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A longer title

A longer, and more accurate, title is:

How to express what is a sample of a

real-valued random variable?

A (continuous?) multiplicative linear functional?

So the focus is on real-valued random variables (RVs).

It is about how to cast the notion of of RVs and their samples /

observations into a mathematical framework.

How to formalise a random variable and its observation?

What can we do with it and how can we represent it?
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Overview

1. Random variables — Kolmogorov and alternatives

2. Algebra of random variables (with a bit of history)

3. Representations of (commuting) random variables

4. Vector spaces of random variables, operational calculus

5. Observations and spectrum — spectral theory

6. Generalised random variables and duality

7. A glimpse at quantum computers
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Preliminaries

We will use the following convention:

In the real world there are entities which can be

observed or measured, called observables.

The result of such a measurement will be called an observation.

The mathematical model of an observable

will be called a random variable (RV).

The mathematical equivalent of an observation

will be call a sample of the RV.
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Kolmogorov’s definition of a random variable

Traditionally, probability theory has the notion of a measure space Ω,

σ-algebra A of subsets, and a probability measure P, as prime objects.

The notion of measure originally arose from measuring

lengths, areas, volumes, etc.

Kolmogorov: the first (1930s) rigorous and by

now classical definition of a (commutative) RV:

A (real valued) RV is a measurable function

r ∈ L0(Ω) on a probability space (Ω,A,P)
into (R,B) with the Borel-σ-algebra B.

Andrej N. Kolmogorov
(1903 – 1987)
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Expectation and sample

Given a probability measure P, one may define the expectation

E (φ(r)) :=
∫
Ω
φ(r(ω))P(dω) for any measurable function φ ∈ L0(R).

Obviously, E (·) is linear, and it is also

positive E
(
r2
)
≥ 0, and normalised E (1lΩ) = 1.

For simplicity, assume that Ω is a compact Hausdorff space,

and P a Radon probability measure. Then all continuous functions

r ∈ C(Ω) are RVs, and E (·) : C(Ω)→ R is continuous.

Conversely, if φ ∈ C(Ω)∗ is positive and normalised,

∃ P, a Radon probability measure s.t. φ(r) =
∫
Ω
r(ω)P(dω).

For (r ∈ C(Ω), ω ∈ Ω), the evaluation R ∋ r(ω) = ⟨δω | r⟩ is a sample.

ω 7→ (δω : C(Ω)→ R) is linear, continuous, positive; ⟨δω | 1lΩ⟩ = 1.
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Some problems

What if r /∈ C(Ω), but only r ∈ L∞(Ω), or even r ∈ L0(Ω) ?

Then what does r(ω) mean? Although Hahn-Banach asserts

existence of an extension of δω for L∞(Ω), there are many possible ones.

Kolmogorov’s definition was also found to be too narrow for

quantum theory, as observables may not commute.

Thus an alternative point of view arose, which has

RVs and expectation as prime objects;

or rather, in physics lingo, observables and states.

Incidentally, a similar view was implicitly present

at the beginnings of probability theory.
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The Bernoullis’ view of a random variable

RVs — as implicitly used by the Bernoullis —

can be, with rules like numbers

• a) added to each other,

• b) multiplied by numbers,

• c) multiplied by themselves,

• d) ‘averaged’.

• e) and constants ‘are’ RVs.
Jakob Bernoulli
(1655 – 1705)

Nikolaus (II) Bernoulli
(1695 – 1726)

nephew of Jakob

Daniel Bernoulli
(1700 – 1782)

brother of Nikolaus II

Mathematically (in modern lingo) this means:

1. a) and b) ⇒ RVs form a vector space.

2. c) ⇒ RVs are an associative, distributive algebra.

3. d) ⇒ existence of a state / expectation, a positive linear functional.

4. e) ⇒ existence of a unit / identity element.
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Expectation and observations / samples

More of the Bernoullis’ implicit rules in modern language:

• Constant RV a always is observed with same value α ∈ R, i.e. there is

a unit constant e, s.t. a = αe. And e is multiplicative unit: a = a · e.
• RVs can be ordered: a RV is positive a ≥ 0 = 0e iff a = b · b = b2.
a ≥ c iff (a − c) ≥ 0. RVs form a lattice with sup and inf.

• The ‘average’ φ ∈ A∗ is called a state in modern physics lingo,

defines expected value E (a) := φ(a) with φ(e) = 1 and φ(b2) ≥ 0.

• From observations ω(a) = a and ω(b) = b, one has observations

ω(αa + b) = αa+ b and ω(a · b) = ab. Also ω(e) = 1 and ω(b2) ≥ 0.

• This means that an observation ω ∈ A∗ is a multiplicative state,

an algebra homomorphism ω : A → R (a character / pure state).

A mathematical formalisation should capture these properties.
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Where are we going?

Starting from a probability algebra A, we look at

representations A → L(K) and topologies on A,
and characterise states S(A) and the spectrum (characters) Â

on the unit ball of the dual A∗, as all possible samples of all of A;
connecting this with σ(a) = {z | a − ze not invertible in A},
the spectrum of a single a ∈ A (all possible samples of a).

We also want to be able to compute functions φ(a) of RVs a ∈ A.

As classical RVs commute, and as in quantum physics

simultaneous observations are only possible on commuting

observables—for non-commutative A typically Â = ∅ —
we concentrate on representations of commutative algebras.

The main connection will be the representation on the multiplication

algebra L∞(Ω) and the multiplicative version of the spectral theorem.
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A bit of algebra

Definition: associative, distributive algebra A over a field (K-algebra)

is a K-vector space (K here R or C) with bi-linear associative

multiplication A ∋ a, b 7→ a · b ∈ A, i.e. (a · b) · c = a · (b · c)
distributive: (a + b) · c = a · c + b · c and c · (a + b) = c · a + c · b
A is a unital algebra iff ∃! e ∈ A (identity element): a · e = e · a = a.

A is Abelian or commutative iff [a, b] := a · b − b · a = 0.
Note that (A, [·, ·]) is a Lie algebra.

Definition: (left) regular representation Υ of A as linear maps L(A) on A:
Υ : A ∋ a 7→ La ∈ L(A) (Lab := a · b) is an algebra homomorphism.

Definition: A probability algebra A is an associative (usually complex)

unital algebra (with unit element e) and a positive linear functional φ

— called state or expectation — such that Eφ(e) := φ(e) = 1.

‘Samples’ are algebra homomrph. ωι : A → K (characters / pure states).
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Refinements

Observe that C(Ω), L∞(Ω), and L0(Ω) are algebras, that integral

is a state, and δω : C(Ω)→ R is an algebra homomorphism.

In quantum physics — although observations are real numbers —

one uses complex quantities, and the complex structure

is essential for superposition.

Paraphrased from J. Hadamard / P. Painlevé:

“The shortest path between two truths of the real domain

quite often passes through the complex domain.”

Therefore we take K = C, and any real algebra AR may be embedded in

a complex one A = AR ⊕ iAR. Additionally we assume an anti-linear

involution (a∗)∗ = a (A is a ∗-algebra), such that for a, b ∈ A, z ∈ C:
(a · b)∗ = b∗ · a∗, (za)∗ = z̄a∗, and φ(a∗) = φ(a).
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Example probability algebras

1) C(Ω) ⊂ L∞(Ω) ⊂ L∞−(Ω) :=
⋂

p≥1Lp(Ω), all commutative.

2) Complex n× n-matrices with matrix multiplication: A = M(n,C)
with unit e ≡ I, φ(A) := tr(A)/n, and A∗ := ĀT.

A commutative sub-algebra: diagonal matrices.

If Cn ∋ v ̸= 0 is an eigenvector of a normal A (AA∗ = A∗A),

then on the commutative sub-algebra C[A,A∗] the Rayleigh-quotient

ωv(A) = v∗Av/v∗v is a character / pure state.

3) Probability space (Ω,A,P) with simple (step) functions 1lE
for events E ∈ A gives a commutative probability algebra (e ≡ 1lΩ):

A = Ls(Ω) = {r(ω) =
∑K

k=1 ξk 1lEk(ω) | ξk ∈ C, Ek ∈ S} ⊆ L∞(Ω).

Ek can be chosen disjoint, involution is complex conjugation, and

φ(r) :=
∑K

k=1 ξk P(Ek) =
∫
Ω
r(ω) P(dω). Samples are ωk(r) = ξk.
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More on algebras

Let A be a ∗-algebra, and a, b ∈ A.

• powers an;n ≥ 0, defines polynomials p(a); and inverse a−1 · a = e.
• A is a Banach-algebra iff it is a Banach-space and ∥a · b∥ ≤ ∥a∥ ∥b∥;
• A Banach-*-algebra A is a C*-algebra iff ∥a∗ · a∥ = ∥a∗∥ ∥a∥ = ∥a∥2;
• A is a W*- or von Neumann algebra iff it is a C*-algebra which is the

dual (A = (A∗)
∗) of another Banach space A∗. Main ex.: L (H).

• normal, self-adjoint, and unitary elements as for matrices.

• self-adjoint elements a ∈ A such that a = b∗ · b are called positive;

0 and e are positive, and positive elements form a convex cone P
• positive elements p ∈ A such that p = p · p are called projections.

• spectrum of a ∈ A: σ(a) = {z ∈ C | a − ze has no inverse in A}

Goal is to get new RVs by computing functions f(a) (via W*-algebras).
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More on functionals and states

Each linear functional β ∈ A∗ defines a sesqui-linear form

b on A×A, and in turn a linear map B : A → A∗:

β(c∗ · a) =: b(a, c) =: ⟨Ba, c∗⟩(A∗,A) ; ∀a, c ∈ A.
In case B is Hermitian (self-adjoint) or positive,

the same is attached to b and β ∈ A∗.

A Hermitian, strictly positive definite state φ ∈ A∗ (a faithful state)

defines an inner product ⟨· | ·⟩2 on A:
⟨a | c⟩2 := φ(c∗ · a) = ⟨Φa, c∗⟩(A∗,A) , Φ ∈ L (A,A∗), and Hilbert

space completion H := L2(A,φ) := cl2{a ∈ A : ∥a∥2 <∞}.
(Possibly factor out {a | φ(a∗ · a) = ∥a∥2 = 0})

Representation: this is a *-algebra homomorphism A → L(K).
A 1D-representation A → L (C) ∼= C is called a character.

Regular (left) representation: Υ : A ∋ a 7→ La ∈ L(A), Lab := a · b.

TU Braunschweig Institute of Scientific Computing
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Topologies, states, and spectrum

• First topologies on A: one from L2(A,φ). Others from regular

representation Υ : A → L(A). Concentrate on bounded subalgebra

Ab = {a ∈ A | sup(∥Lab∥2 / ∥b∥2) = ∥La∥ <∞}, ∥a∥∞ := ∥La∥;
so Υ (Ab) ⊆ L (H). Set A∞ = cl∞Ab, a C*-algebra.

• States S(A): positive Hermitean functionals φ ∈ A∗ with:

φ(e) = 1, φ(a∗ · a) ≥ 0 ⇒ a = a∗ : φ(a) ∈ R. φ is faithful iff

φ(a∗ · a) = 0⇔ a = 0. On A∞ thus φ(e) = 1⇒ ∥φ∥∗ = 1, and

∅ ≠ S(A∞) ⊂ A∗
∞ is w*-compact and convex.

• Extreme points ext(S(A)): On a complex commutative *-algebra,

φ extreme point of S(A) ⇔ φ is a character / pure state (φ ∈ Â).
• Spectrum Â ⊂ S(A) (Character / 1D-representation / pure state): On

A∞ one has ∅ ≠ Â∞ = ext(S(A∞)) ⊆ S(A∞) is w*-compact; and

kerω ⊂ A∞ is maximal ideal. Krein-Milman: S(A∞) = co∗Â∞.
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More about the spectrum

Spectrum of

• u−1 = u∗ unitary ⇒ σ(u) ⊆ T1 := {z ∈ C : |z| = 1},
• a = a∗ self-adjoint ⇒ σ(a) ⊆ R,
• a = b∗b positive ⇒ σ(a) ⊆ R+ := [0,∞[,

• p = p2 projection ⇒ σ(p) ⊆ {0, 1} — (σ(αe) = α).

View a ∈ A as random variables —only self-adjoint ones are observable—

and Eφ(a) = φ(a) as expectation (when the “knowledge” is in state φ).

Projections p can be seen as events, as 0 ≤ P(p) := Eφ(p) ≤ 1.

Split a = ā + ã with ā = φ(a)e and φ(ã) = 0: A = Ā ⊕ Ã, Ã = kerφ.

a1, a2 ∈ A are uncorrelated iff ⟨ã1 | ã2⟩2 = 0, and are independent iff〈
C̃[a1] | C̃[a2]

〉
2
= 0 and [a1, a2] = 0 (⇒ φ(a1 · a2) = φ(a1)φ(a1)).

Observations / samples are pure states, so {ω(a) | ω ∈ Â} = σ(a).
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Multiplication algebra

For simplicity, assume Ω is a compact Hausdorff space,

P a Radon probability measure as before.

Multiplication algebra L∞(Ω): Take R = L2(Ω) and define for

k ∈ L∞(Ω) a continuous linear map Mk ∈ L (R):
Mk : R ∋ f 7→Mk(f) := kf ∈ R ⇒ ∥Mk∥L = ∥k∥∞ .

One has M∗
k = Mk̄. The injective C*-algebra morphism

µ : L∞(Ω) ∋ k 7→Mk ∈ L (R) is the multiplicator representation,

and µ(L∞(Ω)) =M = {Mk | k ∈ L∞(Ω)} is called the

multiplication algebra of R, isometrically isomorphic to L∞(Ω).

The C*-algebra µ(L∞(Ω,R)) is maximal Abelian self-adjoint — MASA.

The C*-sub-algebra µ(C(Ω)) ⊂M is called the uniform sub-algebra.

TU Braunschweig Institute of Scientific Computing
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GNS-construction

Izrail’ M. Gel’fand

(1913 – 2009)

Mark A. Najmark

(1909 – 1978)

Irving E. Segal

(1918 – 1998)

GNS — Gel’fand-Najmark-Segal

Starting from a probability algebra A with faithful state φ ∈ S(A),
• construct ∥·∥2, Hilbert space H = L2(A,φ), and W*A L (H),
• construct bounded Ab s.t. Υ (Ab) ⊆ L (H), ∥·∥∞, C*A A∞ = cl∞Ab,

Regular C*-representation Υ : C*-algebra A∞ ∋ a 7→ La ∈ L (H) with
Lab := a · b, then Eϕ(a) = φ(a) = φ(e

∗ · a · e) = ⟨Lae | e⟩2 = ⟨a | e⟩2,
(vector state), and A∞ repr. as a C*-sub-algebra Υ (A∞) ⊆ L (H).
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Gel’fand representation of Abelian algebras

As classical RVs commute, and as in quantum physics

simultaneous observations are only possible on commuting observables,

assume that B is a complex Abelian (commutative) C*-algebra, possibly

produced as uniform closure of bounded RVs via the GNS-construction.

Gel’fand representation: spectrum Ω := B̂ is a w*-compact Hausdorff

subspace of B∗, each a ∈ B is in C(Ω;C) = C(Ω). The representation

γ : B → C(Ω), γ(a) : Ω ∋ ω 7→ ⟨δω, a⟩(B∗,B) =: a(ω) ∈ C;
is an isometric isomorphism of C*-algebras ( via Stone-Weierstrass ).

µ ◦ γ : B →M on H is an iso-representation in the uniform algebra.

For a ∈ B, spectrum σ(a) = im γ(a) = γ(a)(Ω) ⊂ C (range of γ(a)).

For bounded, normal a, and B = C∗C[a, a∗] := cl∞C[a, a∗], there is an

iso-repr. ν : C(B̂)→ C(σ(a)) s.t. ν(a) is z 7→ z and ν(a∗) is z 7→ z̄.

For C(Ω) the spectrum Ĉ(Ω) ∼= Ω are all δω ∈ C(Ω)∗, ω ∈ Ω.
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Continuous spectral calculus and Lp-spaces

If φ ∈ C(σ(a)), then define φ(a) := γ−1 ◦ φ ◦ γ(a) ∈ B
— the continuous operational calculus, and σ(φ(a)) = φ(σ(a)) —

If φ is real-valued, φ(a) is self-adjoint, if |φ| = 1, φ(a) is unitary.

This allows (also for non-Abelian) C*-algebras A to define

continuous functions of normal a ∈ A by computing it

on the Abelian C*-sub-algebra B = C∗C[a, a∗];
and as c = (a∗a) ≥ 0 is positive and self-adjoint, hence normal,

for any a ∈ A, the absolute value is |a| = c
1/2 ∈ B ⊆ A.

For any C*-probability algebra A one may now define for 0 < p <∞:

∥a∥p = (φ(|a|p))
1/p = (Eφ(|a|p))

1/p and Lp(A,φ) = clpA,
and L∞−(A,φ) :=

⋂
p≥1Lp(A,φ), the largest algebra in

L0(A,φ) := cldA with metric d(a, b) = Eφ(|a−b|/(1+|a−b|)).
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L∞-space and weak closure

C(Ω) ⊂ L∞(Ω) is a C*-algebra, hence a proper closed subspace in the

∥·∥∞-norm in the W*-algebra L∞(Ω). So for L∞(A,φ) a bit more care

is needed, as a C*-probability algebra A with norm ∥·∥∞ is a Banach

space and hence complete. For any C ⊆ L (H) the commutant

C′ := {A ∈ L (H) | [A,C] = AC − CA = 0 ∀C ∈ C} ⊂ L (H)
is a C*-sub-algebra, and the double commutant C′′ ⊇ C is a

W*-sub-algebra, and also C′′ = W∗C := clτw C, the closure / completion

in the weak operator topology τw defined by the semi-norms

|C|f,g = |⟨Cf | g⟩| for C ∈ L (H) and f, g ∈ H.

Thus, for A define topology τw with semi-norms |a|f ,g = |φ(g∗ · a · f )|
(a, f , g ∈ A) and the completion L∞(A,φ) := clτwA — a W*-algebra.
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Borel spectral calculus

If B is a commutative C*-probability algebra, the state / expectation

defines a continuous, positive, and normalised functional

EΩ := φ ◦ γ−1 ∈ C(Ω)∗, hence ∃ Pφ — Radon probability measure.

Hence one may define all the spaces Lp(Ω) (0 ≤ p ≤ ∞) as completions.

What is the spectrum — and hence possible sample — of φ ∈ L∞(Ω) ?

σ(φ) = {z ∈ C : (φ− z1lΩ)
−1 /∈ L∞(Ω)} =

{z ∈ C : φ∗P(U) = P(φ−1(U)) > 0 ∀ neighbourhoods U ⊂ C of z},
the essential range or spectrum of φ ∈ L∞(Ω)

—may be extended to Lp(Ω) (0 ≤ p <∞).

For 0 ≤ p ≤ ∞ and φ ∈ Lp(σ(a)) define φ(a) ∈ Lp(B,φ) as the limit of

a net γ−1 ◦ ν−1(φ̃ι), where φ̃ι ∈ C(σ(a)) is a net converging to φ in

appropriate topology — the bounded Borel operational calculus.

TU Braunschweig Institute of Scientific Computing
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Uncertainty relation

For s.a. RV a ∈ A∞ define uncertainty ς(a)φ (ã = a− ā = a− φ(a)e) by
ς(a)2φ := Eφ(ã2) = φ(ã · ã) = φ(ã∗ · ã) = φ(a2)− φ(a)2 = ⟨ã | ã⟩2.

If φ is multiplicative — an extreme state resp. a sample

φ = ω ∈ Â∞ = ext(S(A∞)) — one has ς(a)2ω = ω(ã
2) = ω(ã)ω(ã) = 0:

observation or sampling without uncertainty is possible.

For combined uncertainty of two s.a. RVs a, b ∈ A∞ one has:

ς(a)2φς(b)
2
φ = ⟨ã | ã⟩2 ⟨b̃ | b̃⟩2 ≥

∣∣∣⟨ã | b̃⟩2∣∣∣2 (Cauchy–Schwarz).

For z = ⟨ã | b̃⟩2 ∈ C one has |z|2 = (ℜz)2 + (ℑz)2≥ (ℑz)2 and

(ℑz)2 = (1/2i(z − z̄))2 = 1/4(z − z̄)2 = 1/4(⟨ã | b̃⟩2 − ⟨b̃ | ã⟩2)2
= 1/4(φ(ã · b̃)− φ(b̃ · ã))2 = 1/4(φ(ab)− φ(ba))2= 1/4φ([a, b])2,

whence (Robertson) ς(a)φς(b)φ ≥ 1/2 |Eφ([a, b])|:
lower limit of uncertainty for non-commuting RVs ([a, b] ̸= 0); generally
observation / sample of non-commuting RVs is not possible (Â∞ = ∅).

TU Braunschweig Institute of Scientific Computing
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Where have we come to?

Formalised the abstract idea of (possibly non-commuting)

observables and average as probability algebra (A,φ).

Representations of (A,φ):
Key to many developments is the regular representation Υ : a 7→ La,

observations / samples are characters—elements of the spectrum Â.
Kolmogorov’s classical definition appears as one particular representation.

Every Abelian C*-probability algebra B∞ = C∗B ‘is like’ C(Ω),

and also like uniform algebra µ(C(Ω)) ⊆ L (H).
Its weak closure W*B ‘is like’ L∞(Ω),

and also like multiplication algebra—a MASA— µ(L∞(Ω)) ⊆ L (H).
Samples appear as continuous characters.

Functions φ(a) of RVs may be computed via operational calculus.

TU Braunschweig Institute of Scientific Computing
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Which topologies can one use?

For all 0 < p ≤ ∞ the Lp(A)-spaces were defined.

Possibly unbounded A can be identified with a sub-algebra of L∞−(A),
for Abelian B represented as multiplication by

possibly unbounded function f ∈ L0(Ω) in

unbounded multiplication algebra µ(L0(Ω)) ⊆ L(H).

Hence one has the system of algebras of RVs:

Ab ⊆ A∞ ⊆ L∞(A) ⊆ A ⊆ L∞−(A) ⊂ L0(A)

Similarly, one has the system of Banach-Gelfand triples (with 2 ≤ p <∞
and 1/p + 1/p∗ = 1); continuous embeddings with different topologies:

A∞ ↪→ L∞(A) ↪→ Lp(A) ↪→ L2(A) = H ∼= H∗ ↪→ Lp∗(A) ↪→ L1(A)
L2(A) = H ∼= H∗ is a ‘natural’ pivot space.

TU Braunschweig Institute of Scientific Computing
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Some questions

Some possible questions:

• Are there other representations of RV-algebras which may be helpful

to understand certain aspects, or for specific numerical computations?

We have seen regular repr. on L(A), and for Abelian ones the function

algebra repr. (both faithful), and for samples the 1D character repr.

• How to sample RVs a ∈ L0(Ω) \ C(Ω) ?

• Is a good regularity theory possible for solutions of stochastic

equations, and functionals (QoIs) thereof? What could be good spaces

of RVs? Can this reduce the # of samples to approximate Eφ ?
• How to define and deal with “wild” RVs, or generalised RVs as

“idealised” elements — e.g. white noise, Donsker’s delta, etc.

TU Braunschweig Institute of Scientific Computing
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Sampling

Looking at self-adjoint a = a∗.

If γ(a) = a ∈ C(Ω), where Ω = B̂, then a sample is just a(ω) := ⟨δω, a⟩.
What to do for a RV a ∈ L0(Ω) \ C(Ω) ?

If a ∈ L0(Ω), it suffices to look at an = sign(a) · ess inf(|a| , n) ∈ L∞(Ω),

whence for any n ∈ N: σ(an) ∈ [−n, n] and ∀λ ∈ σ(an)

∃ωλ ∈ L̂∞(Ω) ⊂ (L∞(Ω))∗ with ⟨ωλ, an⟩ = λ.

Elements which are in (L∞(Ω))∗ are difficult to access directly.

Therefore via regular representation Υ : a 7→ La on H = L2(Ω).

Any a ∈ L0(A) defines a possibly unbounded,

densely defined, self-adjoint operator La =: A ∈ L(H) in H.

Sampling therefore is equivalent to computation of spectral values of A.

TU Braunschweig Institute of Scientific Computing
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Three Spectral Theorems for Matrices

Let A ∈M(n,C) be normal ([A,A∗] = 0, A∗ = Ā
T
) ⇒

∃λ1, . . . , λn ∈ σ(A) ⊂ C and orthonormal eigenvectors ek ∈ Cn.

Three versions, and operational calculus for any f : σ(A)→ C:

1. Multiplicative: Set V = [e1, . . . , en] (unitary) and ΛA = diag(λk).

Then A = V ΛAV
∗. For any function f : f(A) = V f(ΛA)V

∗,

2. Projections: Set E0 = 0,Ek =
∑

λm≤λk
eme∗m =

∑
λm≤λk

em ⊗ ēm,

and ∆Ek := Ek −Ek−1. Then for all v ∈ Cn :

Av =
∑

λ1≤λk≤λn
λk∆Ekv; and f(A)v =

∑
λ1≤λk≤λn

f(λk)∆Ekv.

3. Eigenvectors: For all v ∈ Cn:

Av =
∑

λk
λk ⟨v, ek⟩Cn ek and f(A)v =

∑
λk

f(λk) ⟨v, ek⟩Cn ek.

f(A) is normal, and for real-valued f , f(A) is Hermitean.
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Spectral analysis overview

Multiplicative spectral theorem:

for a self-adjoint (s.a.) operator A ∈ L (H), A = A†, we may take

B = C∗C[A] and apply the Gel’fand representation; then σ(A) ⊂ R.
There is a unitary U ∈ L (L2(σ(A),H)), s.t. A = UMλU

∗ with

multiplication operator Mλ in the uniform algebra C(σ(A)), and

f(A) = UMf(λ)U
∗ in the MASA W∗B = B′′, equiv. to L∞(σ(A)).

Projection measure spectral theorem:

take for λ ∈ σ(A) the projections pλ = 1l]−∞,λ] ∈ L∞(σ(A)),

define projections Eλ = pλ(A) ∈W∗B to obtain the usual

A =
∫
σ(A)

λ dEλ and f(A) =
∫
σ(A)

f(λ) dEλ.

For a s.a. RV a one has the cumulative distribution function

Fa(λ) = φ(pλ(a)) = E (pλ(a)) =: P(ω(a) ≤ λ), and

a =
∫
σ(a)

λ dpλ(a) ⇒ E (a) =
∫
σ(a)

λ dFa(λ).
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Countably Hilbertian and nuclear spaces

Space F with sequence of Hilbert norms {∥·∥n}∞0 s.t. for n < m:

∥x∥n ≤ ∥x∥m. With Vn = clnF and V−n = V∗
n one has densely

F ↪→ Vm ↪→ Vn ↪→ H = V0 ∼= H∗ ↪→ V−n ↪→ V−m, and

F ↪→ V :=

∞⋂
k=0

Vk ↪→ . . .Vn · · · ↪→ H ↪→ . . .V−n · · · ↪→ V∗ :=

∞⋃
k=0

V−k

Projective limit V = lim←−Vk is a complete countably Hilbertian Fréchet

space. Its dual is the injective limit V∗ = lim−→V−k. All are separable.

If ∀n ∃m > n s.t. Vm ↪→ Vn is nuclear, V is a nuclear space.

If A : F → F(↪→ H densely) is ess. s.a., set ∥x∥2n =
∑n

k=0

∥∥Akx
∥∥2
H.

One has A ∈ L (V) and Ak ∈ L (Vm+k,Vm−k). In case V is not

nuclear, it is possible to find nuclear U ↪→ V densely, s.t. A ∈ L (U).

The nuclear Gelfand triple U ↪→ H ↪→ U∗ is called a rigged Hilbert space.
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Generalised eigenvectors

Generalised eigenvectors / nuclear spectral theorem:

Rigged Hilbert space U ↪→ H ↪→ U∗ with A ∈ L (U) and λ ∈ σ(A):

∃uλ ∈ U∗ (generalised eigenvector) s.t. ∀υ ∈ U :
⟨Aυ, uλ⟩(U,U∗) =: ⟨υ,Auλ⟩(U,U∗) = λ ⟨υ, uλ⟩(U,U∗) .

In case uλ ∈ H, it is a usual eigenvector: Auλ = λuλ.

Then it is possible to define a measure ρA on σ(A)

and a measurable λ 7→ uλ, s.t. ∀υ ∈ U :

Aυ =

∫
σ(A)

λ ⟨υ, uλ⟩(U,U∗) uλ ρA(dλ)

and

f(A)υ =

∫
σ(A)

f(λ) ⟨υ, uλ⟩(U,U∗) uλ ρA(dλ)
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Spectral subsets, stability

For s.a. A ∈ L(H): σ(A) = {λ ∈ R | (A− λI) not invertible in L (H)}

• λ ∈ σp(A) — point spectrum, if ker(A− λI) ̸= {0},
• λ ∈ σc(A) = σ(A) \ σp(A) — continuous spectrum,

• λ ∈ σs(A) ⊆ σp(A) — simple spectrum,

if λ isolated in σ(A) and dim(ker(A− λI)) <∞,

• λ ∈ σe(A) = σ(A) \ σs(A) — essential spectrum,

Spectral stability:

Stability under compact s.a. perturbation C ∈ L (H):
σe(A) = σe(A+ C).

For any s.a. A ∈ L (H) there is a compact s.a. perturbation C ∈ L (H)
(of arbitrarily small norm ∥C∥) s.t.

σc(A+ C) = ∅, i.e. σ(A+ C) = σp(A+ C).
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Sampling the spectrum for a ∈ L0(Ω) \ C(Ω)

For λ ∈ σs(A) there is an normalised eigenvector vλ ∈ H and

ωλ(a) = ⟨vλ | Avλ⟩ is a pure state.

For λ ∈ σe(A) only smoothed approximation, as λ may not be isolated.

But for λ ∈ σp(A) \ σs(A) there is an normalised eigenvector vλ ∈ H
and ωλ(a) = ⟨vλ | Avλ⟩ is a pure state.

For λ ∈ σc(A), there is a generalised eigenvector uλ ∈ U∗, and υ ∈ U
s.t. ⟨υ, uλ⟩(U,U∗) ̸= 0, and a pure state is given by

ωλ(a) =
⟨Aυ, uλ⟩(U,U∗)

⟨υ, uλ⟩(U,U∗)
.
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Sampling the spectrum II

Alternatively, for λ ∈ σe(A) there is an orthonormal sequence gn ∈ H
s.t. ωλ(a) = limn→∞ ∥Agn∥ is a pure state.

Other calculations based on resolvent RA(z) = (A− zI)−1.

This corresponds to r a(z) = (a − ze)−1.

For s.a. a one has that r a(z) ∈ L∞(A) if ℑz ̸= 0.

For λ ∈ σ(A), ⟨RA(λ+ iϵ)g | g⟩ has a jump at ϵ = 0.

Therefore, with ⟨r a(z)e | e⟩ = Eφ(r a(z)), look at

sλ(ϵ) = Eφ(r a(λ+ iϵ))− Eφ(r a(λ− iϵ)).

If limϵ→0 sλ(ϵ) ̸= 0 ⇒ λ ∈ σ(a).

Hence, for λ ∈ σc(A)⇔ sλ(ϵ) ̸= 0 for ϵ≪ 1

is a ϵ-smoothed approximation for a pure state ωλ(a).
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Polynomial chaos

A frequent situation is that one has a Hilbert space of

(commuting) Gaussian RVs G,
and one considers the algebra P := C[G] with state E = φ.

Choosing a complete orthonormal system (CONS) {θk} in G,
one builds well known orthogonal Hermite polynomial chaos in P

Hα(ϑ) =
∏

j hj(αj)(θj), s.t. ⟨Hα | Hβ⟩2 = (α!)δα,β

with ϑ = (θ1, . . . ) and α = (α1, . . . ) ∈J = N(N)
0 a multi-index,

and 1D Hermite polynomials hj.

Setting Cn = cl2(span{Hα : |α| = n}) for n-th homogeneous chaos,

one has H = L2(P) = cl2(
⊕

n≥0 Cn) (chaos decomposition),

and for f ∈ H with f =
∑

α∈J fαHα one has ∥f ∥22 =
∑

α(α!)f2
α.
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Spaces of random variables I

For appropriate f ∈ H define unbounded s.a. positive operators

for 0 ≤ ϱ ≤ 1 and k ∈ N0 by

Aϱ,kHα = (2N)kα(α!)ϱHα with (2N)γ =
∏

j(2j)
γj for γ ∈J

and Hilbert norms ∥f ∥2ϱ,k = ⟨Aϱ,kf | f⟩2. This gives separable Hilbert

spaces (S)ϱ,k = {f ∈ H : ∥f ∥ϱ,k <∞}, (S)ϱ,−k := (S)∗ϱ,k, and
— Hida-Kondratiev spaces —

(S)ϱ :=
⋂∞

k=0(S)ϱ,k ↪→ . . . (S)ϱ,m · · · ↪→ H
↪→ . . . (S)ϱ,−n · · · ↪→ (S)∗ϱ :=

⋃∞
k=0(S)ϱ,−k

All (S)ϱ are nuclear spaces. The nuclear test RV space (S)0 is the Hida

test space, and the distribution / generalised RV (S)∗0 is the Hida test

space, containing white noise. The pair (S)1, (S)∗1 are the Kondratiev

test and distribution / generalised RV spaces. One has

(S)1 ↪→ (S)ϱ ↪→ (S)0 ↪→ H ↪→ (S)∗0 ↪→ (S)∗ϱ ↪→ (S)∗1
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Spaces of random variables II

An important s.a. positive operator is the Ornstein-Uhlenbeck or

number operator Λ: for Hα ∈ Cn (|α| = n) one sets ΛHα = nHα.

Define the norms ∥f ∥k,p :=
∥∥∥(I + Λ)

k/2f
∥∥∥
p
and the

Sobolev-Malliavin spaces Dk
p = {f ∈ (S)0 : ∥f ∥k,p <∞}.

A f ∈ Dk
p is k-times Malliavin differentiable in Lp(P).

For p = 2 the Dk
2 are Hilbert spaces, D−k

2 := (Dk
2)

∗ , and one has

D∞
2 :=

∞⋂
k=0

Dk
2 ↪→ . . .Dm

2 · · · ↪→ H ↪→ . . .D−m
2 · · · ↪→ D∗

2 :=
∞⋃
k=0

D−k
2

If f ∈ D1
2, it can have a density.

If f ∈ D∞ :=
⋂

p≥1

⋂∞
k=0Dk

p, it can have a smooth density.
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A glimpse at quantum computing I

A qubit is a vector in Q1 := C2, the usual basis is |0⟩, |1⟩.
n qubits are represented as a vector in Qn = Q⊗n

1 = (C2)⊗n ∼= C2n.

A quantum computation is in most quantum computers a

unitary transformation U ∈ L (Qn), transforming

an input g ∈ Qn to an output a = Qg.

At the end of the computation, the output state a has to be measured,

to determine which qubit aj is in which state (|0⟩ or |1⟩).

The possible measurements / observations M ℓ are s.-a. and not without

error, so they are non-commuting RVs in the algebra A = L (Qn).

In each run / computation, only a commuting set {Hk}Kk=1

can be observed / sampled.
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A glimpse at quantum computing II

The expectation is given by a state E (M) = φ(M) = 1/n tr(RM),

where R is a positive definite s.a. matrix with

φ(R) = 1, the density matrix.

The observations / samples are ω(Hk +E) = ⟨(Hk+E)a|a⟩
⟨a|a⟩ ,

where E ∈ C[{Hk}] is the error in the measurement.

So instead of ω(Hk), one observes ω(Hk) + ω(E),

where hopefully E (E) := φ(E) = 0.

One then has to perform many (MC) samples ωι,

so that the statistical error for each qubit becomes small enough.
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Conclusion

• Probability algebras give ‘probability without measures’.

• RVs and expectation operator become central objects.

• Algebras (and probability measures — integration) have

close connection with spectral theory and functional calculus.

• Sampling is theoretically the same as determination of a spectral value.

• Duality theory allows “wild” random variables, and

Gelfand triples give stochastic test RVs and stochastic “distributions”.

• Quantum computing is a simple non-commutative example.
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