One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
	0000000	00000	

Topological field theories with boundaries - some constructions and some applications

Christoph Schweigert

Mathematics Department Hamburg University

Based on work with Laurens Lootens, Jürgen Fuchs, Jutho Haegeman, Christoph Schweigert, Frank Verstraete and Julian Farnsteiner

September 3, 2020

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
Overview			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

One-dimensional spin systems

2 Two-dimensional spin systems

PEPS and state-sum TFT with boundaries

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
•OO		00000	000
Chapter 1			

One-dimensional spin systems

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
000	0000000	00000	000
One-dimensional	spin systems		

 ${\mathcal H}$ a finite-dimensional vector space ${\mathcal H}$, with basis $|j
angle_{j=1,...d}$

Dimension of vector space $\mathcal{H}^{\otimes N}$ for spin chain of length N grows exponentially.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

One-dimensional spin systems OOO	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
One-dimensional	spin systems		

 $\mathcal H$ a finite-dimensional vector space $\mathcal H$, with basis $|j\rangle_{j=1,...d}$

Dimension of vector space $\mathcal{H}^{\otimes N}$ for spin chain of length N grows exponentially. Parametrize certain translationally invariant states on $\mathcal{H}^{\otimes N}$:

- Auxillary vector space \mathcal{V} with dim_C $\mathcal{V} = D$ and basis $|m\rangle_{m=1,...D}$
- Matrix $A_{m,n}^{j}$ with $m, n = 1, \dots, D$ and $j = 1, \dots, d$:

$$\psi(\boldsymbol{A}) := \sum_{j_1, j_2, \dots, j_N}^{d} \mathsf{Tr}(\boldsymbol{A}^{j_1} \boldsymbol{A}^{j_2} \cdots \boldsymbol{A}^{j_N}) | j_1 \rangle \otimes | j_2 \rangle \otimes | j_N \rangle \; \in \; \mathcal{H}^{\otimes N}$$

These matrices A encode a family of states with $d \cdot D^2$ parameters.

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
000	0000000	00000	000
One-dimensional	spin systems		

 \mathcal{H} a finite-dimensional vector space \mathcal{H} , with basis $|j\rangle_{j=1,...d}$

Dimension of vector space $\mathcal{H}^{\otimes N}$ for spin chain of length N grows exponentially. Parametrize certain translationally invariant states on $\mathcal{H}^{\otimes N}$:

- Auxillary vector space $\mathcal V$ with dim $_{\mathbb C}\mathcal V=D$ and basis $|m
 angle_{m=1,...D}$
- Matrix $A_{m,n}^{j}$ with $m, n = 1, \dots, D$ and $j = 1, \dots, d$:

$$\psi(\boldsymbol{A}) := \sum_{j_1, j_2, \dots, j_N}^{d} \mathsf{Tr}(\boldsymbol{A}^{j_1} \boldsymbol{A}^{j_2} \cdots \boldsymbol{A}^{j_N}) | j_1 \rangle \otimes | j_2 \rangle \otimes | j_N \rangle \; \in \; \mathcal{H}^{\otimes N}$$

These matrices A encode a family of states with $d \cdot D^2$ parameters.

Graphically

$$\psi(A) = \begin{bmatrix} A & A & \dots & A \\ & & & & \\ j_1 & j_2 & \dots & j_N \end{bmatrix}$$

No dynamics specified, just a subspace of states (\rightarrow quantum code)

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries 00000	Equivariant Frobenius-Schur indicators
A different view	: PEPS		

Place at each site $\mathcal{V} \otimes \mathcal{V}$.

Maximally entangle all the pairs of qudits on neighbouring sites by projecting onto the maximally entangled state $|\alpha\rangle := \sum_{m=1}^{D} |m\rangle \otimes |m\rangle$

One-dimensional PEPS tensor is a map $f : \mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{H}$:

Hence the name Projected entangled pair state

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
000	0000000	00000	000
Chapter 2			

Two-dimensional spin systems

The same prescription works in two dimensions, e.g. for the square lattice

leading to the following structure of the PEPS tensors

The physical vector space \mathcal{H} of the spin system is sticking out of the plane.

One-dimensional spin systems 000 Two-dimensional spin systems

PEPS and state-sum TFT with boundaries 00000 Equivariant Frobenius-Schur indicators

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Towards tractable systems: MPO symmetries

This is a two-dimensional system.

- Topological symmetries should explain ground state degeneracies, if the system is placed on non-trivial topologies.
- In a two-dimensional system, topological symmetries are encoded by one-dimensional defects. (For RCFT: Fuchs, Fröhlich, Runkel, CS, 2004)

Two-dimensional spin systems 0000000

Towards tractable systems: MPO symmetries

This is a two-dimensional system.

- Topological symmetries should explain ground state degeneracies, if the system is placed on non-trivial topologies.
- In a two-dimensional system, topological symmetries are encoded by one-dimensional defects. (For RCFT: Fuchs, Fröhlich, Runkel, CS, 2004)

Specialize to trivalent vertices, e.g. honeycomb lattice

Ingredients: Vector spaces $\mathcal{H}, \mathcal{V}, \mathcal{W}$ Tensors: PEPS MPO

 $\mathcal{V}^{\otimes 3} \otimes \mathcal{H} \to \mathbb{C} \qquad \mathcal{V}^{\otimes 2} \otimes \mathcal{W}^{\otimes 2} \to \mathbb{C}$

Fusion category	of MPO symmet	rios	
000	0000000	00000	000
One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators

MPO tensor:
$$\longrightarrow$$
 = \longrightarrow :

Т

• Every $v \in \mathcal{V} \otimes \mathcal{V}$ gives an endomorphism $\mathcal{B}(v) : \mathcal{W} \to \mathcal{W}$. Assume that the subalgebra $\mathcal{B}_W := \langle \mathcal{B}(v) \rangle \subset \operatorname{End}(\mathcal{W})$ is semisimple. Decompose \mathcal{W} into a direct sum of orthogonal invariant subspaces: $\mathcal{W} := \bigoplus_{a \in I_{\mathcal{C}}} \mathcal{W}_{a}$ labeled by isoclasses of simple \mathcal{B}_{W} -modules: Abelian category $\mathcal{C} := \mathcal{B}_W \operatorname{-mod}_{\mathrm{fd}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
000	0000000	00000	000
Fusion category	of MPO symmet	ries	

MPO tensor: $\blacksquare = - \diamondsuit$:

Every v ∈ V ⊗ V gives an endomorphism B(v) : W → W.
 Assume that the subalgebra B_W := ⟨B(v)⟩ ⊂ End(W) is semisimple.
 Decompose W into a direct sum of orthogonal invariant subspaces:
 W := ⊕_{a∈lc} W_a labeled by isoclasses of simple B_W-modules:
 Abelian category C := B_W-mod_{ff}

every w ∈ W ⊗ W gives endomorphism B(w) : V → V.
 Assume that the subalgebra B_V := ⟨B(w)⟩ ⊂ End(V) is semisimple.
 Decompose V into a direct sum of orthogonal invariant subspaces:
 V := α ∈ I_DV_α labeled by isoclasses of simple B_V-modules:

Abelian category $\mathcal{D} := \mathcal{B}_{v}\text{-mod}_{fd}$

Eucion catagony	of MPO symmetry	inc	
000	0000000	00000	000
One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators

Fusion category of MPO symmetries

T

MPO tensor:
$$\longrightarrow$$
 = \longrightarrow :

Every v ∈ V ⊗ V gives an endomorphism B(v) : W → W.
 Assume that the subalgebra B_W := ⟨B(v)⟩ ⊂ End(W) is semisimple.
 Decompose W into a direct sum of orthogonal invariant subspaces:
 W := ⊕_{a∈IC} W_a labeled by isoclasses of simple B_W-modules:
 Abelian category C := B_W-mod_{fd}

Every w ∈ W ⊗ W gives endomorphism B(w) : V → V.
 Assume that the subalgebra B_V := ⟨B(w)⟩ ⊂ End(V) is semisimple.
 Decompose V into a direct sum of orthogonal invariant subspaces:
 V := α ∈ I_DV_α labeled by isoclasses of simple B_V-modules:

Abelian category $\mathcal{D} := \mathcal{B}_{v}\text{-mod}_{fd}$

Topological symmetry defects can fuse: fusion tensors. Locality of fusion

c + m = c + m + a

implies compatibility with decomposition of $\ensuremath{\mathcal{W}}$ into subspaces.

Eucion catagony	of MPO symmetry	inc	
000	0000000	00000	000
One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators

Fusion category of MPO symmetries

MPO tensor:
$$\longrightarrow$$
 = \longrightarrow :

c + m = c + m + a

Y = Y

Every v ∈ V ⊗ V gives an endomorphism B(v) : W → W.
 Assume that the subalgebra B_W := ⟨B(v)⟩ ⊂ End(W) is semisimple.
 Decompose W into a direct sum of orthogonal invariant subspaces:
 W := ⊕_{a∈lc}W_a labeled by isoclasses of simple B_W-modules:

Abelian category $\mathcal{C} := \mathcal{B}_W \operatorname{-mod}_{\operatorname{fd}}$

Every w ∈ W ⊗ W gives endomorphism B(w) : V → V.
 Assume that the subalgebra B_V := ⟨B(w)⟩ ⊂ End(V) is semisimple.
 Decompose V into a direct sum of orthogonal invariant subspaces:

 $\mathcal{V} := \alpha \in I_{\mathcal{D}} \mathcal{V}_{\alpha} \qquad \text{labeled by isoclasses of simple } \mathcal{B}_V\text{-modules:}$ Abelian category $\mathcal{D} := \mathcal{B}_V\text{-mod}_{\mathsf{fd}}$

Topological symmetry defects can fuse: fusion tensors. Locality of fusion

implies compatibility with decomposition of $\ensuremath{\mathcal{W}}$ into subspaces.

MPO symmetries should be topological symmetries,

implies compatibility of fusion with decomposition of $\ensuremath{\mathcal{V}}$ into subspaces.

 One-dimensional spin systems
 Two-dimensional spin systems
 PEPS and state-sum TFT with boundaries
 Equivariant Frobenius-Schur indicators

 000
 0000
 0000
 0000
 000

6j-symbols and pentagon identities

Consistency of couplings \rightarrow 6j symbols

which obey a pentagon axiom

 One-dimensional spin systems
 Two-dimensional spin systems
 PEPS and state-sum TFT with boundaries
 Equivariant Frobenius-Schur indicators

 000
 0000
 0000
 0000
 000

6j-symbols and pentagon identities

Consistency of couplings \rightarrow 6j symbols

which obey a pentagon axiom

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Upshot:

• Invariant subspaces of \mathcal{W} (red labels a, b, \ldots) are objects of a (spherical) fusion category \mathcal{C}

6 symbols and nontagon identities				
000	0000000	00000	000	
One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators	

bj-symbols and pentagon identities

Consistency of couplings \rightarrow 6j symbols

which obey a pentagon axiom

Upshot:

- Invariant subspaces of \mathcal{W} (red labels a, b, \ldots) are objects of a (spherical) fusion category \mathcal{C}
- Invariant subpaces of V (labels α, β,...) are objects of a (spherical) fusion category D

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries 00000	Equivariant Frobenius-Schur indicators 000
Zipper and pulli	ng through		
Compatibility	of MPO and PEPS:		
			1

Idea:

Identities are mixed pentagons. Thus look for a context with mixed pentagons.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

One-dimensional spin systems	Two-dimensional spin systems 00000●00	PEPS and state-sum TFT with boundaries 00000	Equivariant Frobenius-Schur indicators
Zipper and pulli	ng through		
Compatibility	of MPO and PEPS	:	

Idea:

Identities are mixed pentagons. Thus look for a context with mixed pentagons. Bicategory with two objects

Remarks

- Familar situation in local rational CFT and subfactor theory.
- \mathcal{C}, \mathcal{D} are monoidal categories, \mathcal{M} a \mathcal{C} - \mathcal{D} -bimodule.
- Minimality requirement: \mathcal{M} is an invertible bimodule. Then $\mathcal{D} \cong \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$ and $\mathcal{C} \cong \operatorname{Fun}_{\mathcal{D}}(\mathcal{M}, \mathcal{M})$.

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
	00000000		
Setup of the ger	neral spin model		

Two object bicategory $\rightarrow \mathcal{C}, \mathcal{D}$ monoidal category, \mathcal{M} a $\mathcal{C}\text{-}\mathcal{D}\text{-bimodule}.$

 One-dimensional spin systems
 Two-dimensional spin systems
 PEPS and state-sum TFT with boundaries
 Equivariant Frobenius-Schur indicators

 000
 0000000
 0000
 0000

Setup of the general spin model

Two object bicategory $\rightarrow C, D$ monoidal category, M a C-D-bimodule. Leads to the following vector spaces:

- Physical vector space: $\mathcal{H} := \bigoplus_{\alpha,\beta,\gamma \in I_{\mathcal{D}}} \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)$
- Auxilliary vectors space $\mathcal{V} := \bigoplus_{A,B \in I_{\mathcal{M}}} \bigoplus_{\alpha \in I_{\mathcal{D}}} \operatorname{Hom}_{\mathcal{M}}(A.\alpha, B)$
- Vector spaces for MPO symmetries $\mathcal{V} := \bigoplus_{A,B \in I_{\mathcal{M}}} \bigoplus_{a \in I_{\mathcal{C}}} \operatorname{Hom}_{\mathcal{M}}(a.A, B)$

・ロト・西ト・山田・山田・山口・

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
000	0000000	00000	000
Summary about	PEPS		

Summary:

Surface Σ with trivalent vertices, e.g. hexagonal lattice Δ :

 Vector space for spin model: H_Σ := ⊗_{v∈Δ₀} H given in terms of Hom spaces of a spherical fusion category D,

$$\mathcal{H} := \oplus_{\alpha,\beta,\gamma \in I_{\mathcal{D}}} \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta,\gamma)$$

- A PEPS given in terms of mixed 6j-symbols for a module category \mathcal{M}/\mathcal{C} .
- State in subspace $\mathcal{H}^0_\Sigma \subset \mathcal{H}_\Sigma$, obtained by contracting the PEPS tensor
- Any (indecomposable, pivotal) module category over \mathcal{D} gives a PEPS.
- This PEPS exhibits MPO symmetries given by $\mathcal{D} := \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M}).$

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
000	0000000	00000	000
Summary about	PEPS		

Summary:

Surface Σ with trivalent vertices, e.g. hexagonal lattice Δ :

 Vector space for spin model: H_Σ := ⊗_{v∈Δ₀} H given in terms of Hom spaces of a spherical fusion category D,

$$\mathcal{H} := \oplus_{\alpha,\beta,\gamma \in I_{\mathcal{D}}} \operatorname{Hom}_{\mathcal{D}}(\alpha \otimes \beta,\gamma)$$

- A PEPS given in terms of mixed 6j-symbols for a module category \mathcal{M}/\mathcal{C} .
- State in subspace $\mathcal{H}^0_\Sigma \subset \mathcal{H}_\Sigma$, obtained by contracting the PEPS tensor
- Any (indecomposable, pivotal) module category over \mathcal{D} gives a PEPS.
- This PEPS exhibits MPO symmetries given by $\mathcal{D} := \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M}).$

Lessons:

• Given a spin model in terms of \mathcal{D} , the MPO symmetries are not unique.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Different PEPS for different module categories \mathcal{M} give different "coordinates" for the system that allow to see different symmetries.
- Dual descriptions are related by categorical Morita equivalence
- $\bullet \ \ \mathsf{Hamiltonian} \to \mathsf{Lewin-Wen}$

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
		●0000	
Chapter 3			

PEPS and state-sum TFT with boundaries

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries 00000	Equivariant Frobenius-Schur indicators
Why TFT?			

Goal: go beyond trivalent vertices (and lattices)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
		00000	
Why TFT?			

Goal: go beyond trivalent vertices (and lattices)

Features of state-sum construction, based on spherical fusion category \mathcal{D} :

• Choose as a auxillary datum a skeleton Δ of a 3-manifold.

• Construct for free boundary surface Σ a big vector space $\operatorname{preTFT}_{\mathcal{D}}(\Sigma, \Delta)$ that depends on Δ and a subspace

$$\operatorname{TFT}_{\mathcal{D}}(\Sigma) \subset \operatorname{preTFT}_{\mathcal{D}}(\Sigma, \Delta)$$

that is independent of Δ .

Dne-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
DOO		○●○○○	000
M/hy TET?			

Why TFT?

Goal: go beyond trivalent vertices (and lattices)

Features of state-sum construction, based on spherical fusion category $\mathcal{D}:$

- Choose as a auxillary datum a skeleton Δ of a 3-manifold.
- Construct for free boundary surface Σ a big vector space $\operatorname{preTFT}_{\mathcal{D}}(\Sigma, \Delta)$ that depends on Δ and a subspace

$$\operatorname{TFT}_{\mathcal{D}}(\Sigma) \subset \operatorname{preTFT}_{\mathcal{D}}(\Sigma, \Delta)$$

that is independent of Δ .

"Holographic" strategy:

Given a closed oriented surface Σ , consider 3-manifold $M_{\Sigma} := \Sigma \times [0,1]$

- Physical boundary $M \times \{0\}$ (possibly with a network of boundary Wilson lines)
- Gluing boundary $M imes \{1\}$ with

$$\mathrm{preTFT}_{\mathcal{D}}(\Sigma, \Delta) = \mathcal{H}_{\Sigma} \quad \text{ and } \quad \mathrm{TFT}_{\mathcal{D}}(\Sigma) = \mathcal{H}_{\Sigma}^{0}$$

(日)(日

if Δ induces hexagonal lattice on Σ .

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
		0000	
Why TFT?			

Goal: go beyond trivalent vertices (and lattices)

Features of state-sum construction, based on spherical fusion category $\mathcal{D}:$

- Choose as a auxillary datum a skeleton Δ of a 3-manifold.
- Construct for free boundary surface Σ a big vector space $\mathrm{preTFT}_{\mathcal{D}}(\Sigma,\Delta)$ that depends on Δ and a subspace

$$\operatorname{TFT}_{\mathcal{D}}(\Sigma) \subset \operatorname{preTFT}_{\mathcal{D}}(\Sigma, \Delta)$$

that is independent of Δ .

"Holographic" strategy:

Given a closed oriented surface $\Sigma,$ consider 3-manifold $\mathit{M}_{\Sigma}:=\Sigma\times[0,1]$

- Physical boundary $M \times \{0\}$ (possibly with a network of boundary Wilson lines)
- Gluing boundary $M imes \{1\}$ with

$$\mathrm{preTFT}_{\mathcal{D}}(\Sigma, \Delta) = \mathcal{H}_{\Sigma} \quad \text{and} \quad \mathrm{TFT}_{\mathcal{D}}(\Sigma) = \mathcal{H}_{\Sigma}^{0}$$

if Δ induces hexagonal lattice on Σ .

• Then $\mathrm{TFT}_{\mathcal{D}}(\Sigma):\mathbb{C}\to\mathrm{TFT}_{\mathcal{D}}(\Sigma)$ gives a state described by the PEPS.

 One-dimensional spin systems
 Two-dimensional spin systems
 PEPS and state-sum TFT with boundaries
 Equivariant Frobenius-Schur into 000

 000
 0000000
 0000000
 000

Turaev-Viro construction with boundaries

- No vertices on the gluing boundary $M imes \{1\}$
- State sum variables assigned to plaquettes
 - $\alpha \in \mathcal{D}$ to (blue) plaquettes in interior
 - $A \in \mathcal{M}$ to (green) plaquette on the physical boundary
- Vector spaces of invariants to each half-edge

 $\mathsf{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma) =: V_{\mathsf{e}_0} \quad \text{and} \quad \mathsf{Hom}_{\mathcal{D}}(\gamma, \alpha \otimes \beta) \cong \mathsf{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)^* = V_{\mathsf{e}_0}^*,$

• Two vector spaces for same edge are in duality, hence canonical vector in $V_{e_0}^* \otimes V_{e_0}$

 One-dimensional spin systems
 Two-dimensional spin systems
 PEPS and state-sum TFT with boundaries
 Equivariant Frobe

 000
 0000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Turaev-Viro construction: evaluation at vertices

Thus, given a skeleton Δ of 3-manifold, get vector space V_{Δ} with canonical vector $v_{\Delta} \in V_{\Delta}$. Next ingredient:

Evaluation at all vertices, using graphical calculus on \mathbb{S}^2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

e-dimensional spin systems Two-dimensional spin systems PEPS and state-sum TFT with boundaries Equivariant Frobenius-Schur inc

Turaev-Viro construction: evaluation at vertices

Thus, given a skeleton Δ of 3-manifold, get vector space V_{Δ} with canonical vector $v_{\Delta} \in V_{\Delta}$. Next ingredient:

Evaluation at all vertices, using graphical calculus on \mathbb{S}^2

For hexagonal lattices, we get tetrahedra on \mathbb{S}^2 and thus 6j-symbols:

э

One-dimensional spin systems	Two-dimensional spin systems	PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
		00000	
Result of evalua	tion		

The evaluations at all vertices $v \in \Delta_0$ compose to a map

$$\mathrm{ev}_\Delta:=\otimes_{v\in\Delta_0}\mathrm{ev}_v:\ V_\Delta o\otimes_{\mathsf{dangling edges}}V_e=\mathcal{H}_\Sigma$$

Then

$$\operatorname{TFT}_{\mathcal{D}}(M_{\Sigma})(1) = \operatorname{ev}_{\Delta}(v_{\Delta}) = \operatorname{PEPS}_{\mathcal{M},\mathcal{D}}$$

Upshot:

A holographic understanding of PEPS that is independent of lattices.

Remark

Can be generalized by including boundary Wilson lines on the free boundary =MPO symmetries in the tensor network language.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One-dimensional spin systems		PEPS and state-sum TFT with boundaries	Equivariant Frobenius-Schur indicators
000	0000000	00000	● 00
Chapter 4			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Equivariant Frobenius Schur indicators and state-sum TFT

One-dimensional spin systems

Two-dimensional spin system

EPS and state-sum TFT with boundaries

Equivariant Frobenius-Schur indicators

Equivariant Frobenius Schur indicators and boundaries

Recap

V a finite-dimensional irreducible $\mathbb{C}[G]$ -module.

$$u_2(V) := rac{1}{|G|} \sum_{g \in G} \chi_V(g^2) \in \{0, \pm 1\}$$

 $u = \pm 1 \Leftrightarrow$ non-deg. invariant bilinear form on V symmetric or antisymmetric.

 $\nu_2(V)$ is the trace of the endomorphism on the one-dimensional vector space $\operatorname{Hom}(V \otimes V, 1)$:

$$\begin{array}{c} \exists \vdots \\ & &$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One-dimensional spin systems 000 Two-dimensional spin system

EPS and state-sum TFT with boundaries

Equivariant Frobenius-Schur indicators

Equivariant Frobenius Schur indicators and boundaries

Recap

V a finite-dimensional irreducible $\mathbb{C}[G]$ -module.

$$u_2(V) := rac{1}{|G|} \sum_{g \in G} \chi_V(g^2) \in \{0, \pm 1\}$$

 $u = \pm 1 \Leftrightarrow$ non-deg. invariant bilinear form on V symmetric or antisymmetric.

 $\nu_2(V)$ is the trace of the endomorphism on the one-dimensional vector space $\operatorname{Hom}(V \otimes V, 1)$:

Generalization for pivotal categories: $V \in C$ and $X \in \mathcal{Z}(C)$: [Kashina, Sommerhäuser, Zhu; Ng, Schauenburg]

Generalized Frobenius Schur indicator: $\nu_{V,X,(n,l)} := \operatorname{tr} \xi_{V,X,(n,l)}.$ Equivariance under $\operatorname{SL}(2,\mathbb{Z}).$ Dne-dimensional spin systems

wo-dimensional spin systems

EPS and state-sum TFT with boundaries

Equivariant Frobenius-Schur indicators

Application to the equivariant Frobenius-Schur indicators

Generalized Frobenius Schur indicator: $\nu_{V,X,(n,l)} := \operatorname{tr} \xi_{V,X,(n,l)}.$ Equivariance under $\operatorname{SL}(2,\mathbb{Z}).$

- Congruence subgroup conjecture for Drinfeld doubles of fusion categories
- FS indicators for big finite groups ($\sim 2 \cdot 10^{18}$ elements)

One-dimensional spin systems 000 wo-dimensional spin systems 0000000 EPS and state-sum TFT with boundaries

Equivariant Frobenius-Schur indicators

Application to the equivariant Frobenius-Schur indicators

Generalized Frobenius Schur indicator: $\nu_{V,X,(n,l)} := \operatorname{tr} \xi_{V,X,(n,l)}.$ Equivariance under $\operatorname{SL}(2,\mathbb{Z}).$

- Congruence subgroup conjecture for Drinfeld doubles of fusion categories
- FS indicators for big finite groups ($\sim 2 \cdot 10^{18}$ elements)

