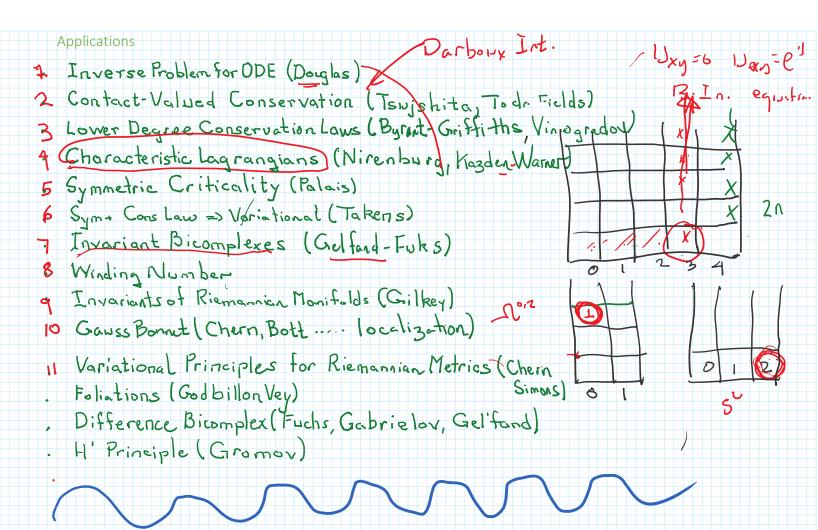
Remarks * de Donder, Lepage. (differential geometric approach to cor). * Vinogralow, 1978, 1984 ... CTalks to follow). C spectral sequence Tulczien 1982. × * Tsujishita 1982] - intepretation of cohomology Fuchs, Gabrielov, Gelfand (975). × The general idea of making topological invariants local I by means of explicit formula suggested by Gelfand in 1970 - variational bicomplex bicomplex - clifference bicomplex - from International Congress (1970). In the end of this part of the report I would like to introduce a general concept of formal differential geometry. It arises when one formalises and generalises the methods of construction of Pontryagin and Chern classes (by means of metrics and connections); also in the expression of the index of a differential operator in terms of the symbol and the metric of the manifold. * Also in the same years ~ higher order symmetries, conservation laws for soliton equations.

-



Inverse Problem for ODE

$$A^{k} = iik^{k} - F^{k}(x, w, \psi, w) i) i ii i)$$
Find a matri $x M_{kl}(x, w, \psi, w)$
Such that

$$M_{ap} \cdot \Delta^{g} = EL_{x}(L) = \underbrace{\$L}_{x}$$

$$W = \underbrace{1}_{2} A_{ap} \otimes^{x} \otimes^{x} + \underbrace{\$L}_{y} \otimes^{x} \otimes^{x}$$

$$\bigotimes^{x} - d_{y} \otimes^{x} - u \otimes^{x} \otimes^{x} + \underbrace{\$L}_{y} \otimes^{x} \otimes^{x}$$

$$\bigotimes^{x} - d_{y} \otimes^{x} - u \otimes^{x} \otimes^{x} + \underbrace{\$L}_{y} \otimes^{x} \otimes^{x}$$

$$\bigotimes^{x} - d_{y} \otimes^{x} - u \otimes^{x} \otimes^{x} + \underbrace{\$L}_{y} \otimes^{x} \otimes^{x} \otimes^{x}$$

$$\bigotimes^{x} - d_{y} \otimes^{x} - u \otimes^{x} \otimes^{x} \otimes^{x} + \underbrace{\$L}_{y} \otimes^{x} \otimes^{x} \otimes^{x}$$

$$\bigotimes^{x} - d_{y} \otimes^{x} - u \otimes^{x} \otimes^{x} \otimes^{x} + \underbrace{\$L}_{y} \otimes^{x} \otimes^{x$$

•

Contact Form Valued Conservation Laws R: system of 2nd order PDE. $W \in \Omega^{n-1}(R)$ s>3, 00 . . . $d_{H}\omega = 0$ or R. W ≠ dHZ. n-1 P Wave Eq. 12xy =0 $\omega = d_{X} \wedge \Theta_{X} \wedge \Theta_{XX} \wedge \Theta_{XXX} \cdots$ dHW = dy Dy(") = 0 Isujishita: Relate H1,5 #0 to Dorboux int. Examples: Uxy = e^U. me> Toda lattice equations (Hy+1) Wxx - 2 Wx Uy Uxy - (1)x+1) Uyy = 0 Born-Infeld Wxy= 2ndpa - Goursat. x+y Note: These examples are symmetric xc->y, Theorem. Let F(x, y, w, wx wy, bxx, wxy, byy) = 0 be a hyperbolic pde with x my symmetry. Then the equation is Darboux Int > H^{1,S} (R[∞]) \$ 0 for Some S73.

Lower Degree Conservation Laws

١

1

Ó

EINS Eq

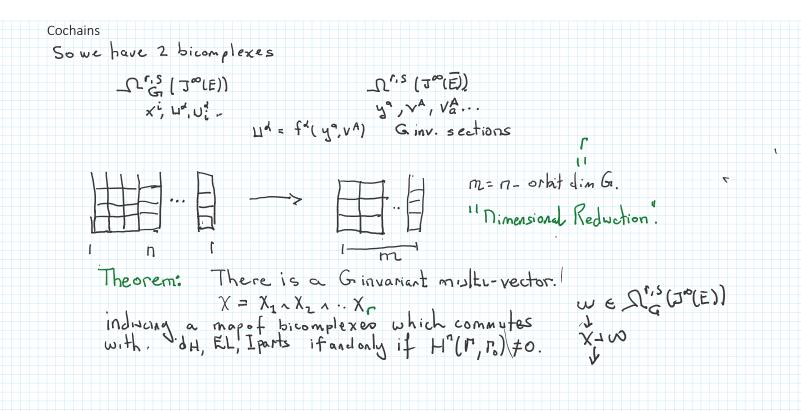
Lower Degree Page 6

Einstein Equations

Monday, August 23, 2021 10:04 AM

Characteristic Lagrangians
Miren burg Froblem.
When is a smooth map
$$k: S^{2} \rightarrow iR$$
 the Gaussian curvature
of a metric on S^{2} .
 $R: kig) = k$. If $g = e^{2i}g_{0}$ $\Delta u = 1 - Re^{2i}$.
Characteristic Lagrangians
Given $i: R \in J^{k}(E)$, find
 $\chi = \Omega^{n, 0} (J^{\infty}(E)), \chi \neq dHQ$.
 $I^{k}(\chi) = d_{H}g = e^{2i}g_{0}$
Theorem. If λ satisfies $*$ for $\Delta u = 1 - Re^{2i}$, the
 $\chi = \chi_{G,B} + \chi_{KW}$
 $\chi_{GB} = e^{2i}R \cdot V_{0}$
 $\chi_{KW} = \frac{1}{\chi} A^{i} R_{II} e^{2i} V_{0}$ Airj + Ajri = 0
Other Examples ???

Symme Criticality
Let G be a Lie symmetry group of
$$\lambda \in \Omega^{n,0}(\mathbb{J}^n(\mathbb{I}))$$
.
Let $\widetilde{\Delta} = E(\lambda)(\frac{n}{n}(\mathbb{I}))$ be the reduced diff equations
for the Ginvariant sections. $g \cdot S(x) = S(g \cdot x)$.
Is there reduced Lagrannian \widetilde{X} for $\widetilde{\Delta}$.
Example.
 $\lambda = (u_x^2 + u_y^2 + u_z^2), dx dy dz \in \Omega^{n,0}([x, y, z, u, u_x ... 1])$
 $E(\lambda) = u_{xx} + u_{yy} + u_{zz}$
 $G = SO(3)$ $u = v(n)$. $r = \sqrt{\lambda} + u_y^2 + u_z^2$
 $\widetilde{\Delta} = \frac{1}{2} r^2 v_r^2 dr$. $\in \Omega^{1,0}(cr, v, v_r, v_r^2)$.
Using symmetrize to reduce field equations from pde to ade.
?Palais: Are symmetric critical pts = critical pts of symmetric variables
. We obtained new obstructions to Lagrangian reductions.



Fakens

$$\lambda_{X}\lambda = X \cdot E(\lambda) + \lambda_{H} X \cdot \Theta^{T}$$

 $\Delta \in \Omega^{T,1} (\mathcal{J}^{\circ}(E)),$
 $\lambda_{X}\Delta = X \cdot \mathcal{H}(\Delta) + EL(X \cdot \Delta).$
 $\lambda = X \cdot \mathcal{H}(\Delta) + EL(X \cdot \Delta).$
 $\lambda = 0$
 $X - \mathcal{H}(\Delta) = 0$
 $A = 0$, ie A is locally variation.

Anderson, Pohjonpelto (94,95,96). Dasfinger (2020).

 $A^{ij} = A^{ij} \log_i 2g_i 2g_j \dots$ rank 2 victural tensor on bundle of metrics $A^{ij}_{ij}=0 \implies A^{ij} = \underbrace{SL}_{Sg_{ij}} \cdot (classification of div. free tensors)$

Invariant Bicomplex

- Let G be a finite dim Lie group
- acting on $\pi: E \rightarrow M$, with infinitesimal generators Γ . Let $\bigcup \subset J^{\infty}(E)$, Γ acting freely. $\Gamma_0 = \{ o \}$.
- => the interior rows $\Omega^{*,s}(J^{\infty}(U))_{\Gamma}$ are exact
- $\implies H^*(\varepsilon^*(J^{\infty}(L)))_{\Pi} = H^*(q).$
 - (Anderson, Pohjanpelto).
 - Can one do better, to include jets of invariant sections.

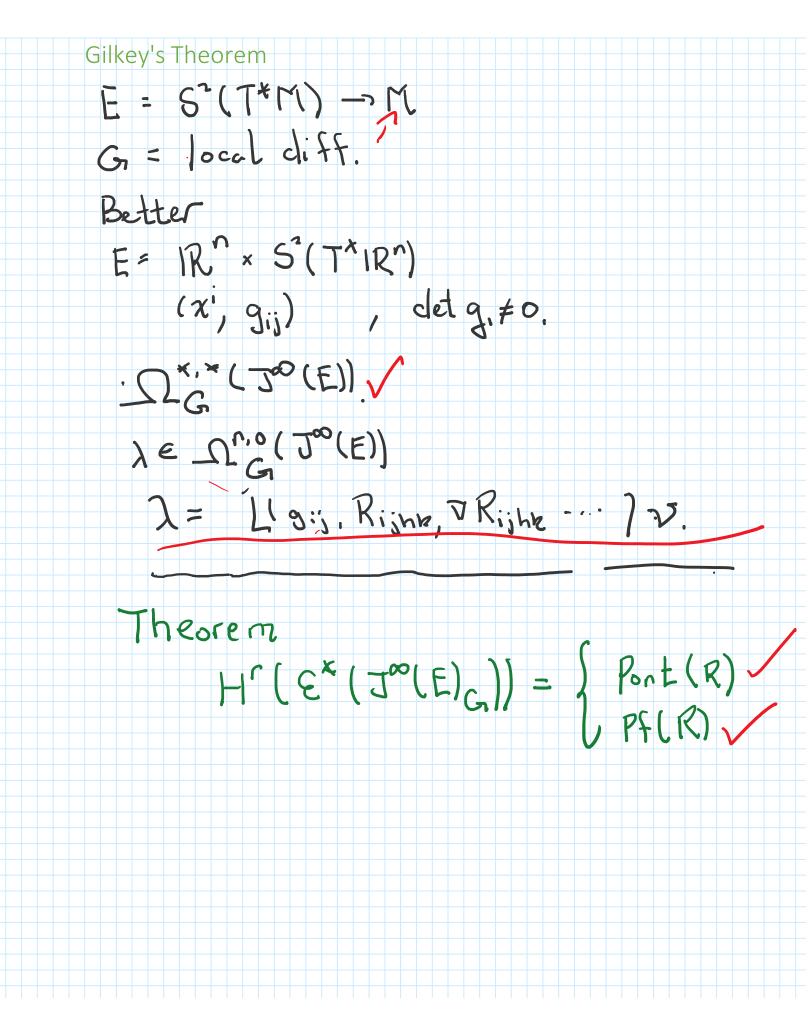
Invariant Variational Bicomplex for local diffeomorphism

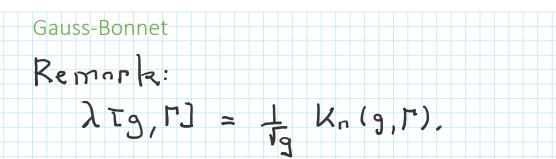
$$J^{e}(IR^{n}, IR^{n})$$

$$(x^{i}, u^{i}, u^{i}, u^{i})$$

$$(x^{i}, u^{i}, u^{i})$$

Example: n= 2. Remork: The isormorphism itself is easy to establish. But a direct calculation via VB is still a long story.



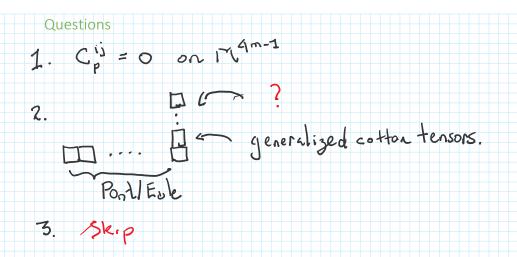


Let g_t, Γ_t be a curve of metric, connections. The first variational formula with boundary calculated from d_H homotopy operators \Rightarrow Chern's proof of generalized Gauss-Bonnet.

Other localization results also follow.

Controlocomous

$$P = f(a), s(n, R) inverse t pdy of degree 2m.
Phi = 3pr.
n = 4m - 1:
Critics of the phi (D) dxi
= gik phi$$



4. $H^{*}(E^{*}(m_{G})) = H^{*}(G.F, so(m))$? 5. Natural V.B for 9, X ? 9, X,Y ? 9, Killing vector?

g w ?

Conclusions

- * Many interesting/important results can be intrepreted in terms of $\Omega_G^{*,*}(\mathbb{R}^{\infty})$.
- * Powerful variational calculus.
- Detailed computations can be difficult.

· Thank-you. · Hope to one day met in person in "City of Music" "City of Dreams",