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Some things I learned from Harald

▶ A good working atmosphere is the basis for good research.
▶ Personal energy conservation does not exist: The more energy

you invest, the more you get out (in the right circumstances)
▶ A good model/example is worth at least as much as a general

theory (in QFT, the examples are the hard part anyway)
▶ Integrable models, NCQFT

Many thanks, and Happy Birthday, Harald!
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Overview of talk
Describe QFT models that are build from two ingredients:

Twist
Localization

Starting point: Hilbert space H over C and linear operator

T ∶H⊗H →H⊗H.

So far, no conditions on T .

Aim: Build a Fock space and then quantum fields from T .
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Twisted Fock spaces
▶ Define Tk ∶= 1⊗(k−1) ⊗ T ⊗ 1⊗(n−k−1) on H⊗n

▶ Quantum symmetrizers (↝ quantum groups)

P
(n)
T ∶= ∑

π∈Sn

φT,n(π), P
(3)
T = 1 + T1 + T2 + T1T2 + T2T1 + T1T2T1

P
(n+1)
T = (1⊗ P

(n)
T )(1 + T1 + T1T2 + . . . + T1⋯Tn).

▶ T -twisted Fock space (Nichols algebra)

FT (H) ∶=
∞
⊕
n=0
H⊗n/kerP (n)T

Examples

T = 0: F0(H) = Boltzmann Fock space over H
T = F (tensor flip): FF (H) = Bose Fock space over H
T = −F : F−F (H) = Fermi Fock space over H
T = qF : FqF (H) = q-deformed Fock space over H
many more examples ...
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Positivity
▶ Natural inner product on “n-particle space” H⊗n/kerP (n)T

⟨[Ψ], [Φ]⟩T,n = ⟨Ψ, P
(n)
T Φ⟩H⊗n .

needs to be positive ↝ P
(n)
T ≥ 0.

Definition: T twist ∶⇔ P
(n)
T ≥ 0. Strict twist: also kerP

(n)
T = {0}.

▶ Twists are selfadjoint, T = T ∗, because P
(2)
T = 1 + T ≥ 0.

▶ Simple examples: T = 0⇒ P
(n)
T = 1, and

T = ±F ⇒ P
(n)
T =(anti-)symmetrization

▶ More examples ... ?
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H = L2(Rd, dp), (Tf)(p, q) = eip⋅θq ⋅ f(q, p),

with θ antisymmetric real matrix, is a unitary twist.
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H = L2(Rd, dp), (Tf)(p, q) = eip⋅θq ⋅ e−p⋅Ape−q⋅Aq ⋅ f(q, p),

with θ antisymmetric real matrix and A ≥ 0, is a twist.
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Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])
Let T = T ∗ ∈ B(H⊗H).

1 If ∥T ∥ ≤ 1
2

or T ≥ 0, then T is a strict twist.
2 If T satisfies the Yang-Baxter Equation and ∥T ∥ ≤ 1, then T is a

twist. Strict for ∥T ∥ < 1.

Reminder: Yang-Baxter Equation (YBE)

T1T2T1 = T2T1T2

Many examples from R-matrices (integrable models), real selfconjugate
objects in C∗-tensor categories, ...

From now on: H Hilbert space, T arbitrary twist.
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Field operators
For every one-particle vector ξ ∈H, have

a∗T (ξ) ∶ FT (H)→ FT (H), [Ψ]↦ [ξ ⊗Ψ] creation operator
aT (ξ) ∶= T -adjoint of a∗T (ξ) annihilation operator
ϕT (ξ) ∶= a∗T (ξ) + aT (ξ) field operator

these satisfy T -depdendent “twisted” commutation relations.
● The “n-point functions”

⟨Ω, ϕT (ξ1)⋯ϕT (ξn)Ω⟩

can be expressed in diagrammatical form:

12
1

23

4 1

2

34

5

6

⟨ξ1, ξ2⟩ ⟨ξ1, ξ2⟩ ⋅ ⟨ξ3, ξ4⟩ ⟨ξ3 ⊗ T (ξ2 ⊗ ξ1), T (ξ4 ⊗ ξ5)⊗ ξ6⟩
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Example: Six-point function

⟨Ω, ϕT (ξ1)⋯ϕT (ξ6)Ω⟩ =

1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6

1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6

1

2

34

5

6 1

2

34

5

6 1

2

34

5

6

1

2

34

5

6
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Field algebras and Locality
Note that ξ ↦ ϕT (ξ) is only real linear.
Given a real linear subspace H ⊂H, consider algebra generated by fields,

LT (H) ∶= {Polynomials in ϕT (h), h ∈H}′′.

Desired Interpretation:
▶ LT (H) describes quantum fields in a theory with “interaction” T

that are localized in a spacetime region encoded in H.
▶ Extremely non-local example: T = 0, H = R-span{ONB}.
→ Then LT (H) =free group factor.

▶ QFT example: T = F , H = L2(Rs, dµm(p)),
H = {f̃ ∶ f real, supp f ⊂ O}
→ Then LT (H) =algebra of free Klein-Gordon field localized in O.

Minimal requirement: LT (H) should comply with the Reeh-Schlieder
Theorem: Want

● LT (H)Ω is a dense subspace (Ω cyclic), and
● LT (H) contains no vacuum annihilators (Ω separating)
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Standard subspaces

We need to understand when Ω is cyclic and separating for LT (H).

For Ω cyclic (“large” algebra), need H + iH ⊂H dense.
For Ω separating (“small” algebra), need H ∩ iH = {0}.
(Otherwise 2aT (h) = ϕT (h) + iϕT (ih) ∈ LT (H))

Such closed real subspaces H are called standard subspaces (basis of
modular theory).

▶ Fact: Any standard subspace H ⊂H defines an “internal dynamics”
(unitary one-parameter group) (∆it

H)t∈R and a “conjugation”
(antiunitary involution) JH .

▶ H being standard does imply that Ω is cyclic for LT (H), but does
not imply that it is separating. Counterexample e.g. T = 1.
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For T and H being compatible we demand a symmetry condition:

[T,∆it
H ⊗∆it

H] = 0.

Theorem ([Correa da Silva / L 22])
H ⊂H standard subspace, T compatible twist. Then Ω is separating for
LT (H) if and only if two conditions are satisfied:

1 T solves the YBE.
2 T is crossing symmetric w.r.t. H: for all v1, v2,w1,w2 ∈H,

⟨v1 ⊗ v2, T
∗(w1 ⊗w2)⟩ = ⟨v2 ⊗ JH∆

−1/2
H w2, T (JH∆

1/2
H v1 ⊗w1)⟩.

Crossing symmetry is a generalization of a property of scattering
amplitudes in QFT (↝ analytic S-matrix, conformal bootstrap ...)
YBE and crossing symmetry both come from physics and are usually
taken as assumptions, but can here be derived from modular theory.

▶ In situation of theorem, have LT (H)′ =RT (H ′) (left-right duality).
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▶ In general, crossing symmetry is a subtle property involving analytic
continuation of

tz→ ⟨v1 ⊗∆it
Hv2, T (∆it

Hw1 ⊗w2)⟩,

to R × i(0, 1
2
).

▶ Analytic continuation of diagrams

1

23

4t

12

3 4t 1

2

34

5

6t

1

23

4

5 6t

⟨2t ⊗ 1, T (3⊗ 4t)⟩ = T

2t 1

3 4t

T

2t 1

3 4t

= ⟨1⊗ 4̄t, T (2̄t ⊗ 3)⟩

▶ Leads to KMS (Gibbs type) property and then to separating vacuum
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continuation of

tz→ ⟨v1 ⊗∆it
Hv2, T (∆it

Hw1 ⊗w2)⟩,

to R × i(0, 1
2
).

▶ Analytic continuation of diagrams
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An NCQFT example, for simplicity in d = 1 + 1
Take H = L2(R, dp1√

p2
1+m2

) and p̂ = (p0, p1) with p0 =
√
p21 +m2, and twist

(Tf)(p1, q1) = eip̂⋅θq̂ ⋅ f(q1, p1).

This twist satisfies the YBE and is crossing symmetric w.r.t. the standard
subspace H (a Hardy space) with

(JHf)(p1) = f(p1), (∆it
Hf)(p1) = f(Λ−2πtp1) Lorentz boost

The field operators underlying this model can be understood as
“free fields on Moyal spacetime” [Grosse/GL 07]
It turns out that this is an interacting model that is solvable in the
sense that its S-matrix (factorizing, elastic) can be computed:

S2(η) = eiκm
2 sinhη

The localization given by H is localization in a spacelike wedge. We
expect no better localization in this model.
In a chiral situation, this is proven [GL/Scotford 22].
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More models
▶ For unitary T , many models are known. In case T is compatible with

an irreducible scalar positive energy rep. of the 2d Poincaré group,
all twists are classified [Correa da Silva, Giorgetti, GL 24], namely

(Tf)(η1, η2) = s(η2 − η1)f(η2, η1),
with a bounded analytic function s on the strip R × i(0, π) with

s(η + iπ) = s(η) = s(−η).
The corresponding models exist as local QFTs under a regularity
condition on s, and can be solved: Their S-matrix is factorizing and
asymptotically complete, with two-particle S-matrix s.

▶ The models with ∥T ∥ < 1 are expected to be more non-local (they
are close to the free group factor at T = 0)

▶ Approach not restricted to Minkowski space. → Models on deSitter
space, the real line, the circle (CFT), higher dimensions ..

time

space

W
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