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Overview

@ One-dimensional spin systems

© Two-dimensional spin systems

© PEPS and state-sum TFT with boundaries

@ Equivariant Frobenius-Schur indicators



One-dimensional spin systems
@00

Chapter 1

One-dimensional spin systems J




One-dimensional spin systems
oeo

One-dimensional spin systems

‘H a finite-dimensional vector space H, with basis |j)j=1,...q

Dimension of vector space H®" for spin chain of length N grows exponentially.
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One-dimensional spin systems

‘H a finite-dimensional vector space H, with basis |j)j=1,...q4

Dimension of vector space H®" for spin chain of length N grows exponentially.
Parametrize certain translationally invariant states on H®V:

@ Auxillary vector space V with dim¢ V = D and basis |m)m=1,...p
@ Matrix AJ,'",,, with myn=1,...,Dandj=1,...,d:

d
PA) = Y THAA AV @ ) @ lin) € HEY

J1sd250 0N

These matrices A encode a family of states with d - D? parameters.



One-dimensional spin systems
oeo

One-dimensional spin systems

‘H a finite-dimensional vector space H, with basis |j)j=1,...q4

Dimension of vector space H®" for spin chain of length N grows exponentially.
Parametrize certain translationally invariant states on H®V:

@ Auxillary vector space V with dim¢ V = D and basis |m)m=1,...p
@ Matrix AJ,'",,, with myn=1,...,Dandj=1,...,d:

d
PA) = Y THAA AV @ ) @ lin) € HEY

J1sd250 0N

These matrices A encode a family of states with d - D? parameters.

Graphically

WA) =
v J2 - JN

No dynamics specified, just a subspace of states (— quantum code)
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A different view: PEPS

Place at each site V ® V.
D D D D D D D D
oo o0 o0 oo
J J2 J3 J4

Maximally entangle all the pairs of qudits on neighbouring sites by projecting
. D
onto the maximally entangled state |a) := > _, |m) ® |m)
la){al |e){al la)(al |a){el |e){al
A D D D O
J J2 J3 Ja

One-dimensional PEPS tensorisamap f: V®V — H:

J1 J2 J3 J4

Hence the name Projected entangled pair state
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PEPS in two-dimensions

The same prescription works in two dimensions, e.g. for the square lattice

leading to the following structure of the PEPS tensors

Yok

L)

roT

The physical vector space H of the spin system is sticking out of the plane.
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Towards tractable systems: MPO symmetries

This is a two-dimensional system.

@ Topological symmetries should explain ground state degeneracies, if the
system is placed on non-trivial topologies.

@ In a two-dimensional system, topological symmetries are encoded by
one-dimensional defects. (For RCFT: Fuchs, Frohlich, Runkel, CS, 2004)
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Towards tractable systems: MPO symmetries

This is a two-dimensional system.

@ Topological symmetries should explain ground state degeneracies, if the
system is placed on non-trivial topologies.

@ In a two-dimensional system, topological symmetries are encoded by
one-dimensional defects. (For RCFT: Fuchs, Frohlich, Runkel, CS, 2004)

Specialize to trivalent vertices,

e.g. honeycomb lattice Ingredients: Vector spaces H,V, W

Tensors:
PEPS MPO

Vor Tt

VRQH-C VoW 5 C
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Fusion category of MPO symmetries

MPO tensor: + = %)':

@ Every v € V®V gives an endomorphism B(v) : W — W.
Assume that the subalgebra By := (B(v)) C End(W) is semisimple.
Decompose W into a direct sum of orthogonal invariant subspaces:
W = @aci. Ws labeled by isoclasses of simple By-modules:
Abelian category C := By-modg
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Fusion category of MPO symmetries

MPO tensor: + = %)':

@ Every v € V®V gives an endomorphism B(v) : W — W.
Assume that the subalgebra By := (B(v)) C End(W) is semisimple.
Decompose W into a direct sum of orthogonal invariant subspaces:
W = @aci. Ws labeled by isoclasses of simple By-modules:
Abelian category C := By-modg

@ Every w € W ® W gives endomorphism B(w) : V — V.
Assume that the subalgebra By := (B(w)) C End(V) is semisimple.
Decompose V into a direct sum of orthogonal invariant subspaces:
Vi=ac€ IpVa labeled by isoclasses of simple By-modules:
Abelian category D := B,-modsq
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Fusion category of MPO symmetries

MPO tensor: + = %)':

@ Every v € V®V gives an endomorphism B(v) : W — W.
Assume that the subalgebra By := (B(v)) C End(W) is semisimple.
Decompose W into a direct sum of orthogonal invariant subspaces:
W = @aci. Ws labeled by isoclasses of simple By-modules:
Abelian category C := By-modg

@ Every w € W ® W gives endomorphism B(w) : V — V.
Assume that the subalgebra By := (B(w)) C End(V) is semisimple.
Decompose V into a direct sum of orthogonal invariant subspaces:
Vi=ac€ IpVa labeled by isoclasses of simple By-modules:
Abelian category D := B,-modsq

Topological symmetry defects can fuse: fusion tensors. Locality of fusion
. ; . . .
bt implies compatibility with

— C=—M . .
~~b b decomposition of W into subspaces.
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Fusion category of MPO symmetries

MPO tensor: + = %)':

@ Every v € V®V gives an endomorphism B(v) : W — W.
Assume that the subalgebra By := (B(v)) C End(W) is semisimple.
Decompose W into a direct sum of orthogonal invariant subspaces:
W = @aci. Ws labeled by isoclasses of simple By-modules:
Abelian category C := By-modg
@ Every w € W ® W gives endomorphism B(w) : V — V.
Assume that the subalgebra By := (B(w)) C End(V) is semisimple.
Decompose V into a direct sum of orthogonal invariant subspaces:
Vi=ac€ IpVa labeled by isoclasses of simple By-modules:
Abelian category D := B,-modsq
Topological symmetry defects can fuse: fusion tensors. Locality of fusion
F_f._m/(l a implies compatibility with

— C=—M . .
~~b b decomposition of W into subspaces.

MPO symmetries should be topological symmetries,

_ implies compatibility of fusion with
B decomposition of V into subspaces.
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6j-symbols and pentagon identities

Consistency of couplings — 6j symbols
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6j-symbols and pentagon identities

Consistency of couplings — 6j symbols

. j/-a
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which obey a pentagon axiom

Upshot:
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@ Invariant subspaces of W (red labels a, b, . . .) are objects of

a (spherical) fusion category C
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6j-symbols and pentagon identities

Consistency of couplings — 6j symbols
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Upshot:

@ Invariant subspaces of W (red labels a, b, . . .) are objects of
a (spherical) fusion category C

@ Invariant subpaces of V (labels «, 3, ...) are objects of
a (spherical) fusion category D
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Zipper and pulling through

Compatibility of MPO and PEPS:

) /—(L i a
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and
Idea:

Identities are mixed pentagons. Thus look for a context with mixed pentagons.
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Zipper and pulling through

Compatibility of MPO and PEPS:

jf _ >T( e - C_mi:
and
Idea:

Identities are mixed pentagons. Thus look for a context with mixed pentagons.
Bicategory with two objects

/M\(
CCO)\_/ODP

o Familar situation in local rational CFT and subfactor theory.

o C,D are monoidal categories, M a C-D-bimodule.

@ Minimality requirement: M is an invertible bimodule.

Then D = Fun¢(M, M) and C = Funp (M, M).
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Setup of the general spin model

Two object bicategory — C, D monoidal category, M a C-D-bimodule.
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Setup of the general spin model

Two object bicategory — C, D monoidal category, M a C-D-bimodule.
Leads to the following vector spaces:

@ Physical vector space: H := @a,s,yc1p Homp(a ® 8, 7)
o Auxilliary vectors space V := ®a,gei, Pacl, Homa(A.a, B)
@ Vector spaces for MPO symmetries V := @4 ger,, Pacte Homaq(a.A, B)
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Summary about PEPS

Summary:
Surface X with trivalent vertices, e.g. hexagonal lattice A:

@ Vector space for spin model: Hy := ®v€A0 H
given in terms of Hom spaces of a spherical fusion category D,

H := Ba,p,yelp Homp(a ® B,7)

A PEPS given in terms of mixed 6j-symbols for a module category M/C.
State in subspace H2 C Hs, obtained by contracting the PEPS tensor
Any (indecomposable, pivotal) module category over D gives a PEPS.
This PEPS exhibits MPO symmetries given by D := Func¢ (M, M).
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Summary about PEPS

Summary:
Surface X with trivalent vertices, e.g. hexagonal lattice A:

@ Vector space for spin model: Hy := ®v€A0 H
given in terms of Hom spaces of a spherical fusion category D,

H := Ba,p,yelp Homp(a ® B,7)

@ A PEPS given in terms of mixed 6j-symbols for a module category M /C.
o State in subspace HY C s, obtained by contracting the PEPS tensor

@ Any (indecomposable, pivotal) module category over D gives a PEPS.

@ This PEPS exhibits MPO symmetries given by D := Func¢ (M, M).

Lessons:

o Given a spin model in terms of D, the MPO symmetries are not unique.

o Different PEPS for different module categories M give different
“coordinates” for the system that allow to see different symmetries.

@ Dual descriptions are related by categorical Morita equivalence

@ Hamiltonian — Lewin-Wen
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Goal: go beyond trivalent vertices (and lattices)
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Why TFT?

Goal: go beyond trivalent vertices (and lattices)
Features of state-sum construction, based on spherical fusion category D:
@ Choose as a auxillary datum a skeleton A of a 3-manifold.

M

e Construct for free boundary surface X a big vector space preTFT (X, A)
that depends on A and a subspace

TFTp(X) C preTFT (X, A)
that is independent of A.
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Why TFT?

Goal: go beyond trivalent vertices (and lattices)
Features of state-sum construction, based on spherical fusion category D:
@ Choose as a auxillary datum a skeleton A of a 3-manifold.
o Construct for free boundary surface X a big vector space preTFT (X, A)
that depends on A and a subspace

TFTp(X) C preTFT (X, A)
that is independent of A.

“Holographic” strategy:
Given a closed oriented surface X, consider 3-manifold My := X X [0, 1]

S0} Zelap
@ Physical boundary M x {0} (possibly with a network of boundary Wilson
lines)
@ Gluing boundary M x {1} with
preTFT (X, A) =Hs and TFTp(L) = HE

if A induces hexagonal lattice on X.
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Why TFT?

Goal: go beyond trivalent vertices (and lattices)
Features of state-sum construction, based on spherical fusion category D:

@ Choose as a auxillary datum a skeleton A of a 3-manifold.

@ Construct for free boundary surface ¥ a big vector space preTFT, (X, A)
that depends on A and a subspace

TFTp() C preTFT (L, A)

that is independent of A.

“Holographic” strategy:
Given a closed oriented surface X, consider 3-manifold My := X X [0, 1]

@ Physical boundary M x {0} (possibly with a network of boundary Wilson
lines)

o Gluing boundary M x {1} with
preTFT (X, A) =Hs and  TFTp(T) = HE

if A induces hexagonal lattice on X.
@ Then TFTp(X) : C — TFTp(X) gives a state described by the PEPS.
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Turaev-Viro construction with boundaries

{1} (~ Ve,

@ No vertices on the gluing boundary M x {1}
@ State sum variables assigned to plaquettes

e a € D to (blue) plaquettes in interior
e A € M to (green) plaquette on the physical boundary

@ Vector spaces of invariants to each half-edge
Homp(a® B8,7) =: Ve, and Homop(y,a® 8) = Homp(a® B,7)" = Vo, ,

@ Two vector spaces for same edge are in duality, hence canonical vector in
*
Veo ® Veo
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Turaev-Viro construction: evaluation at vertices

Thus, given a skeleton A of 3-manifold, get vector space Va with canonical
vector va € Va.

Next ingredient:
Evaluation at all vertices, using graphical calculus on S?

o
~

AV

C

T
‘/AT_)B A&
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Turaev-Viro construction: evaluation at vertices

Thus, given a skeleton A of 3-manifold, get vector space Va with canonical
vector va € Va.
Next ingredient:
Evaluation at all vertices, using graphical calculus on S?
9
(

AV

C

)/- \% B//
B
I
For hexagonal lattices, we get tetrahedra on S? and thus 6j-symbols:
C
N AR
A\ /s
A "/’ B 1
m

)

o
A
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Result of evaluation

The evaluations at all vertices v € Ag compose to a map
eva = ®v€Aoevv : VA — ®dang|ing edges Ve = HZ

Then
TFT'D(M):)(].) = evA(vA) = PEPSM,D

Upshot:
A holographic understanding of PEPS that is independent of lattices.

Can be generalized by including boundary Wilson lines on the free boundary
=MPO symmetries in the tensor network language.
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Equivariant Frobenius Schur indicators and state-sum TFT )
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Equivariant Frobenius Schur indicators and boundaries

V a finite-dimensional irreducible (C[G]-module.

(V) = al ZXV ) € {0, +1}
geG
v = +1 < non-deg. invariant bilinear form on V symmetric or antisymmetric.
1»(V) is the trace of the endomor- L
phism on the one-dimensional vector LFIJ = @

space Hom(V ® V,1): vV V

v




Equivariant Frobenius-Schur indicators
(o] le]

Equivariant Frobenius Schur indicators and boundaries

V a finite-dimensional irreducible (C[G]-module.

(V) = al ZXV ) € {0, +1}
geG
v = +1 < non-deg. invariant bilinear form on V symmetric or antisymmetric.
1»(V) is the trace of the endomor- L
phism on the one-dimensional vector LFIJ = @

space Hom(V ® V,1): vV V

v

Generalization for pivotal categories: V € C and X € Z(C):
[Kashina, Sommerh&user, Zhu; Ng, Schauenburg]

X
Generalized Frobenius Schur indicator:
m vy X, (n1) i= v x (n,1)-
a0 Equivariance under SL(2,Z).
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Application to the equivariant Frobenius-Schur indicators

X
J* Generalized Frobenius Schur indicator:
= m vy x,(n1) 2= tr€v x (n,1)-
v v — Equivariance under SL(2,7Z).
” v X

@ Congruence subgroup conjecture for Drinfeld doubles of fusion categories

e FS indicators for big finite groups (~ 2 - 10'® elements)
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Application to the equivariant Frobenius-Schur indicators

X
}’* Generalized Frobenius Schur indicator:
= m vy x,(n1) 2= tr€v x (n,1)-
vV . Equivariance under SL(2,Z).

vz

@ Congruence subgroup conjecture for Drinfeld doubles of fusion categories

e FS indicators for big finite groups (~ 2 - 10'® elements)

Theorem (Farnsteiner, 2020)

~ Home (V®", X) Solid torus with Wilson line ~ vy x (a1
SL(2, Z)-equivariance becomes geometric and follows from TFT axioms.
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