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Quick summary

» A new approach to construct QFT models describing higher spin particles.

v

String localized fields. Principle of string independence.
» Application to Standard Model (QCD and Electroweak sector).
No CP violating terms in QCD: solution of the strong CP problem.
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Relativistic perturbative QF T

Relativistic QFT = QFT in Minkowski space
> Hilbert space H,

» Poincaré covariance,

> pointlike localization [qg(x),qg(y)] = 0 if x and y spatially separated,

’...

Perturbative approach
Basic object = S-matrix (formal power series in the coupling constant g):

5 - T i [ o) )

2
_14 1gf,cim(x) a2 J-T(Lint(xl),ﬁint(xg)) dzydzs + ...

Spin > 1 particles problematic!
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Top-down approach (gauge principle)

Key steps:
1. classical action functional (renormalizability, gauge invariance),
2. quantization procedure (BRST technique, unphysical fields, auxiliary space),
3. physical Hilbert space (cohomological construction).
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Top-down approach (gauge principle)

Key steps:
1. classical action functional (renormalizability, gauge invariance),
2. quantization procedure (BRST technique, unphysical fields, auxiliary space),
3. physical Hilbert space (cohomological construction).

Example: QCD, gauge group SU(3).

Classical action functional: S[A,] := {tr(F,, (z)F* (z))dz
(extrema = classical solutions of equations of motion).

» A, (x) — gauge potential valued in su(3) (Lie algebra).
> Fu(z) = 0,A,(x) — 0, A, (z) + g[Au(z), Ay (x)] — interacting field tensor,
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Classical action functional: S[A,] := {tr(F,, (z)F* (z))dz
(extrema = classical solutions of equations of motion).
» A, (x) — gauge potential valued in su(3) (Lie algebra).
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Top-down approach (gauge principle)

Key steps:
1. classical action functional (renormalizability, gauge invariance),
2. quantization procedure (BRST technique, unphysical fields, auxiliary space),
3. physical Hilbert space (cohomological construction).

Example: QCD, gauge group SU(3).
Classical action functional: S[A,] := {tr(F,, (z)F* (z))dz
(extrema = classical solutions of equations of motion).

» A, (x) — gauge potential valued in su(3) (Lie algebra).

> Fu(z) = 0,A,(x) — 0, A, (z) + g[Au(z), Ay (x)] — interacting field tensor,
S[A,] = (quadratic) + g (cubic: dA[A, A]) + g2 (quartic: [A, A][A, A]).

> Gauge invariance = S[A,] = S[A],], where

A;L(x) =U"Y2)A,(2)U(z) + U(x)~13,U(x) and U : R* — SU(3).

Quantization (problematic because of gauge symmetry):

> Smod[Aus By, C,C = S[AL] + Set[ Ay, Bu] + Sen[C, C, ALl

» Observables: [O, Qprst] = 0, physical Hilbert space: kerQprst
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Bottom-up approach (string independence)

Key steps:
1. observable particles = physical Hilbert space and free quantum fields,

2. interaction terms (polynomials in the free fields respecting global symmetries,

string independence and renormalizability).
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Massless free field describing spin 1 particle:
» F,,(x) - anti-symmetric tensor satisfying the Maxwell equation.
> Bad UV properties
» A So w(x + Te)e? dr, e — spatial four-vector (direction of string).
> Better UV properties but slightly worse localization.
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2. interaction terms (polynomials in the free fields respecting global symmetries,
string independence and renormalizability).

Massless free field describing spin 1 particle:
» F,,(x) - anti-symmetric tensor satisfying the Maxwell equation.
> Bad UV properties
» A So w(x + Te)e? dr, e — spatial four-vector (direction of string).

> Better UV properties but slightly worse localization.

Example: QCD
Interaction terms: polynomials in A,,(z,e), a € {1,...,8}.
» deLint(z, ) =(total derivative) = Lin(x,e) at first order in g coincides with
Dab.c faveAapAp, 0" AY and fap. completely anti-symmetric,

» dey T(Lint(z1,€1), Lint (2, €2)) =(total derivative) = fu. satisfies the Jacobi
identity [= fape Structure constant of compact Lie algebra] and Ly (z, €)
contains second order term.
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Comparison

Top-down approach (standard, gauge principle):
» unphysical degrees of freedom (obscure physical interpretation),

> very general, proof of perturbative renormalizability to all orders.

Bottom-up approach (new, string independence):
» only physical degrees of freedom,

» simplification of computations at tree level,

> no complete proof of renormalizability to all orders.
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Questions

» Can one derive all couplings of the SM using the bottom-up approach?

> New physics: spin 2 particles, quantum gravity?
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