (h) = ¢r(h) +idr(ih) € Lo (H))

Such closed real subspaces H are called standard subspaces (basis of
modular theory).

» Fact: Any standard subspace H c H defines an “internal dynamics”
(unitary one-parameter group) (A% ).r and a “conjugation”
(antiunitary involution) Jg.

» H being standard does imply that Q is cyclic for L (H), but does
not imply that it is separating. Counterexample e.g. T =1.

14/18



For T and H being compatible we demand a symmetry condition:

[T,A% @ A%]=0.

15/18



For T and H being compatible we demand a symmetry condition:

[T,A% ® Afj] =

Theorem ( )

H c H standard subspace, T' compatible twist. Then () is separating for
L (H) if and only if two conditions are satisfied:

@ T solves the YBE.

@ T is crossing symmetric w.r.t. H: for all vi,vs, w1, ws € H,

(1‘| ®v2,T*(w1 ®w2)) (Ug@JHAH ’LU27T(JHA1/ 1 ® wl))

@ Crossing symmetry is a generalization of a property of scattering
amplitudes in QFT (~ analytic S-matrix, conformal bootstrap ...)
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For T and H being compatible we demand a symmetry condition:

[T,A% ® Afj] =

Theorem ( )

H c H standard subspace, T' compatible twist. Then () is separating for
Lr(H) if and only if two conditions are satisfied:

@ T solves the YBE.

@ T is crossing symmetric w.r.t. H: for all vi,vs, w1, ws € H,

(1‘| ®v2,T*(w1 ®w2)) (Ug ® JHAH ’LU27T(JHA1/ 1 ® w1)>
@ Crossing symmetry is a generalization of a property of scattering

amplitudes in QFT (~ analytic S-matrix, conformal bootstrap ...)

@ YBE and crossing symmetry both come from physics and are usually
taken as assumptions, but can here be derived from modular theory.

» In situation of theorem, have L(H)' = Rr(H") (left-right duality).
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» In general, crossing symmetry is a subtle property involving analytic
continuation of

t—> <’l)1 ® A%Ug, T(A?le ® ’U)Q)),

to R xi(0, 3).
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» In general, crossing symmetry is a subtle property involving analytic
continuation of

t—> <’U1 ® A%Ug, T(A?le ® ’U)Q)),

to R xi(0, 3).

» Analytic continuation of diagrams

4 1 3 4t 6 1 5 6t
G0 sl et
3 2 2 1 43 39

2 1 2 1
(2,01, T(3®4,)) = (194, T(3, ®3))

3 4 3 4

» Leads to KMS (Gibbs type) property and then to separating vacuum
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An NCQFT example, for simplicity in d =1+1
Take H = L*(R, \/%) and p = (po,p1) with pg = \/p? + m2, and twist

(T (p1,q1) = €% f(q1,p1).

This twist satisfies the YBE and is crossing symmetric w.r.t. the standard
subspace H (a Hardy space) with

(Jaf)(p1) = f(p1),  (AGF)(p1) = f(A2mep1) Lorentz boost
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An NCQFT example, for simplicity in d =1+1

Take H = L*(R, dzpl =) and p = (po,p1) with po = \/p} +m?, and twist
pi+m

(T (p1,q1) = €% f(q1,p1).

This twist satisfies the YBE and is crossing symmetric w.r.t. the standard
subspace H (a Hardy space) with

(Jaf)(p1) = f(p1),  (AGF)(p1) = f(A2mep1) Lorentz boost

@ The field operators underlying this model can be understood as
“free fields on Moyal spacetime” [Grosse/GL 07]

@ It turns out that this is an interacting model that is solvable in the
sense that its S-matrix (factorizing, elastic) can be computed:

. 2 .
52(77) = glhm sinhn
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An NCQFT example, for simplicity in d =1+1
Take H = L2(R, —22—) and p = (po, p1) with po = \/p2 + m2, and twist

p2+m?

(T (p1,q1) = €% f(q1,p1).

This twist satisfies the YBE and is crossing symmetric w.r.t. the standard
subspace H (a Hardy space) with

(Jaf)(p1) = f(p1),  (AGF)(p1) = f(A2mep1) Lorentz boost

@ The field operators underlying this model can be understood as
“free fields on Moyal spacetime” [Grosse/GL 07]

@ It turns out that this is an interacting model that is solvable in the
sense that its S-matrix (factorizing, elastic) can be computed:

. 2 .
52(77) = glhm sinhn

@ The localization given by H is localization in a spacelike wedge. We
expect no better localization in this model.

@ In a chiral situation, this is proven [GL/Scotford 22].
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More models

» For unitary T', many models are known. In case T is compatible with
an irreducible scalar positive energy rep. of the 2d Poincaré group,
all twists are classified [Correa da Silva, Giorgetti, GL 24], namely

(TF)(m,m2) = s(n2 = m) f(n2,m),
with a bounded analytic function s on the strip R x (0, 7) with
s(n+im) = s(n) = s(-n).

The corresponding models exist as local QFTs under a regularity
condition on s, and can be solved: Their S-matrix is factorizing and
asymptotically complete, with two-particle S-matrix s.
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More models

» For unitary T', many models are known. In case T is compatible with
an irreducible scalar positive energy rep. of the 2d Poincaré group,
all twists are classified [Correa da Silva, Giorgetti, GL 24], namely

(TF)(m,m2) = s(n2 = m) f(n2,m),
with a bounded analytic function s on the strip R x (0, 7) with

s(n+im) = s(n) = s(-n).
The corresponding models exist as local QFTs under a regularity

condition on s, and can be solved: Their S-matrix is factorizing and
asymptotically complete, with two-particle S-matrix s.

» The models with |T'|| < 1 are expected to be more non-local (they
are close to the free group factor at T = 0)

» Approach not restricted to Minkowski space. — Models on deSitter
space, the real line, the circle (CFT), higher dimensions ..

<« X W
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