Infinite algebras and intertwining networks for Calogero models

Olaf Lechtenfeld

Institut für Theoretische Physik and Riemann Center for Geometry and Physics Leibniz Universität Hannover

joint work with F. Correa, L. Inzunza, I. Marquette, M. Plyushchay

- Calogero invariants and their algebra
- A W₃ algebra and a Casimir operator
- A Casimir operator
- Horizontal intertwiners and algebraic integrability
- Vertical intertwiners and a network
- Conclusions

arXiv: 1312.5749 2101.07274 2308.07390

Calogero invariants and their algebra

$$\begin{split} H &= \frac{1}{2} \sum_{i} p_{i}^{2} + \sum_{i < j} \frac{\hbar^{2} g(g-1)}{(x_{i} - x_{j})^{2}}, \qquad i, j = 1, 2, \dots, N, \qquad g \geq \frac{1}{2} \\ P &= \sum_{i=1}^{N} p_{i} \qquad \text{and} \qquad X = \frac{1}{N} \sum_{i=1}^{N} x_{i} \\ [x_{i}, p_{j}] &= i\hbar \,\delta_{ij} \qquad \Rightarrow \qquad [X, P] = i\hbar \end{split}$$

permutations $s_{ij} = s_{ji}$, $s_{ij}x_i = x_js_{ij}$, $s_{ij}p_i = p_js_{ij}$, $s_{ij}^2 = 1$

Dunkl operators
$$\pi_i := p_i + i \sum_{j \neq i} \frac{\hbar g}{x_i - x_j} s_{ij} \Rightarrow [\pi_i, \pi_j] = 0$$

Liouville charges $I_k \equiv B_{0,k} = \operatorname{res}\left(\sum_i \pi_i^k\right) \Rightarrow [B_{0,k}, B_{0,\ell}] = 0$

 $B_{0,1} = P$, $B_{0,2} = 2H$, $B_{0,3} = \sum_{i} p_i^3 + 3\sum_{i < j} \frac{\hbar^2 g(g-1)}{(x_i - x_j)^2} (p_i + p_j)$ $B_{1,1} = \frac{1}{2} \sum_{i} (x_i p_i + p_i x_i) =: D$ and $B_{2,0} = \sum_{i} x_i^2 =: 2K$ $sl(2,\mathbb{R}): \frac{1}{\hbar}[D,H] = 2iH, \frac{1}{\hbar}[D,K] = -2iK, \frac{1}{\hbar}[K,H] = iD$ $B_{k,\ell} := \operatorname{res}\left(\sum_{i} \operatorname{weyl}(x_i^k \pi_i^\ell)\right) \quad \text{with} \quad e^{\alpha x + \beta \pi} = \sum_{k,\ell=0}^{\infty} \frac{\alpha^k \beta^\ell}{k! \ell!} \operatorname{weyl}(x^k \pi^\ell)$ $k + \ell =:$ level $B_{0,0} = N \, \mathbb{1}$ $B_{1,0} = NX$ $B_{0,1} = P$ $B_{2,0} = 2K$ $B_{1,1} = D$ $B_{0,2} = 2H$

$$\frac{1}{1\hbar} \begin{bmatrix} x_i, \pi_j \end{bmatrix} = \begin{cases} 1 + \hbar g \sum_{k \neq i} s_{ik} & \text{for } i = j \\ -\hbar g s_{ij} & \text{for } i \neq j \end{cases} \text{ and others commute}$$

$$\frac{1}{1\hbar} \begin{bmatrix} B_{k,\ell}, B_{m,n} \end{bmatrix} = (kn - \ell m) B_{k+m-1,\ell+n-1} + \sum_{r=1}^{\infty} \hbar^{2r} c_{k\ell mn}^{2r+1} B_{k+m-1-2r,\ell+n-1-2r}$$

$$c_{k\ell mn}^{2r+1} = \sum_{s=0}^{2r+1} (-)^{r+s} \frac{(k)_{2r+1-s}(\ell)_s(m)_s(n)_{2r+1-s}}{2^{2r}s! (2r+1-s)!}, \quad (x)_q = x(x-1) \cdots (x-q+1)$$

$$k+m = \ell+n = 2r+1 \quad \Rightarrow \quad \hbar^{2r} \left(c_{k\ell mn}^{2r+1} B_{0,0} + P_r(g(g-1))\right) \quad \text{deformation}$$
dependence on g only in central term and symmetric under $g \leftrightarrow 1-g$

$$\frac{1}{i\hbar} [B_{1,0}, B_{m,n}] = n B_{m,n-1}, \quad \frac{1}{i\hbar} [B_{0,1}, B_{m,n}] = -m B_{m-1,n}$$

$$\frac{1}{i\hbar} [B_{2,0}, B_{m,n}] = 2n B_{m+1,n-1}, \quad \frac{1}{i\hbar} [B_{1,1}, B_{m,n}] = (n-m) B_{m,n}, \quad \frac{1}{i\hbar} [B_{0,2}, B_{m,n}] = -2m B_{m-1,n+1}$$

$$\frac{1}{i\hbar} [B_{k+1,1}, B_{m+1,1}] = (k-m) B_{k+m+1,1}, \quad \frac{1}{i\hbar} [B_{1,\ell+1}, B_{1,n+1}] = (n-\ell) B_{1,\ell+n+1}$$

only N functionally indep't symmetric polynomials in N commuting variables $\pi_i \Rightarrow$ higher Liouville charges $B_{0,k>N}$ depend on N indep't ones $\{B_{0,1}, B_{0,2}, \dots, B_{0,N}\}$

maximal superintegrability: $\exists N-1$ additional indep't (non-Liouville) charges

version 1, independent for $\ell = 1, \ldots, N-1$:

 $\widetilde{B}_{1,\ell} := B_{1,\ell} - t B_{0,\ell+1} \implies \frac{\mathrm{d}}{\mathrm{d}t} \widetilde{B}_{1,\ell} = \frac{1}{2\mathrm{i}\hbar} \left[\widetilde{B}_{1,\ell}, B_{0,2} \right] + \frac{\partial}{\partial t} \widetilde{B}_{1,\ell} = 0 \quad \checkmark$

version 2:

 ${}_{k}L_{\ell} := B_{0,k}B_{1,\ell-1} + B_{1,\ell-1}B_{0,k} - B_{0,\ell}B_{1,k-1} - B_{1,k-1}B_{0,\ell} \implies \frac{d}{dt}({}_{k}L_{\ell}) = 0$ independent example set for k=2: $F_{\ell} := {}_{2}L_{\ell}$ for $\ell=1,\ldots,N$ but $F_{2}\equiv 0$

adjoint action of $sl(2,\mathbb{R})$ Casimir \mathcal{C}_2 generates the F_ℓ : $[\mathcal{C}_2, I_2] = 0$ $\mathcal{C}_2 = \frac{1}{2}(B_{2,0}B_{0,2} + B_{0,2}B_{2,0}) - B_{1,1}^2 \implies \frac{1}{i\hbar} \Big[\mathcal{C}_2, I_\ell\Big] = \ell F_\ell$

additional charges F_{ℓ} not in involution but obey a polynomial algebra of order 2N-1

A W_3 algebra

 $N=2: B_{1,0}, B_{0,1}; B_{2,0}, B_{1,1}, B_{0,2}$ $B'_{2,0} := B_{2,0} - \frac{1}{2}B_{1,0}B_{1,0}, B'_{1,1} := B_{1,1} - \frac{1}{4}\{B_{1,0}, B_{0,1}\}, B'_{0,2} := B_{0,2} - \frac{1}{2}B_{0,1}B_{0,1}$ $\{B'_{k,\ell}\} \Rightarrow sl(2,\mathbb{R})$ and $[B_{1,0}, B'_{k,\ell}] = 0 = [B_{0,1}, B'_{k,\ell}]$ for $k+\ell=2$ $W_2 = W_2' \oplus W_1 = sl(2,\mathbb{R})' \oplus$ Heisenberg $\mathcal{C}'_{2} = 2\{K', H'\} - D'^{2} = \frac{1}{2}\{B'_{2,0}, B'_{0,2}\} - B'^{2}_{1,1} \stackrel{p_{i} \mapsto \frac{h}{i}\partial_{i}}{=} \hbar^{2}g(g-1) \ge -\frac{1}{4}\hbar^{2}$ $N=3: B_{1,0}, B_{0,1}; B_{2,0}, B_{1,1}, B_{0,2}; B_{3,0}, B_{2,1}, B_{1,2}, B_{0,3}$ $B_{3,0} = \sum_{i} x_i^3, \quad B_{2,1} = \sum_{i} \operatorname{weyl}(x_i^2 p_i) = \frac{1}{2} \sum_{i} (x_i^2 p_i + p_i x_i^2) = \sum_{i} x_i p_i x_i$ $B_{1,2} = \sum_{i} \operatorname{weyl}(x_i p_i^2) + \sum_{i < i} \frac{\hbar^2 g(g-1)}{(x_i - x_j)^2} (x_i + x_j), \quad B_{0,3} = \sum_{i} p_i^3 + 3 \sum_{i < i} \frac{\hbar^2 g(g-1)}{(x_i - x_j)^2} (p_i + p_j)$

$$\mathcal{U}(W_3): \quad \text{Weyl}\Big(A_1 A_2 \cdots A_q\Big) := \frac{1}{q!} \sum_{\sigma \in S_q} A_{\sigma(1)} A_{\sigma(2)} \cdots A_{\sigma(q)} \quad \text{for} \quad A_s \in \{B_{k,\ell}\}$$

notation $B_{k,\ell} =: (k\ell)$ and

Weyl
$$(B_{k,\ell}B_{m,n}\ldots B_{s,t})$$
 =: $(k\ell |mn| \ldots |st)$

$rac{1}{\mathrm{i}\hbar}[B_{k,\ell},B_{m,n}]$	(30)	(21)	(12)	(03)
(30)	0	3(40)	6(31)	$9(22) - \frac{3}{2}\hbar^2(00)$
				$+9\hbar^2g(g-1)$
(21)	-3(40)	0	$3(22) + \frac{1}{2}\hbar^2(00)$	6(13)
			$-3\hbar^2g(g{-}1)$	
(12)	-6(31)	$-3(22) - \frac{1}{2}\hbar^2(00)$	0	3(04)
		$+3\hbar^{2}g(g-1)$		
(03)	$-9(22)+\frac{3}{2}\hbar^2(00)$	-6(13)	-3(04)	0
	$-9\hbar^{2}g(g-1)$			

 $\begin{array}{l} B_{2,0}' \equiv (20)' = (20) - \frac{1}{3}(10|10) \\ B_{1,1}' \equiv (11)' = (11) - \frac{1}{3}(10|01) \\ B_{0,2}' \equiv (02)' = (02) - \frac{1}{3}(01|01) \\ B_{3,0}' \equiv (30)' = (30) - (20|10) + \frac{2}{9}(10|10|10) \\ B_{2,1}' \equiv (21)' = (21) - \frac{1}{3}(20|01) - \frac{2}{3}(11|10) + \frac{2}{9}(10|10|01) \\ B_{1,2}' \equiv (12)' = (12) - \frac{2}{3}(11|01) - \frac{1}{3}(10|02) + \frac{2}{9}(10|01|01) \\ B_{0,3}' \equiv (03)' = (03) - (02|01) + \frac{2}{9}(01|01|01) \end{array}$

center-of-mass decoupling: $W_3 = W'_3 \oplus$ Heisenberg

 $-\frac{2}{3}(11|10|01) - \frac{1}{6}(10|10|02) + \frac{1}{6}(10|10|01|01)$ (13) = (12|01) + $\frac{1}{2}(11|02) + \frac{1}{3}(10|03) - \frac{1}{2}(11|01|01) - \frac{1}{2}(10|02|01) + \frac{1}{6}(10|01|01|01)$ (04) = $\frac{4}{3}(03|01) + \frac{1}{2}(02|02) - (02|01|01) + \frac{1}{6}(01|01|01|01)$

 $(31) = \frac{1}{3}(30|01) + (21|10) + \frac{1}{2}(20|11) - \frac{1}{2}(20|10|01) - \frac{1}{2}(11|10|10) + \frac{1}{6}(10|10|10|01)$

 $(40) = \frac{4}{3}(30|10) + \frac{1}{2}(20|20) - (20|10|10) + \frac{1}{6}(10|10|10|10)$

 $(22) = \frac{2}{3}(21|01) + \frac{1}{6}(20|02) + \frac{2}{3}(12|10) + \frac{1}{3}(11|11) - \frac{1}{6}(20|01|01)$

dependent observables:

nested Weyl ordering:

 $(a|(b|c)) = (a|b|c) + \frac{1}{12} \{ [[a,b],c] + [[a,c],b] \}$

 $(a|b|(c|d)) = (a|b|c|d) + \frac{1}{12} \{ (a|[[b,c],d]) + (a|[[b,d],c]) + ([a,c]|[b,d]) + (a \leftrightarrow b) \}$

 $(a|(b|c|d)) = (a|b|c|d) + \frac{1}{12} \{ (b|[[a,c],d]) + (b|[[a,d],c]) + \text{ cyclic in } (b,c,d) \}$

 $((a|b)|(c|d)) = (a|b|c|d) + \frac{1}{12} \{ (a|[[b,c],d]) + (a|[[b,d],c]) + (b|[[a,c],d]) + (b|[[a,d],c]) + (a \leftrightarrow c + b \leftrightarrow d) \} + \frac{1}{4} \{ ([a,c]|[b,d]) + ([a,d]|[b,c]) \}$

$rac{1}{\mathrm{i}\hbar}[B_{k,\ell}',B_{m,n}']$	(30)′	(21)'	(12)'	(03)′
(30)′	0	$\frac{1}{2}(20 20)'$	(20 11)'	$-\frac{3}{2}(20 02)'+3(11 11)'$
		_		$+\hbar^2[9g(g-1)-4]$
(21)′	$-\frac{1}{2}(20 20)'$	0	$\frac{5}{6}(20 02)' - \frac{1}{3}(11 11)'$	(11 02)'
			$-\hbar^2[3g(g-1)-rac{4}{3}]$	
(12)'	-(20 11)'	$-\frac{5}{6}(20 02)'+\frac{1}{3}(11 11)'$	0	$\frac{1}{2}(02 02)'$
		$+\hbar^2[3g(g-1)-\frac{4}{3}]$		2
(03)′	$\frac{3}{2}(20 02)'-3(11 11)'$	-(11 02)'	$-\frac{1}{2}(02 02)'$	0
	$-\hbar^2[9g(g-1)-4]$		2	

in $sl(2, \mathbb{R})'$ covariant notation:

 $(20)' = :\sqrt{8} J_{-1}, \quad (11)' = :2 J_0, \quad (02)' = :\sqrt{8} J_{+1}$ $(30)' = :2 K_{-3/2}, \quad (21)' = :\frac{2}{\sqrt{3}} K_{-1/2}, \quad (12)' = :\frac{2}{\sqrt{3}} K_{+1/2}, \quad (03)' = :2 K_{+3/2}$

spin-1 and spin- $\frac{3}{2}$ representations of $sl(2, \mathbb{R})'$: $\frac{1}{i\hbar}[J_i, J_k] = f_{ik}^{\ \ell} J_{\ell} \quad \text{and} \quad \frac{1}{i\hbar}[J_i, K_{\alpha}] = f_{i\alpha}^{\ \beta} K_{\beta}$

antisymmetric coupling of two $spin-\frac{3}{2}$ representations:

 $[K,K] \sim JJ + \text{central}: \left[\frac{3}{2} \otimes \frac{3}{2}\right]_{A} = 2 \oplus 0 = \left[1 \otimes 1\right]_{S}$

singlet $0 = sl(2, \mathbb{R})'$ Casimir:

 $C'_{2} = (20|02)' - (11|11)' = 8(J_{+1}|J_{-1}) - 4(J_{0}|J_{0})$

$\frac{1}{\mathrm{i}\hbar}[K_{\alpha},K_{\beta}]$:

	K _{3/2}	$K_{1/2}$	$K_{-1/2}$	K3/2
K _{3/2}	0	$-\sqrt{3}(J_{+1} J_{+1})$	$-\sqrt{6}(J_{+1} J_0)$	$-(J_{\pm 1} J_{-1}) - (J_0 J_0) \\ -\frac{1}{2}C'_2 - \hbar^2 C$
<i>K</i> _{1/2}	$\sqrt{3}(J_{+1} J_{+1})$	0	$-(J_{\pm 1} J_{-1}) - (J_0 J_0) + \frac{1}{2}C_2' + \hbar^2 C$	$-\sqrt{6}(J_{0} J_{-1})$
$K_{-1/2}$	$\sqrt{6}\left(J_{+1} J_0\right)$	$(J_{\pm 1} J_{-1}) + (J_0 J_0)$ $-\frac{1}{2}C'_2 - \hbar^2 C$	0	$-\sqrt{3}(J_{-1} J_{-1})$
$K_{-3/2}$	$(J_{\pm 1} J_{-1}) + (J_0 J_0) + \frac{1}{2}C'_2 + \hbar^2 C$	$\sqrt{6}\left(J_{0} J_{-1} ight)$	$\sqrt{3}(J_{-1} J_{-1})$	0

with central term $C = \frac{9}{4}g(g-1) - 1$

nontrivial nonlinear commutator:

 $\frac{1}{i\hbar}[K_{\alpha}, K_{\beta}] = f_{\alpha\beta}^{i\,k}\left(J_{i}|J_{k}\right) + \epsilon_{\alpha\beta}\left(\frac{1}{2}C_{2}' + \hbar^{2}\left[\frac{9}{4}g(g-1) - 1\right]\right)$

A Casimir operator

N=3: 9 generators but dim(phase space)=6 \Rightarrow expect three Casimir operators classical ansatz: $C_6^{\text{class}} = \alpha T_{66}^{\prime 6} + \beta T_{66}^{\prime 5} + \gamma T_{66}^{\prime 4}$ with $\alpha, \beta, \gamma \in \mathbb{R}$

$$T_{66}^{\prime 6} = (20|20|20|02|02|02)' - 3(20|20|11|11|02|02)' + 3(20|11|11|11|11|02)' - (11|11|11|11|11|11)'$$

$$\begin{split} T_{66}^{\prime 5} &= (30|30|02|02|02)' - 6(30|21|11|02|02)' + 6(30|20|12|02|02)' - 6(30|20|11|03|02)' \\ &+ 4(30|11|11|103)' - 3(21|21|20|02|02)' + 12(21|21|11|102)' + 6(21|20|20|03|02)' \\ &- 6(21|20|12|11|02)' - 12(21|12|11|11)' + (20|20|20|03|03)' - 3(20|20|12|12|02)' \\ &- 6(20|20|12|11|03)' + 12(20|12|12|11|11)' \\ T_{66}^{\prime 4} &= (30|30|03|03)' - 6(30|21|12|03)' + 4(30|12|12|12)' + 4(21|21|21|03)' \end{split}$$

-3(21|21|12|12)'

 $\begin{bmatrix} T_{66}^{\prime s}, (20)^{\prime} \end{bmatrix} = \begin{bmatrix} T_{66}^{\prime s}, (11)^{\prime} \end{bmatrix} = \begin{bmatrix} T_{66}^{\prime s}, (02)^{\prime} \end{bmatrix} = 0 \quad \text{for} \quad s = 6, 5, 4 \quad \checkmark$ $\begin{bmatrix} \mathcal{C}_{6}^{\text{class}}, (30)^{\prime} \end{bmatrix} = \begin{bmatrix} \mathcal{C}_{6}^{\text{class}}, (21)^{\prime} \end{bmatrix} = \begin{bmatrix} \mathcal{C}_{6}^{\text{class}}, (12)^{\prime} \end{bmatrix} = \begin{bmatrix} \mathcal{C}_{6}^{\text{class}}, (03)^{\prime} \end{bmatrix} \stackrel{!}{=} 0$ $\begin{bmatrix} T_{66}^{\prime 6}, (30)^{\prime} \end{bmatrix} \longrightarrow T_{85}^{\prime 6}, \quad \begin{bmatrix} T_{66}^{\prime 5}, (30)^{\prime} \end{bmatrix} \stackrel{\hbar = 0}{\longrightarrow} T_{85}^{\prime 6} \& T_{85}^{\prime 5}, \quad \begin{bmatrix} T_{66}^{\prime 4}, (30)^{\prime} \end{bmatrix} \stackrel{\hbar = 0}{\longrightarrow} T_{85}^{\prime 5} \end{bmatrix}$

 $C_6^{\text{class}} = 6T_{66}^{\prime 6} + 9T_{66}^{\prime 5} - 54T_{66}^{\prime 4}$ classical solution:

> turn on \hbar : $[T_{66}^{\prime 5}, (30)^{\prime}] \longrightarrow T_{85}^{\prime 6} \& T_{85}^{\prime 5} \& \hbar^2 T_{63}^{\prime 4} \& \hbar^4 T_{41}^{\prime 2}$ $[T_{66}^{\prime 4}, (30)^{\prime}] \longrightarrow T_{85}^{\prime 5} \& \hbar^2 T_{63}^{\prime 3} \& \hbar^4 T_{41}^{\prime 2}$

quantum ansatz: $C_6^{\text{quant}} = C_6^{\text{class}} + \hbar^2 (\delta T_{44}^{\prime 4} + \epsilon T_{44}^{\prime 3}) + \hbar^4 \zeta T_{22}^{\prime 2}$ with $\delta, \epsilon, \zeta \in \mathbb{R}$

 $T_{44}^{\prime 4} = (20|20|02|02)^{\prime} - 2(20|11|11|02)^{\prime} + (11|11|11|11)^{\prime}$ $T_{44}^{\prime 3} = (30|12|02)' - (30|11|03)' - (21|21|02)' + (21|20|03)' + (21|12|11)' - (20|12|12)'$ $T_{22}^{\prime 2} = (20|02)^{\prime} - (11|11)^{\prime}$

> $\hbar^2[T'^4_{44}, (30)'] \longrightarrow \hbar^2 T'^4_{63}$ $\hbar^2[T'_{44},(30)'] \longrightarrow \hbar^2 T'_{63} \& \hbar^2 T'_{63} \& \hbar^4 T'_{41}$ $\hbar^4[T_{22}^{\prime 2},(30)^{\prime}] \longrightarrow \hbar^4 T_{41}^{\prime 2}$

highly overdetermined system! quantum solution:

 $(\delta, \epsilon, \zeta) = (207 - 108\lambda, 648 - 324\lambda, 709 - 1656\lambda + 486\lambda^2), \quad \lambda \equiv g(g - 1)$

$$\begin{split} \mathcal{C}_{6}^{\text{quart}} &= \\ 6\{(20|20|20|02|02|02|02)'-3(20|20|11|11|02|02)'+3(20|11|11|11|11|102)'-(11|11|11|11|11|11)'\} \\ + 9\{(30|30|02|02|02)'-6(30|21|11|02|02)'+6(30|20|12|02|02)'-6(30|20|11|03|02)' \\ + 4(30|11|11|11|03)'-3(21|21|20|02|02)'+12(21|21|11|11|02)'+6(21|20|20|03|03)' \\ - 6(21|20|12|11|02)'-12(21|12|11|11|1)' + (20|20|20|03|03)'-3(20|20|12|12|02)' \\ - 6(20|20|12|11|03)'+12(20|12|12|11|11)'\} \\ - 54\{(30|30|03|03)'-6(30|21|12|03)'+4(30|12|12|12)'+4(21|21|21|03)'-3(21|21|12|12)'\} \\ + 9(23-12\lambda)\hbar^{2}\{(20|20|02|02)'-2(20|11|11|02)'+(11|11|11|11)'\} \\ + 324(2-\lambda)\hbar^{2}\{(30|12|02)'-(30|11|03)'-(21|21|02)'+(21|20|03)'+(21|12|11)'-(20|12|12)'\} \\ + (709-1656\lambda+486\lambda^{2})\hbar^{4}\{(20|02)'-(11|11)'\} \end{split}$$

its value in the Calogero realization:

the lowest quantum W'_3 Casimir in one formula:

$$p_i \mapsto \frac{\hbar}{i} \partial_i \qquad \Rightarrow \qquad \mathcal{C}_6^{\text{quant}} \mapsto (144 + 216 \,\lambda - 1215 \,\lambda^2) \,\hbar^6$$

putting back the center-of-mass degree of freedom (10) and (01) \Rightarrow

massive Weyl re-ordering required \Rightarrow

lowest quantum W_3 Casimir:

$$\mathcal{C}_{6}^{\text{quant}} = 3T_{66}^{9} - 3T_{66}^{8} + 9T_{66}^{7} - 3T_{66}^{6} + 9T_{66}^{5} - 54T_{66}^{4}$$
$$- \frac{9}{2}\hbar^{2}T_{44}^{6} + 27\hbar^{2}T_{44}^{5} - \frac{9}{2}\hbar^{2}T_{44}^{4} + 54\hbar^{2}T_{44}^{3}$$
$$- \frac{27}{8}\hbar^{4}T_{22}^{3} + \frac{81}{8}\hbar^{4}T_{22}^{2}$$

$$\begin{split} T^8_{66} &= (30|30|01|01|01|01|01|01|01) - 6(30|21|10|01|01|01|01|01) - 6(30|20|11|01|01|01|01|01|01|01) \\ &+ 6(30|20|10|02|01|01|01|01) + 6(30|12|10|10|01|01|01|01) + 12(30|11|11|10|01|01|01|01|01) \\ &- 18(30|11|10|10|02|01|01|01) - 2(30|10|10|10|03|01|01|01) + 6(30|10|10|10|02|02|01|01) \\ &+ 9(21|21|10|10|00|01|01|01) + 6(21|20|20|01|01|01|01|01) - 6(21|20|11|10|01|01|01|01) \\ &- 6(21|20|10|10|02|01|01|01) - 18(21|12|10|10|10|01|01|01) - 12(21|11|11|10|10|10|10|01|01) \\ &+ 30(21|11|10|10|02|01|01) + 6(21|20|20|12|10|01|01|01) - 12(21|10|10|10|10|02|02|01) \\ &+ 6(20|20|20|20|20|20|10|10|101) + 6(20|20|12|10|01|01|01) + 12(20|20|11|11|01|01|00|02|02|01) \\ &+ 30(20|12|11|10|02|01|01) + 6(20|20|10|10|03|01|01) + 12(20|20|10|10|02|02|01|01) \\ &+ 30(20|12|11|10|10|01|01|01) - 6(20|12|10|10|10|02|01|01) + 24(20|11|11|11|10|10|10|2|02|01) \\ &+ 6(20|10|10|10|10|03|02|01) + 6(20|10|110|10|02|02|02) + 9(12|12|10|10|10|10|02|02|01) \\ &+ 6(20|10|10|10|10|03|02|01) + 6(20|11|10|10|10|02|02|02) + 9(12|12|10|10|10|10|03|01) \\ &+ 6(12|10|10|10|10|03|02|01) + 6(12|11|10|10|10|02|02) + 9(12|12|10|10|10|10|10|03|01) \\ &+ 6(12|10|10|10|10|03|02|01) - 6(11|11|10|10|10|02|02) + 9(12|12|10|10|10|10|03|01) \\ &+ 12(11|11|10|10|10|03|01) - 6(11|11|10|10|10|02|02) + 9(12|12|10|10|10|10|03|01) \\ &+ 12(11|11|10|10|10|03|01) - 6(11|11|10|10|10|02|02) + 9(12|12|10|10|10|10|10|03|01) \\ &+ 6(12|10|10|10|10|10|03|01) - 6(11|11|10|10|10|02|02) + 9(12|12|10|10|10|10|10|03|01) \\ &+ (10|10|10|10|10|03|03) + 6(11|11|10|10|10|10|02|02) + 6(11|10|10|10|10|10|03|01) \\ &+ (10|10|10|10|10|03|03) + 6(11|11|10|10|10|10|02|02) + 6(11|10|10|10|10|10|03|02) \\ &+ (10|10|10|10|10|03|03) + 6(11|11|10|10|10|10|02|02) + 6(11|10|10|10|10|10|03|02) \\ &+ (10|10|10|10|10|03|03) + 6(11|11|10|10|10|10|10|02|02) + 6(11|10|10|10|10|10|03|02) \\ &+ (10|10|10|10|10|03|03) + 6(11|11|10|10|10|10|02|02) + 6(11|10|10|10|10|10|03|02) \\ &+ (10|10|10|10|10|10|03|03) + 6(11|10|10|10|10|10|10|10|02|02) + 6(11|10|10|10|10|10|03|03|01) \\ &+ (10|10|10|10|10|10|03|03|01) + 6(11|10|1$$

+ (10|10|10|10|10|02|02|02)

-8(11|11|11|10|10|10|10|101|01) + 12(11|11|10|10|10|10|02|01|01) - 6(11|10|10|10|10|10|02|02|01)

+ 12(20|11|11|10|01|01|01|01|01) - 12(20|11|10|10|02|01|01|01) + 3(20|10|10|10|10|02|02|01|01)

 $T_{66}^7 =$ -6(30|11|10|02|02|01) + 2(30|10|10|03|02|01) + 2(30|10|10|02|02|02) + 5(21|21|20|01|01|01|01)-4(21|20|11|11|01|01|01) - 2(21|20|11|10|02|01|01) + 4(21|20|10|10|03|01|01) - 14(21|20|10|10|02|02|01)-26(21|12|11|10|10|01|01) - 14(21|12|10|10|02|01) - 16(21|11|11|11|10|01|01) + 32(21|11|11|10|10|02|01) - 16(21|11|11|10|01|01) + 32(21|11|11|10|10|02|01) - 16(21|11|11|10|01|01) + 32(21|11|11|10|10|02|01) - 16(21|11|11|10|01|01) + 32(21|11|11|10|10|02|01) - 16(21|11|11|10|01|01) + 32(21|11|11|10|10|02|01) - 16(21|11|11|10|01|01) + 32(21|11|11|10|10|02|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|10|01|01) - 16(21|11|11|10|01|01) - 16(21|11|10|01|01) - 16(21|11|10|01|01) - 16(21|11|10|01|01) - 16(21|11|10|01|01) - 16(21|11|10|01|01) - 16(21|11|10|01|01) - 16(21|11|10|01|01) - 16(21|11|10|01|01) - 16(21|11|10|01|01) - 16(21|11|10|01|01) - 16(21|10|01|01|01|01|01|01|01) - 16(21|10|01|01|01|01) - 16(21|10|01|01|+ 16(21|11|10|10|03|01) - 6(21|11|10|10|02|02) - 2(21|10|10|10|03|02) + 2(20|20|20|03|01|01|01)+2(20|20|20|02|02|01|01) - 6(20|20|12|11|01|01|01) - 14(20|20|12|10|02|01|01) - 4(20|20|11|11|02|01|01)-6(20|20|11|10|03|01|01) - 4(20|20|11|10|02|02|01) + 10(20|20|10|10|03|02|01) + 2(20|20|10|10|02|02|02)+ 14(20|12|12|10|10|01|01) + 32(20|12|11|11|10|01|01) - 2(20|12|11|10|10|02|01) - 12(20|12|10|10|10|03|01)+ 10(20|12|10|10|02|02) + 2(20|11|11|11|11|01|01) + 8(20|11|11|11|10|02|01) - 4(20|11|11|10|03|01)-4(20|11|11|10|10|02|02) - 10(20|11|10|10|03|02) + 3(20|10|10|10|03|03) + 8(12|12|11|10|10|10|01)+5(12|12|10|10|10|10|02) - 16(12|11|11|11|10|10|01) - 4(12|11|11|10|10|02) - 6(12|11|10|10|10|10|03)-4(11|11|11|11|11|10|01) + 8(11|11|11|10|10|10|03) + 2(11|11|11|11|10|10|02)

 $T_{66}^{6} = 8(30|30|03|01|01|01) + 21(30|30|02|02|01|01) - 24(30|21|12|01|01|01) - 84(30|21|11|02|01|01)$ -24(30|21|10|03|01|01) - 42(30|21|10|02|02|01) - 24(30|20|12|02|01|01) - 30(30|20|11|03|01|01)-12(30|20|11|02|02|01) + 54(30|20|10|03|02|01) + 12(30|20|10|02|02|02) + 48(30|12|12|10|01|01)+96(30|12|11|11|01|01) + 24(30|12|11|10|02|01) - 24(30|12|10|10|03|01) + 30(30|12|10|10|02|02)+ 12(30|11|11|10|02|01) - 36(30|11|11|10|03|01) - 12(30|11|11|10|02|02) - 30(30|11|10|10|03|02)+8(30|10|10|10|03|03) + 16(21|21|21|01|01|01) + 66(21|21|20|02|01|01) - 24(21|21|12|10|01|01)-12(21|21|11|11|01|01) + 144(21|21|11|10|02|01) + 48(21|21|10|10|03|01) - 9(21|21|10|10|02|02)+ 30(21|20|20|03|01|01) + 12(21|20|20|02|02|01) - 54(21|20|12|11|01|01) - 138(21|20|12|10|02|01)+ 12(21|20|11|11|02|01) + 24(21|20|11|10|03|01) - 36(21|20|11|10|02|02) - 24(21|20|10|10|03|02)-24(21|12|12|10|10|01) - 132(21|12|11|11|10|01) - 54(21|12|11|10|00) - 24(21|12|10|10|10|03)-24(21|11|11|11|11|11|11|11|11|11|11|10|02) + 96(21|11|11|10|03) + 12(20|20|20|03|02|01)-2(20|20|20|02|02|02) - 9(20|20|12|12|01|01) - 36(20|20|12|11|02|01) - 42(20|20|12|10|03|01)+ 12(20|20|12|10|02|02) - 12(20|20|11|11|03|01) + 6(20|20|11|11|02|02) - 12(20|20|11|10|03|02)+21(20|20|10|10|03|03) + 144(20|12|12|11|10|01) + 66(20|12|12|10|10|02) + 36(20|12|11|11|11|01)+ 12(20|12|11|11|10|02) - 84(20|12|11|10|10|03) - 6(20|11|11|11|11|02) + 12(20|11|11|11|10|03)

$$\begin{split} T_{66}^5 &= 12(30|30|03|02|01) + (30|30|02|02|02) - 36(30|21|12|02|01) - 24(30|21|11|03|01) \\ &- 6(30|21|11|02|02) - 12(30|21|10|03|02) - 12(30|20|12|03|01) + 6(30|20|12|02|02) \\ &- 6(30|20|11|03|02) + 12(30|20|10|03|03) + 48(30|12|12|11|01) + 24(30|12|12|10|02) \\ &- 24(30|12|11|10|03) + 4(30|11|11|11|03) + 24(21|21|21|02|01) + 24(21|21|20|03|01) \\ &- 3(21|21|20|02|02) - 24(21|21|12|11|01) - 12(21|21|12|10|02) + 48(21|21|11|10|03) \\ &+ 12(21|21|11|102) + 6(21|20|20|03|02) - 12(21|20|12|12|01) - 36(21|20|12|10|03) \\ &- 6(21|20|12|11|02) - 24(21|12|11|10) - 12(21|12|11|11|11) + (20|20|20|03|03) \\ &- 3(20|20|12|12|02) - 6(20|20|12|11|03) + 24(20|12|12|12|10) + 12(20|12|12|11|11) \end{split}$$

 $T_{66}^{4} = (30|30|03|03) - 6(30|21|12|03) + 4(30|12|12|12) + 4(21|21|21|03) - 3(21|21|12|12)$

$$T_{44}^{6} = (20|20|01|01|01|01) - 4(20|11|10|01|01|01) + 2(20|10|10|02|01|01) + 4(11|11|10|10|01|01) - 4(11|10|10|10|02|01) + (10|10|10|10|02|02)$$

$$T_{44}^{5} = (20|20|02|01|01) - (20|11|11|01|01) - 2(20|11|10|02|01) + (20|10|10|02|02) + 2(11|11|11|10|01) - (11|11|10|10|02)$$

$$\begin{split} T_{44}^4 &= 4(17-6\lambda)(30|12|01|01) - 4(17-6\lambda)(30|11|02|01) - 4(17-6\lambda)(30|10|03|01) \\ &+ 4(17-6\lambda)(30|10|02|02) - 4(17-6\lambda)(21|21|01|01) + 4(17-6\lambda)(21|20|02|01) \\ &+ 4(17-6\lambda)(21|12|10|01) + 8(17-6\lambda)(21|11|11|01) - 12(17-6\lambda)(21|11|10|02) \\ &+ 4(17-6\lambda)(21|10|10|03) + 4(17-6\lambda)(20|20|03|01) - (59-24\lambda)(20|20|02|02) \\ &- 12(17-6\lambda)(20|12|11|01) + 4(17-6\lambda)(20|12|10|02) + 2(59-24\lambda)(20|11|11|02) \\ &- 4(17-6\lambda)(20|11|10|03) - 4(17-6\lambda)(12|12|10|10) + 8(17-6\lambda)(12|11|11|10) \\ &- (59-24\lambda)(11|11|11|11) \end{split}$$

$$T_{44}^{3} = (17-6\lambda)(30|12|02) - (17-6\lambda)(30|11|03) - (17-6\lambda)(21|21|02) + (17-6\lambda)(21|20|03) + (17-6\lambda)(21|12|11) - (17-6\lambda)(20|12|12)$$

$$T_{22}^{3} = (177 - 16\lambda(13-3\lambda))(20|01|01) - 2(177 - 16\lambda(13-3\lambda))(11|10|01) + (177 - 16\lambda(13-3\lambda))(10|10|02)$$

$$T_{22}^{2} = (177 - 16\lambda(13 - 3\lambda))(20|02) - (177 - 16\lambda(13 - 3\lambda))(11|11)$$

Horizontal intertwiners and algebraic integrability

Heckman (1991) constructed intertwiners $g \leftrightarrow g+1$ via Dunkl operators:

$$M(g) I_k(g) = I_k(g+1) M(g) \quad \text{for} \quad M(g) = \operatorname{res}\left(\prod_{i < j} (\pi_i - \pi_j)(g)\right)$$
$$M(g)^* I_k(g+1) = I_k(g) M(g)^* \quad \text{for} \quad M(g)^* = \operatorname{res}\left(\prod_{i < j} (\pi_i - \pi_j)(-g)\right)$$
$$M(1-g) I_k(g) = I_k(g-1) M(1-g) \quad \Leftarrow \quad M(g)^* = M(-g)$$

immediate consequence:

 $[M(g)^*M(g), I_k(g)] = 0$ and $[M(g)M(g)^*, I_k(g+1)] = 0$

new conserved charge? no, because it is a polynomial in the Liouville charges:

$$M(g)^*M(g) = M(-g)M(-g)^* =: \mathcal{R}(I(g))$$

coefficients of polynomial $\mathcal{R}(I)$ do not depend on $g \rightarrow$ evaluate for g=0:

$$\begin{aligned} \mathcal{R}(I(0)) &= M(0)^* M(0) = \prod_{i < j} (p_i - p_j)^2 \\ &= \begin{vmatrix} 1 & p_1 & \dots & p_1^{n-1} \\ 1 & p_2 & \dots & p_2^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & p_n & \dots & p_n^{n-1} \end{vmatrix}^2 = \begin{vmatrix} 1 & 1 & \dots & 1 \\ p_1 & p_2 & \dots & p_n \\ \vdots & \vdots & \vdots \\ p_1^{n-1} p_2^{n-1} \dots & p_n^{n-1} \end{vmatrix} \cdot \begin{vmatrix} 1 & p_1 & \dots & p_1^{n-1} \\ 1 & p_2 & \dots & p_2^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & p_n & \dots & p_n^{n-1} \end{vmatrix} \\ &= \left| \left(\sum_k p_k^{i+j-2} \right)_{ij} \right| = \det (I_{i+j-2}(0))_{ij} \qquad \text{hence:} \end{aligned}$$

$$\begin{aligned} \mathcal{R}(I(g)) &= \det (I_{i+j-2}(g))_{ij} \\ n &= 2: \quad \mathcal{R}(I) = -I_1^2 + 2I_2 \\ n &= 3: \quad \mathcal{R}(I) = -I_1^2 I_4 + 2I_1 I_2 I_3 - I_2^3 + 3I_2 I_4 - 3I_3^2 \\ &= \frac{1}{6} \left(-I_1^6 + 9I_1^4 I_2 - 8I_1^3 I_3 - 21I_1^2 I_2^2 + 36I_1 I_2 I_3 + 3I_2^3 - 18I_2^3 \right) \end{aligned}$$

so far, $g \in \mathbb{R}$ generic; but $g \in \mathbb{N}$ admits intertwiner with free theory (g=1): $\mathbb{M}(g) = M(g-1)M(g-2)\cdots M(2)M(1) \Rightarrow \mathbb{M}(g)I_k(1) = I_k(g)\mathbb{M}(g)$

 $\mathbb{M}(g)^* = M(-1)M(-2)\cdots M(2-g)M(1-g)$ is conjugate intertwiner

 $\Rightarrow \mathbb{M}(g)\mathbb{M}(g)^* = (\mathcal{R}(g))^{g-1} \text{ and } \mathbb{M}(g)^*\mathbb{M}(g) = (\mathcal{R}(g+1))^{g-1}$

Darboux dressing of some free G(1) with $[G(1), I_k(1)] = 0$ for some k: $G(g) = \mathbb{M}(g) G(1) \mathbb{M}(g)^* \implies [G(g), I_k(g)] = 0$

consistent with involution of Liouville charges:

$$\mathbb{M}(g) I_k(1) \mathbb{M}(g)^* = \left(\mathcal{R}(g) \right)^{g-1} I_k(g)$$

large choice of 'naked' G(1): any polynomial in $\{p_i\}$ with constant coefficients identical particles \rightarrow observables totally (anti)symmetric under s_{ij} totally symmetric \rightarrow Liouville integrals; totally antisymmetric \rightarrow simplest is

$$G(1) = M(0) = \prod_{i < j} (p_i - p_j)$$

Darboux dressing:

 $Q(g) = \mathbb{M}(g) M(0) \mathbb{M}(g)^*$

 $= M(g-1)M(g-2)\cdots M(1)M(0)M(-1)\cdots M(2-g)M(1-g)$

builds a chain relating $I_k(g) = I_k(1-g)$ back to $I_k(g)$:

 $Q(g) I_k(1-g) = I_k(g) Q(g) \qquad \Rightarrow \qquad \left[Q(g), I_k(g)\right] = 0$

a conserved charge of order $\frac{1}{2}n(n-1)(2g-1)$ algebraically independent of $\{I_k, F_\ell\}$ seeming other option $g \in \mathbb{N} + \frac{1}{2}$ fails:

$$M(g-1)\cdots M(\frac{3}{2})M(\frac{1}{2})M(-\frac{1}{2})M(-\frac{3}{2})\cdots M(1-g) = \left(\mathcal{R}(g)\right)^{g-\frac{1}{2}}$$

$$H(\mathbf{0}) \xrightarrow{M(\mathbf{0})} H(\mathbf{1}) \xrightarrow{M(\mathbf{1})} H(\mathbf{2}) \xrightarrow{M(\mathbf{2})} \dots H(g) \xrightarrow{M(g)} H(g+1) \xrightarrow{M(g+1)} \dots$$
$$H(\mathbf{1}) \xrightarrow{M(g)} H(g)$$

check the square of the new Liouville charge:

$$Q(g)^{2} = M(g-1) \cdots M(3-g)M(2-g)\underline{M(1-g)M(g-1)}M(g-2) \cdots M(1-g)$$

$$= M(g-1) \cdots M(3-g)M(2-g)\mathcal{R}(g-1)M(g-2)M(g-3) \cdots M(1-g)$$

$$= M(g-1) \cdots M(3-g)\underline{M(2-g)M(g-2)}\mathcal{R}(g-2)M(g-3) \cdots M(1-g)$$

$$= M(g-1) \cdots M(3-g) (\mathcal{R}(g-2))^{2}M(g-3) \cdots M(1-g)$$

$$:$$

$$= M(g-1)M(1-g) (\mathcal{R}(1-g))^{2g-2} = (\mathcal{R}(1-g))^{2g-1} = (\mathcal{R}(g))^{2g-1}$$

again a polynomial in the Liouville integrals, so formally $Q = \mathcal{R}^{g-\frac{1}{2}}$ for $g \in \mathbb{N}$

nonlinear (\mathbb{Z}_2 graded) algebra of 2n conserved charges:

$$\begin{split} [I_k, I_\ell] &= 0 \qquad [I_k, F_\ell] = \mathcal{A}_{k,\ell}(I) \qquad [F_k, F_\ell] = \mathcal{B}_{k,\ell}(I, F) \\ [Q, I_\ell] &= 0 \qquad [Q, F_\ell] = (2g-1) \, Q \, \mathcal{C}_\ell(I) \qquad Q^2 = \left(\mathcal{R}(I)\right)^{2g-1} \\ \text{with some definite polynomials } \mathcal{A}_{k,\ell}, \, \mathcal{B}_{k,\ell}, \, \mathcal{C}_\ell \text{ and } \mathcal{R} \end{split}$$

example: three particles (N=3)

$$\begin{aligned} \mathcal{A}(g) &= \operatorname{res}\left(\pi_{12}(g)\pi_{23}(g)\pi_{31}(g)\right) \qquad \Delta = x_{12}x_{23}x_{31} \\ &= \Delta^g \left(p_{12}p_{23}p_{31} - \frac{\mathrm{i}g}{x_{12}}p_{12}^2 - \frac{\mathrm{i}g}{x_{23}}p_{23}^2 - \frac{\mathrm{i}g}{x_{31}}p_{31}^2 \right. \\ &\quad + \frac{2g}{x_{12}^2}p_{12} + \frac{2g}{x_{23}^2}p_{23} + \frac{2g}{x_{31}^2}p_{31}\right) \Delta^{-g} \\ &= p_{12}p_{23}p_{31} + \frac{2\mathrm{i}g}{x_{12}}p_{23}p_{31} + \frac{2\mathrm{i}g}{x_{23}}p_{31}p_{12} + \frac{2\mathrm{i}g}{x_{31}}p_{12}p_{23} \\ &\quad + \left(\frac{g(g-1)}{x_{31}^2} - \frac{4g^2}{x_{12}x_{23}}\right)p_{31} + \left(\frac{g(g-1)}{x_{12}^2} - \frac{4g^2}{x_{23}x_{31}}\right)p_{12} + \left(\frac{g(g-1)}{x_{23}^2} - \frac{4g^2}{x_{31}x_{12}}\right)p_{23} \\ &\quad - \frac{\mathrm{6i}\,g^2(g+1)}{x_{12}x_{23}x_{31}} + 2\mathrm{i}g(g-1)(g+2)\left(\frac{1}{x_{12}^3} + \frac{1}{x_{23}^3} + \frac{1}{x_{31}^3}\right) \end{aligned}$$

 $M^*M \equiv \mathcal{R} = -3I_3^2 + 6I_3I_2I_1 - \frac{4}{3}I_3I_1^3 + \frac{1}{2}I_2^3 - \frac{7}{2}I_2^2I_1^2 + \frac{3}{2}I_2I_1^4 - \frac{1}{6}I_1^6$

$$\begin{split} & Q(g=2) = \frac{1}{6} p_{12}^3 p_{23}^3 p_{31}^3 \\ & + \frac{3}{x_{12}^{22}} \left(p_{12}^3 p_{23}^2 p_{31}^2 + 2 p_{12} p_{23}^3 p_{31}^3 \right) \\ & + \frac{12i}{x_{12}^3} \left(p_{12}^2 p_{23}^3 p_{31} + p_{23}^3 p_{31}^3 + 4 p_{12}^2 p_{23}^2 p_{31}^2 \right) \\ & - \left(\frac{12}{x_{12}^4} - \frac{24}{x_{12}^2 x_{31}^2} \right) p_{12}^3 p_{23}^2 + \left(\frac{264}{x_{23}^4} - \frac{180}{x_{12}^4} - \frac{168}{x_{12}^2 x_{23}^2} \right) p_{12} p_{23}^2 p_{31}^2 \\ & + i \left(\frac{1440}{x_{12}^5} - \frac{720}{x_{12})^3 x_{31}^2} - \frac{720}{x_{12})^2 x_{31}^3} \right) p_{12}^3 p_{23}^2 \\ & + i \left(\frac{1080}{x_{12}^5} - \frac{360}{x_{31}^5} - \frac{360}{x_{12}^2 x_{31}^2} - \frac{1080}{x_{12}^2 x_{31}^3} \right) p_{12}^2 p_{23}^2 \\ & + i \left(\frac{4200}{x_{12}^6} + \frac{3360}{x_{23}^5} - \frac{1920}{x_{12}^3 x_{23}^2} + \frac{1200}{x_{23}^2 x_{31}^3} + \frac{2880}{x_{12}^2 x_{31}^4} \right) p_{12}^3 \\ & - \frac{4320}{x_{12}^2 x_{31}^4} p_{12}^2 p_{23} - \frac{5760}{x_{12}^2 x_{31}^4} p_{12} p_{23} p_{31}^3 \\ & + i \left(\frac{25200}{x_{12}^7} - \frac{10080}{x_{23}^7} - \frac{7220}{x_{12}^2 x_{31}^2} - \frac{5760}{x_{12}^2 x_{32}^3} + \frac{10080}{x_{12}^2 x_{31}^2} - \frac{1440}{x_{12}^2 x_{23}^5} \right) p_{12}^2 \\ & - \left(\frac{90720}{x_{12}^8} + \frac{198720}{x_{12}^7 x_{23}} - \frac{129600}{x_{12}^6 x_{23}^2} + \frac{34560}{x_{12}^5 x_{23}^3} - \frac{17280}{x_{12}^3 x_{23}^5} \right) p_{12} \\ & - i \left(\frac{181440}{x_{12}^9} + \frac{60480}{x_{12}^7 x_{23} x_{11}^7} \right) + \text{ all permutations in (123)} \end{split}$$

Vertical intertwiners and a network

Chalykh, Feigin, Veselow (1998) generalize quantum integrable Calogero model:

 $H_N^{+1}(g) := H_N(g) + \frac{1}{2}p_{N+1}^2$ $\widetilde{H}_{N+1}(g) := H_N(g) + \frac{1}{2}p_{N+1}^2 + \sum_{i=1}^N \frac{\hbar^2 g}{(x_i - \sqrt{g-1} x_{N+1})^2}$ $\widetilde{H}_{N+1}(g) \text{ algebraically integrable since } \exists \widetilde{W} \text{ with } \widetilde{W}(g) H_N^{+1}(g) = \widetilde{H}_{N+1}(g) \widetilde{W}(g)$ but trivializes in the classical limit $\hbar \to 0$ with $\hbar g \to \gamma$

we have $\widetilde{H}_{N+1}(2) = H_{N+1}(2)$ hence $\widetilde{W}(2) H_N^{+1}(2) = H_{N+1}(2) \widetilde{W}(2)$

this suggests existence of "vertical intertwiner" $W_N(g)$ such that

 $W_N(g) H_N^{+1}(g) = H_{N+1}(g) W_N(g) \qquad \forall g \in \mathbb{N}$

where $W_N(1) = 1$ and $W_N(2) = \widetilde{W}(2)$

together with horizontal intertwiners $M_N(g) H_N(g) = H_N(g+1) M_N(g)$ have

hence a recursion $W_N(g+1) M_N(g) = M_{N+1}(g) W_N(g)$

 $\Rightarrow W_N(g) = \prod_{i=1}^N (p_i - p_{N+1})^{g-1} + O(g) \text{ is an operator of order } N(g-1)$

proof of existence or construction of the vertical intertwiner is a factorization problem:

either recursively $M_{N+1}(g) \ W_N(g) = W_N(g+1) \ M_N(g)$ or directly from $\mathbb{M}_{N+1}(g) \equiv \mathbb{M}_{N+1}(g) \ W_N(1) = W_N(g) \ \mathbb{M}_N(g)$

examples:

$$W_2(2) = p_{13}p_{23} + \frac{2i}{x_{13}}p_{23} + \frac{2i}{x_{23}}p_{13} - \frac{4}{x_{13}x_{23}} - \frac{2}{x_{12}^2}$$

$$\begin{split} W_{2}(3) &= p_{13}^{2} p_{23}^{2} + \frac{6}{x_{13}} i p_{13} p_{23}^{2} + \frac{6}{x_{23}} i p_{13}^{2} p_{23} \\ &- \frac{12}{x_{13}^{2}} p_{23}^{2} - \frac{12}{x_{23}^{2}} p_{13}^{2} - \left(\frac{36}{x_{23}x_{13}} + \frac{12}{x_{12}^{2}}\right) p_{13} p_{23} \\ &- \left(\frac{72}{x_{13}^{2}x_{23}} + \frac{36}{x_{12}^{2}x_{13}} + \frac{12}{x_{12}^{3}}\right) i p_{23} - \left(\frac{72}{x_{23}^{2}x_{13}} + \frac{36}{x_{12}^{2}x_{23}} - \frac{12}{x_{13}^{3}}\right) i p_{13} \\ &+ \frac{144}{x_{12}^{2}} \left(\frac{1}{x_{13}^{2}} + \frac{1}{x_{23}^{2}} - \frac{1}{x_{13}x_{23}}\right) \end{split}$$

have computed also $W_2(4)$ and $W_2(5)$ and proved the existence of $W_2(g \le 7)$

Conclusions

- the rational Calogero model for N unrestricted realizes a $W_{1+\infty}$ algebra
- for particle number N fixed it becomes a nonlinear dynamical W_N algebra
- conserved charges = commutant of H in $\mathcal{U}(W_N)$, is easily characterized
- smallest W_3 Casimir is of order 9 in 9 generators and of order 12 in (x_i, p_j)
- classical limit also via solving a system of PDEs (using Poisson brackets)
- horizontal intertwiners relate $H_N(g)$ to $H_N(g+1) \Rightarrow$ isosprectrality
- extra "odd' conserved charge for integral coupling \Rightarrow algebraic integrability
- new vertical intertwiners couple an additional particle \Rightarrow $H_N(g)$ to $H_{N+1}(g)$
- a network relates all $H_N(g \in \mathbb{N})$ to free particles \Rightarrow extend to cons'd charges?

THANK YOU FOR YOUR ATTENTION !

BIRTHDAY

HARALD !

Some history

- 1923 Burchnall & Chaundy: odd-order ordinary differential operators commuting with 1d Hamiltonian
- 1978 Krichever:

their existence is tied to algebro-geometric, or 'finite-gap', nature of Hamiltonian

• 1989 Dunkl:

commuting operators combining partial differentials and Coxeter reflections

- 1990 Chalykh & Veselov:
 "commutative rings of partial differential operators and Lie algebras"
 1st examples of 2d finite-gap Hamiltonians, construction of intertwiners for g=2
- 1991 Heckman:

uses Dunkl operators to construct intertwiners for any multiplicity g-1

• 1990s Berest, Chalykh, Etingof, M. Feigin, Ginzburg, Styrkas, Veselov: extension to higher dimension N-1 and multiplicity g-1, in particular: construction of Baker-Akhiezer functions, explicit formulæ for add'l charges, including via Darboux dressing with intertwiners (only for N=3, g=2)