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Themes

Images of elliptic operators on infinite rank bundles - their
topology

Topology on cohomology groups of elliptic complexes
⇒ Topological aspects of BRST/BFV-theories (“first steps”)

Hilbert C ∗-modules

Assumption invariance of the operators. Use Mishchenko’s
elliptic operators theory (Fomenko, Mishchenko [4], ’70)
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1) Constrained systems in Physics

Classical Physics

Configuration space known, exact potential function for the
constraints not known or too complicated (ball falling in
gravity field to a desk + repulsive force of a desk etc.)
Lagrange: take the Lagrangian and add Lagrange multiplicators
(λi ) multiplied by equations fulfilled by the constraints (as by
searching for stationary points on sets which are not open)
Compute Euler–Lagrange equations for the obtained
Lagrangian (+ solve the resulting system of equations)
Hamilton formulation via Legendre transform
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Quantum Physics

The Hamiltonian has to be quantized. We deal not with scalar
valued functions in several variables, but (at best) with
continuous linear operators on infinite dimensional Hilbert
spaces.
If constraints are present, we shall use BRST or BFV
approaches which generalize the Lagrange approach: Operator
Q appears which intercepts constraints, Q2 = 0. (It can be
graded.)
State spaces are cohomology groups (for the operator Q) -
quotient spaces by image of Q. (Q maps an infinite
dimensional topological vector space into an infinite
dimensional topological vector space; Q acts on L2-, C∞-type
spaces)
Theories in Physics testable by measurements =⇒ State
spaces must have a good behaviour of limits. At least: Limit of
a sequence either doesn’t exist, or it is unique if it exists.
Quotient space of Hausdorff topological vector spaces has
uniqueness of limits if and only if the dividing space is closed.



Further motivation

2) Elliptic equations on compact manifolds (without boundary).
Hodge theory

1. Cohomology of elliptic operators (or better their chain
complexes) on finite rank bundles over compact manifolds are
finite dimensional vector spaces.

2. Kernels of complexes’ Laplacians (de Rham’s Laplacian on
Riemannian, Dolbeault’s Laplacian on complex manifolds) are
as vector spaces isomorphic to the cohomology groups of the
complex.
Not true: If compact is omitted. Not true: If finite rank is
omitted. Not true: If elliptic is omitted.



Fails of Hodge theorem generalizations

de Rham complex on R
n. Laplace has infinite dimensional

kernel: e.g., 1, x , y xy , x2 − y2, x3 − 3xy2, y3 − 3x2y . . . . The
kernel is non-trivial in each homogeneity (by Weyl thy, or
separation of variables technique). Just observe (x ± iy)k are
non-zero and harmonic. (Also further solutions - sh(x + iy)
etc.)
Let (ei )i be ON-basis of separable Hilbert space H of infinite
dimension. Let D : C∞(S1,H) → C∞(S1,H), f =

∑∞
i=1 fiei

be given by (Df )(m) =
∑∞

i=1
dfi
dφ

(m)ei . Then Df = 0 ⇔

dfi/dφ = 0 ⇔ fi (e
2πiφ) = ai ∈ C ⇒ f =

∑
i aiei . Thus f is

any constant H-valued function. Solution space ≃ H
(linearly). Thus infinite dimensional.
d’Alembert on Minkowski-flat torus:
fn(x

0, x1) = cne
2πin(x0−x1), cn ∈ C, n ∈ N, independent.

∗d ∗ d fn = ✷fn = (∂2
x0

− ∂2
x1
)fn = 0, where ∗ is the

Hodge-star operator for Minkowski metric
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(Hodge ’30, Weyl ’43, de Rham ’46)

Fredholm theory - needs complete normed spaces
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Main steps in proving the Hodge theory

(Hodge ’30, Weyl ’43, de Rham ’46)

Fredholm theory - needs complete normed spaces
Linear operator D : H → H ′ is Fredholm (def.) ⇔ has finite
rank and corank (= dimension of H ′/ImD). Image is
consequently closed.

Atkinson’s theorem: D Fredholm op. (between complete
normed spaces) ⇔ exists Ď such that DĎ = IdH′ + K1 and
ĎD = IdH + K2, Ki compact ops (i = 1, 2)
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A. S. Mishchenko’s idea

Rellich–Kondratchov fails for Sobolev spaces of infinite
dimensional vector space valued functions on compact sets:
Id : W s+1(M,H) → W s(M,H) is not compact if
dim H = ∞.

We cannot handle elliptic differential operators
D : C∞(M,H) → C∞(M,H ′) if H is infinite dimensional,
even if M is compact (as one does in the Hodge theory).

The idea: Any Hilbert space H is finitely generated over
B(H) = {A : H → H|A linear and bounded}. Any vector in H
can be achieved by dilated projection: |v〉 = (|v〉 〈f |) |f 〉 (Fix
unit vector f ∈ H, v ∈ H arbitrary. Then v is achieved by the
ket-bra above.)
We can work with F (H) (finite rank ops H → H) or K (H)
(compact ops H → H) only.

It needs Hilbert C ∗-modules: generalization of Hilbert spaces.
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Ideas of the Mishchenko’s approach - recall

Thus H may be infinite dimensional, but it is still finitely
generated over B(H).

idea: Field, complex/real numbers, is “replaced” by algebra
(here B(H),F (H),K (H)). Choice: a C ∗-algebra (but there are
also modules for H∗-algebras)

We explain parts of Mishchenko–Fomenko [4] generalization
of Fredholm theory based on “analytic” modules over
C ∗-algebras
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Pre-Hilbert A-module H is a complex vector space which is a
right module over a C ∗-algebra A; together with a
hermitian-symmetric A-valued sesquilinear form
(, )H : H × H → A which is positive definite (the C ∗-product).

Positive elements in A are those which have non-negative
spectrum (in the unitalization) of A. If | |A denotes the norm
in A, v ∋ H 7→ |v |H :=

√
|(v , v)H |A, v ∈ H, is a norm on H

(the C ∗-norm).
A pre-Hilbert A-module is a normed space.

Spectrum of element a ∈ A. All complex λ such that a− λ1
does not have an inverse in A or in A⊕ C (unitalization), unit
e = (0, 1). Algebra is unital if it contains an element e (unit)
such that ea = ae = a for all a ∈ A. (e = e ′e = ee ′ = e ′.)
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For a ∈ A a positive element it is necessary and sufficient that
a = bb∗ for b ∈ A or a = h2 for h = h∗ (hermitian).

For A = C a pre-Hilbert A-module is the same as pre-Hilbert
space (inner product space) over the complex numbers.

Definition: Hilbert A-module = pre-Hilbert A-module whose
C ∗-norm is complete (the space is complete normed vector
space; a Banach space)
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H = A, v · a = va, (v ,w)H = v∗w , where a, v ,w ∈ A.
Operation ∗ is from A. The C ∗-module norm is
|v |2H = |(v , v)H |A = |v∗v |A = |v |2A (by C ∗-identity in A).
(Tautological module) (brackets)
If 1 ∈ A, then H = 1 · A, then H is finitely generated.

A = C, H = C∞(S1) with (f , g)H =
∫
S1 f gvolg

|f |2H = |(f , f )H |C =
∫
S1 |f |

2volg =
∫ 1
x=0 |f (e

2πix)|2dλR(x),
S1 ⊆ C. Not Cauchy complete. Pre-Hilbert A-module. (It is
Cauchy complete if considered as metric space generated by
classical Fréchet “seminorms”.)

Also H = An = A⊕ . . .⊕ A with diagonal action
(a1, . . . , an) · a = (a1a, . . . , ana) and
((a1, . . . , an), (b1, . . . , bn))H =

∑n
i=1 a

∗
i bi
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∗
i ai converges in A}. Action is
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ℓ2(A) = {(ai )
∞
i=1|

∑∞
i=1 a

∗
i ai converges in A}. Action is

diagonal and product is ((ai )i , (bi )i )ℓ2(A) =
∑

i a
∗
i bi . Called

basic A-module. ℓ2(A) = A⊗ ℓ2(N) (projective tensor product
[5]).

Morphism of Hilbert C ∗-modules is any adjointable map
between Hilbert C ∗-modules, i.e., L : H → H ′ and exists
L′ : H ′ → H such that (Lh, h′)H′ = (h, L′h′)H . Notation
L′ = L∗. It is automatically A-linear. Denoted as BA(H,H ′),
with operator norm topology. Denote BA(H) if H = H ′.

Morphisms: Θe,f (h) = e · (f , h)H for e ∈ H ′ and f , h ∈ H
(elementary operators). Note (f , h)H ∈ A. A-Compact
operators (def.) are in the closure in BA(H) of finite linear
sums of elementary operators (Kasparov).
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Example: C ∗-Fredholm with non-closed image

D is A-Fredholm if (def.) D is invertible modulo an
A-compact operator: DĎ = Id + K1.

A = H = C 0([0, 1]) with pointwise multiplication, f ∗ = f , and
sup norm, ie., |f |A = sup{|f (x)|, x ∈ [0, 1]},
(f , g)H = f g ∈ A, f , g ∈ H = A. The C ∗-norm on H,
|f |H = |f |A. Df = xf ,

Compact ops.: Θ1,1(f ) = f (identity), Θ1,x(f ) = (1, x)f = xf ,
x ∈ C 0([0, 1]).
Thus, D = Θ1,x . (Invertible modulo A-compacts:
DIdH = IdHD = IdH + (D − IdH).)

Easy compute D∗ = D. If ImD were closed, then
H = ImD ⊕ KerD. But easily KerD = 0. Thus ImD = H.
But D(f )(x) = (xf )(x) = xf (x) = 1 (for constant function 1)
has solution f (x) = 1/x , not in C 0([0, 1]). So 1 is not in
ImD, D is not surjective, and thus ImD is not closed.



Hilbert C ∗-bundles

Let A be a C ∗-algebra. A Hilbert A-bundle H with fibre H is a
locally trivial Banach bundle with fibre the Banach space H,
where each fibre is a Hilbert A-module, equipped with a
maximal smooth atlas whose transition functions are bijective
maps in BA(H). Finitely generated Hilbert A-bundle means
the fibre is finitely generated A-module.

An (Hilbert) A-differential operator between Hilbert A-bundles
is any A-linear map on section spaces such that locally it is of
form

∑
|α|≤r mα∂

α, where mα ∈ BA(H,H ′) Hilbert A-module
morphisms and ∂α are Fréchet derivatives of functions with
values in the appropriate normed vector space of bounded
linear maps BA(H,H ′) (operator norm).

For each ξ ∈ T ∗M, the symbol σ(D, ξ) of operator D in
direction ξ defined as in the classical case. Elliptic operator
= symbol is isomorphism for any non-zero cotangent vector ξ.



Some topological results on Hilbert and Banach bundles

Each holomorphic finite rank bundle over 2-sphere is a direct
sum of holomorphic line bundles. All of the line bundles, up to
one, are non-trivial. Grothendieck [6].

If H is infinite dimensional Hilbert space and U(H), equipped
with the strong operator topology, is contractible =⇒ the first
Čech cohomology group is trivial by Dixmier, Douady
[2]/Kuiper [10].
=⇒
∃ (continuous) bundle isomorphism J : H → M ×H for any
Hilbert bundle H → M with fibre an infinite rank Hilbert
space.

There is a holomorphic Banach fibre bundle over 2-sphere such
that the quotient topology on the sheaf cohomology of the
bundle holomorphic sections spaces is non-Hausdorff. Erat [3].



Mishchenko–Fomenko’s result

Theorem 1: Let H → M be a finitely generated A-Hilbert
bundle over a compact manifold, where A is a C ∗-algebra
with unit and D is an A-elliptic operator on sections of H.
Then the kernel of D is a finitely generated Hilbert A-module.
There is an A-compact op. K such that D + K has closed
image.
Proof. Mishchenko–Fomenko [4].

The index of D is computed by the Chern class of H and the
Todd class of the symbol of D.

The extensions of D to completions of smooth sections of H
are A-Fredholm

If f is a solution of D̃f = 0 for the extension of D to a
Sobolev space W r , then f is smooth, i.e., C∞ (regularity as
for the Laplace operator on functions)

But note that D is A-Fredholm does not imply D has closed
image (example above), which we wanted.



Hodge theory in case of compactly invariant operators

Theorem 2: Let A be a C ∗-algebra and (Hi → M)i be a sequence
of finitely generated Hilbert A-bundles over a compact manifold
M. Suppose that images of the complex’s Laplacians of an elliptic
A-invariant complex in sections Γ(Hi ) are closed. Then the
cohomology groups of the complex are finitely generated Hilbert
A-modules.
Proof. SK [7].
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Theorem 2: Let A be a C ∗-algebra and (Hi → M)i be a sequence
of finitely generated Hilbert A-bundles over a compact manifold
M. Suppose that images of the complex’s Laplacians of an elliptic
A-invariant complex in sections Γ(Hi ) are closed. Then the
cohomology groups of the complex are finitely generated Hilbert
A-modules.
Proof. SK [7].

Theorem 3: If A is the C ∗-algebra of compact operators on a
Hilbert space and (Hi → M)i is a sequence of finitely generated
Hilbert A-bundles over a compact manifold M, then cohomology
groups of an elliptic A-linear complex in sections Γ(Hi ) are finitely
generated projective Hilbert A-modules, and are Hausdorff also in
the Fréchet topology on the section spaces.
Proof. SK [8].



Proof uses results considering transfer from K (H)-linearity to
linearity with respect to Hilbert–Schmidt operators which are
dense in K (H). Moreover, they are Hilbert spaces (described,
e.g., in Bakić, D., Guljaš, B., Hilbert C ∗-modules over
C ∗-algebras of compact operators. Acta Sci. Math. (Szeged)
68 (2002), no. 1-2, 249–269).



Supplement: Algebra of compact ops. contra CCR-algebra
as observable algebras

Compact operators considered as observable algebra in
Quantum theory, instead of the CCR algebra.

Poisson algebra of linear functions
∑n

i (aiq
i + bipi ) + ct, i.e.,

(R2n+1)∗, ai , b
i , c ∈ C.

The associative product is the point-wise multiplication and
the linear Poisson (Lie and Leibniz structure) bracket {, }
obeys {qi , qj} = {pi , pj} = 0 and {pi , q

j} = δji .

For the Lie algebra structure, there is a Lie group – the
Heisenberg group

(v , t) · (w , t) = (v + w , t + s + 1
2ω(v ,w)) where v ,w ∈ R

2n,
t, s ∈ R and ω is the standard symplectic form



Supplement: Compact operators versus CCR-relations

There is an irreducible unitary representation of the
Heisenberg group on the Hilbert space H = L2(Rn) – the
Schrödinger representation

The differentiation on smooth vectors of this representation
gives the so called CCR-relations for generators of the Lie
algebra of the Poisson algebra above.

However, on the CCR-algebra there are ’too’ many states
See, e.g., Feintzeig, B. [On the choice of the Algebra for
Quantization, Phil. Science, 85, Vol. 1, 2018] for other
advantages of choosing rather the algebra K (H) than the
CCR-algebra, regarding states and observables, and references
there. See also Jorgensen, P. Tian, F.: arxiv601.01482v2;
Buchholtz, D., Grundling, H.: arxiv0705.188v3 .
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