Quintessence: from string theory to observations, and back

David Andriot

LAPTh, CNRS, Annecy, France

2403.07065 (with F. Ruehle) 2405.09323 (with S. Parameswaran, D. Tsimpis, T. Wrase, I. Zavala) + work in progress

The landscape vs. the Swampland

07/24 ESI, Vienna

Topic: Dark Energy

Our universe is expanding + the expansion is currently **accelerating** Accelerated expansion due to dark energy (~70%)

What is the nature of dark energy?

Topic: Dark Energy

Our universe is expanding + the expansion is currently **accelerating** Accelerated expansion due to dark energy (~70%) What is the nature of dark energy?

Characterised by equation of state parameter w

- Radiation (relativistic matter): $w = \frac{1}{3}$
- (Non-relativistic) matter: w = 0
- Dark energy (from theory): $w < -\frac{1}{3} \times \frac{1}{"70\%"} \approx -0.49$
- \longrightarrow Cosmological constant $\Lambda > 0: w = -1$
- \longrightarrow Dynamical dark energy / quintessence: -1 < w < 1, varies!

Topic: Dark Energy

Our universe is expanding + the expansion is currently **accelerating** Accelerated expansion due to dark energy (~ 70%) What is the nature of dark energy?

Characterised by equation of state parameter w

- Radiation (relativistic matter): $w = \frac{1}{3}$
- (Non-relativistic) matter: w = 0
- Dark energy (from theory): $w < -\frac{1}{3} \times \frac{1}{"70\%"} \approx -0.49$
- \longrightarrow Cosmological constant $\Lambda > 0: w = -1$
- \longrightarrow Dynamical dark energy / quintessence: -1 < w < 1, varies!

Very timely question because of **observations**!! DES, DESI, (Euclid, LSST/Vera Rubin)

'24 ACDM: $w = -1 \checkmark$ Dyn. dark energy: \checkmark $w_0 w_a$ CDM: $w_0 \approx -0.75$

Settled very soon!!

Consider **cosmological model**: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) \right) \quad (+ \text{ matter})$ (for most of this talk: single, canonically normalized scalar field φ) $+ \text{ solutions with FLRW metric: } ds_4^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1-kr^2} + r^2 d\Omega_2^2 \right) + \varphi(t) \quad (\dot{\varphi} \equiv \partial_t \varphi)$ $\longrightarrow w = \frac{\frac{1}{2} \dot{\varphi}^2 - V}{\frac{1}{2} \dot{\varphi}^2 + V} \quad -1 \le w \le 1$

Solve 2 Friedmann equations + scalar equation of motion \longrightarrow Solution, cosmological evolution of w

Consider **cosmological model**: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) \right) \quad (+ \text{ matter})$ (for most of this talk: single, canonically normalized scalar field φ) $+ \text{ solutions with FLRW metric: } ds_4^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1-kr^2} + r^2 d\Omega_2^2 \right) + \varphi(t) \quad (\dot{\varphi} \equiv \partial_t \varphi)$ $\longrightarrow w = \frac{\frac{1}{2} \dot{\varphi}^2 - V}{\frac{1}{2} \dot{\varphi}^2 + V} \quad -1 \le w \le 1$

Solve 2 Friedmann equations + scalar equation of motion \longrightarrow Solution, cosmological evolution of w

- **De Sitter solution**: $\partial_{\varphi} V = 0$, $\dot{\varphi} = 0$, $V(\varphi) = \text{constant} = \Lambda \times M_p^2 \longrightarrow w = -1$ (minimum or maximum of V)
- Quintessence: ∂_φV ≠ 0, φ ≠ 0, V(φ) = non constant
 → w varying (slope of V)
 (actually not arbitrarily)

 \rightarrow compare to observations

Easily obtain: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) \right)$ (+ matter?) (multifield?)

→ origin of dark energy: physical content in extra dimensions!

However: require an appropriate V to agree with observational constraints

Easily obtain: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) \right)$ (+ matter?) (multifield?)

 \rightarrow origin of dark energy: physical content in extra dimensions! However: require an appropriate V to agree with observational constraints

- De Sitter minimum (vacuum): cosmological constant
 - → difficult from string theory to have a well-controlled example Attempts, constraints, conjectures

Easily obtain: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) \right)$ (+ matter?) (multifield?)

 \rightarrow origin of dark energy: physical content in extra dimensions! However: require an appropriate V to agree with observational constraints

• **De Sitter minimum (vacuum)**: cosmological constant

- → difficult from string theory to have a well-controlled example Attempts, constraints, conjectures
- **De Sitter maximum**: cosmological constant *for some time /* quintessence
 - \rightarrow also difficult, but one tentative example in this talk

Easily obtain: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) \right)$ (+ matter?) (multifield?)

 \rightarrow origin of dark energy: physical content in extra dimensions!

However: require an appropriate V to agree with observational constraints

- De Sitter minimum (vacuum): cosmological constant
 - difficult from string theory to have a well-controlled example
 Attempts, constraints, conjectures
- De Sitter maximum: cosmological constant for some time / quintessence
 - \rightarrow also difficult, but one tentative example in this talk
- Appropriate V : quintessence
 - \rightarrow controlled example from string theory: field space asymptotics (e.g. classical, pert. regime) $V = V_0 e^{-\lambda \varphi} \rightarrow$ ok with observations?

Plan:

- Qualitative features of quintessence, and observations
- Exponential quintessence and string theory
- Classical de Sitter solution with parametric control?

I. Quintessence and observations

$$\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) \right) \quad (+ \text{ matter + radiation})$$

+ FLRW metric, $H = \frac{\dot{a}}{a} > 0$

1st Friedmann equation: $3H^2 = \sum_n \rho_n$

Radiation: $\rho_r = \rho_{r0} \left(\frac{a}{a_0}\right)^{-4}$ Matter: $\rho_m = \rho_{m0} \left(\frac{a}{a_0}\right)^{-3}$

Dark energy:
$$\rho_{\varphi} = \frac{1}{2}\dot{\varphi}^2 + V(\varphi)$$

$\int d^4x \sqrt{ g_4 } \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) \right) (+ \text{ matter + radiation})$			
+ FLRW metric, $H = \frac{\dot{a}}{a} > 0$			
1st Friedmann equation: $3H^2 = \sum_n \rho_n \iff 1 = \sum_n \Omega_n$, $\Omega_n = \frac{\rho_n}{3H^2}$			
Radiation:	$\rho_r = \rho_{r0} \left(\frac{a}{a_0}\right)^{-4}$	Today (~ model independent):	$\Omega_{r0} \approx 0.0001$
Matter:	$\rho_m = \rho_{m0} \left(\frac{a}{a_0}\right)^{-3}$	$a = a_0$	$\Omega_{m0} \approx 0.3149$
Dark energy:	$\rho_{\varphi} = \frac{1}{2}\dot{\varphi}^2 + V(\varphi)$		$\Omega_{\varphi 0} \approx 0.6815$

Quintessence: $\dot{\varphi} \neq 0, \partial_{\varphi}V \neq 0$

Solution is determined when fixing further initial condition: $\dot{\varphi}(t_0) \leftrightarrow w_0$

→ Different possible solutions and evolutions

→ Fine tune to get successive phases!

Example: exponential quintessence: $V = V_0 e^{-\lambda \varphi}$, $\lambda = \sqrt{3}$, $w_0 = -0.51073604885$

Quintessence: $\dot{\varphi} \neq 0, \partial_{\varphi} V \neq 0$

Solution is determined when fixing further initial condition: $\dot{\varphi}(t_0) \leftrightarrow w_0$

→ Different possible solutions and evolutions

 \longrightarrow Fine tune to get successive phases!

Example: exponential quintessence: $V = V_0 e^{-\lambda \varphi}$, $\lambda = \sqrt{3}$, $w_0 = -0.51073604885$

 \rightarrow For such a solution, what is the evolution of w?

One difference with ΛCDM: **initial kination phase**...

For Λ CDM, w = -1But for quintessence? $w = \frac{\frac{1}{2}\dot{\varphi}^2 - V}{\frac{1}{2}\dot{\varphi}^2 + V}$

(in terms of e-folds, $N = \ln \frac{a}{a_0}$, where today N = 0)

For Λ CDM, w = -1But for quintessence? $w = \frac{\frac{1}{2}\dot{\varphi}^2 - V}{\frac{1}{2}\dot{\varphi}^2 + V}$

(in terms of e-folds, $N = \ln \frac{a}{a_0}$, where today N = 0)

Initial kination phase: w = 1

During matter domination, w = -1Then recent variation.

Very similar to Λ CDM between $-8 \le N \le 0$!

w = -1 possible thanks to freezing of the field, $\dot{\varphi} \approx 0$: due to high Hubble friction!

w = -1 possible thanks to freezing of the field, $\dot{\varphi} \approx 0$: due to high Hubble friction!

Initial and recent variation of the field in between: frozen!

This questions the need of moduli stabilisation...!

Observations: w(a)CPL or $w_0 w_a$ parametrisation: linear approximation: Wφ $w(a) = w_0 + w_a \left(1 - \frac{a}{a_0}\right)$ 0.0 ao 0.2 0.4 0.6 0.8 1.0 -0.2 -0.4 -0.6 -0.8 -1.0

Observations:

$$w(a) = w_0 + w_a \left(1 - \frac{a}{a_0}\right)$$
 $0.2 \le \frac{a}{a_0} \le 1$ (redshift $z = 4$)

 $u = 0$
 $u = 0$

II. Exponential quintessence

2405.09323 (with S. Parameswaran, D. Tsimpis, T. Wrase, I. Zavala)

Exponential quintessence: special: $\frac{\partial_{\varphi}V}{V} = -\lambda = \text{constant}$

 \longrightarrow allows to write the equations of motion in the form of an autonomous **dynamical system**

Use known methods to find fixed points, study their stability

Old story, but **comprehensive analysis**

including $\Omega_{\varphi}, \Omega_m, \Omega_r, \Omega_k$, study of **phase space** and **different solutions** (numerical, analytical)...

For string theory origin: $\lambda \ge \sqrt{2}$ Strong de Sitter conjecture, constraints on asymptotics of Vsuffers no counter-exampleBedroya, Vafa '19, Rudelius '21

→ Lessons learnt on exponential quintessence:

- acceleration phase (today) is transient!
- past radiation domination + acceleration today: $\lambda \lesssim \sqrt{3}$
- $w_0 w_a$ parametrisation
- impact of **spatial curvature**, solutions which are **horizonless**...

Observations seem however to disfavor such a realisation: $\lambda < 0.5 - 1$ without curvature: Agrawal et al, Akrami et al, Raveri et al, '18, Schöneberg et al '23 with curvature: Bhattacharya et al, Alestas et al, '24

Exponential quintessence remains an interesting « testbed example », for quintessence phenomena and string theory realisation

String realisation: pure NSNS example:

Andersson, Heinzle '06, Marconnet, Tsimpis '22, Andriot, Tsimpis, Wrase '23

6d curved Einstein manifold, constant dilaton, no flux, no orientifold (!)

Only one field rolling: volume. Gives $V = V_0 e^{-\lambda \varphi}$, $\lambda = \sqrt{\frac{8}{3}} \quad (\sqrt{2} < \lambda < \sqrt{3})$, $k = -1 \alpha'$ - and loop corrections under control

6d volume grows, but 4d one grows faster: scale separation!

Find an appropriate cosmological solution Field ~ constant during radiation and matter domination Recent evolution: $\Delta \varphi \approx 0.5 M_p$, sub-Planckian

Good control! How realistic w.r.t. matter and couplings?

III. Classical de Sitter example?

2403.07065 (with F. Ruehle)

Briefly present one example of **de Sitter solution** from string theory, possibly well-controlledMotivated cosmological applications, not evaluated here
(no associated cosmological solution and w(a))D.A., P. Marconnet, T. Wrase '20
D.A., L. Horer, P. Marconnet, '22

10d type IIB supergravity (no corr. or non-pert. contrib.), solution: 4d de Sitter \times 6d group manifold (compact curved solvmanifold) \longrightarrow 3d \times 3d H, F₁, F₃ O₅ (12), O₅/D₅ (34), D₅ (56) (smeared)

Consistent truncation to 4d: get V with 22 fields 4 flat directions, 1 tachyon, 17 (meta)stable $\eta_V \approx -4$

Cosmological constant/quintessence scenario? Agrawal, Obied '18

D.A., P. Marconnet, M. Rajaguru,

Two main problems:10d supergravity solution \rightarrow classical string background?smeared sources \rightarrow backreaction? (around orientifold)?

Here: hopeful on classicality thanks to **parametric control / scaling** (novelty!)

< 2020: only known 10d supergravity dS₄ solutions: type IIA with O₆ (+ 1 T-dual)
2018: not classical! (no scaling that makes volume large, string coupling small)
+ no-go theorems... Wrase et al '18, Junghans '18, Grimm et al '19, Andriot '19,'20, Cicoli et al '21

Here: new solutions: exhibit a γ scaling: circumvents previous no-go theorems: 6 characteristic lengths in geometry: $r_{a=1...6}$

 $r_4, r_5 \rightarrow \gamma \ r_4, r_5, \quad r_1, r_2 \rightarrow \gamma^{\frac{1}{2}} \ r_1, r_2, \quad r_3, r_6, g_s \text{ invariant} \qquad 4 \ r_a \nearrow \text{ (6d volume } \nearrow)$ (+ scaling of flux numbers and structure constants)

If r_3, r_6, g_s appropriate values \longrightarrow classical with parametric control...

 $r_4, r_5 \rightarrow \gamma \ r_4, r_5, \quad r_1, r_2 \rightarrow \gamma^{\frac{1}{2}} \ r_1, r_2, \quad r_3, r_6, g_s \text{ invariant}$ (+ scaling of flux numbers and structure constants)

Effect on supergravity variables:

- $\longrightarrow T_{10}^{I} \rightarrow \frac{1}{\gamma^{2}} T_{10}^{I}, \qquad F_{1.}, F_{3...}, H_{...}, f^{a}{}_{bc} \rightarrow \frac{1}{\gamma} F_{1.}, F_{3...}, H_{...}, f^{a}{}_{bc}$
- \longrightarrow Eq. of motion $\rightarrow \frac{1}{\gamma^2}$ Eq. of motion, Solution \rightarrow Solution', $\mathcal{R}_4^S \rightarrow \frac{1}{\gamma^2} \mathcal{R}_4^S$, (analogous to DGKT)
- + Crucial for α' -corrections: involve higher powers of supergravity variables! \longrightarrow reduced with higher powers of $\frac{1}{\gamma} \longrightarrow$ Parametric control!

Remaining doubts:

- $g_s < 1$, $r_1, r_2, r_4, r_5 > l_s$, but $r_3, r_6 < l_s$ Those are not radii, no winding mode associated? Cycle volumes?
- Open string d.o.f. from D-branes...
- Orientifold backreaction...

- Equation of state parameter w + evolution w(a) : crucial! Soon observationally constrained.
- Role of (high) Hubble friction: underestimated in string pheno / swampland
- String theory realisations?
 - Exponential quintessence or other $V(\varphi)$?
 - De Sitter maximum (a classical one?)
 - Include matter!

- Equation of state parameter w + evolution w(a) : crucial! Soon observationally constrained.
- Role of (high) Hubble friction: underestimated in string pheno / swampland
- String theory realisations?
 - Exponential quintessence or other $V(\varphi)$?
 - De Sitter maximum (a classical one?)
 - Include matter!

Thanks for your attention!