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Chapter 1

One-dimensional spin systems
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One-dimensional spin systems

H a finite-dimensional vector space H, with basis |j〉j=1,...d

Dimension of vector space H⊗N for spin chain of length N grows exponentially.
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Parametrize certain translationally invariant states on H⊗N :

Auxillary vector space V with dimC V = D and basis |m〉m=1,...D

Matrix Aj
m,n with m, n = 1, . . . ,D and j = 1, . . . , d :

ψ(A) :=
d∑

j1,j2,...,jN

Tr(Aj1Aj2 · · ·AjN )|j1〉 ⊗ |j2〉 ⊗ |jN〉 ∈ H⊗N

These matrices A encode a family of states with d · D2 parameters.

Graphically

ψ(A) = A

. . .j2 jNj1

A . . . A

No dynamics specified, just a subspace of states (→ quantum code)
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A different view: PEPS

Place at each site V ⊗ V.

j1 j2 j3

D D D D D D

j4

D D
. . . . . .

Maximally entangle all the pairs of qudits on neighbouring sites by projecting
onto the maximally entangled state |α〉 :=

∑D
m=1 |m〉 ⊗ |m〉

j1 j2 j3 j4

|α〉〈α| |α〉〈α| |α〉〈α||α〉〈α| |α〉〈α|

One-dimensional PEPS tensor is a map f : V ⊗ V → H:

j1 j2 j3 j4

Hence the name Projected entangled pair state
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Chapter 2

Two-dimensional spin systems



One-dimensional spin systems Two-dimensional spin systems PEPS and state-sum TFT with boundaries Equivariant Frobenius-Schur indicators

PEPS in two-dimensions

The same prescription works in two dimensions, e.g. for the square lattice

leading to the following structure of the PEPS tensors

The physical vector space H of the spin system is sticking out of the plane.
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Towards tractable systems: MPO symmetries

This is a two-dimensional system.

Topological symmetries should explain ground state degeneracies, if the
system is placed on non-trivial topologies.

In a two-dimensional system, topological symmetries are encoded by
one-dimensional defects. (For RCFT: Fuchs, Fröhlich, Runkel, CS, 2004)

Specialize to trivalent vertices,
e.g. honeycomb lattice

Ingredients: Vector spaces H,V,W
Tensors:

PEPS MPO

≡ ≡

V⊗3 ⊗H → C V⊗2 ⊗W⊗2 → C
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Fusion category of MPO symmetries

MPO tensor: ≡ :

1 Every v ∈ V ⊗ V gives an endomorphism B(v) :W →W.
Assume that the subalgebra BW := 〈B(v)〉 ⊂ End(W) is semisimple.
Decompose W into a direct sum of orthogonal invariant subspaces:

W := ⊕a∈ICWa labeled by isoclasses of simple BW -modules:
Abelian category C := BW -modfd

2 Every w ∈ W ⊗W gives endomorphism B(w) : V → V.
Assume that the subalgebra BV := 〈B(w)〉 ⊂ End(V) is semisimple.
Decompose V into a direct sum of orthogonal invariant subspaces:

V := α ∈ IDVα labeled by isoclasses of simple BV -modules:
Abelian category D := Bv -modfd

Topological symmetry defects can fuse: fusion tensors. Locality of fusion

=
a

b
c

a

b
cm m

implies compatibility with
decomposition of W into subspaces.

MPO symmetries should be topological symmetries,

=
implies compatibility of fusion with
decomposition of V into subspaces.
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6j-symbols and pentagon identities

Consistency of couplings → 6j symbols
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∑
f,mn
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0F abc
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)f,mn

e,jk
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k

which obey a pentagon axiom
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Upshot:

Invariant subspaces of W (red labels a, b, . . .) are objects of
a (spherical) fusion category C
Invariant subpaces of V (labels α, β, . . .) are objects of
a (spherical) fusion category D
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Zipper and pulling through

Compatibility of MPO and PEPS:

=
and

=
a

b
c

a

b
cm m

Idea:
Identities are mixed pentagons. Thus look for a context with mixed pentagons.

Bicategory with two objects

• ◦

M

M

C D

Remarks

Familar situation in local rational CFT and subfactor theory.

C,D are monoidal categories, M a C-D-bimodule.

Minimality requirement: M is an invertible bimodule.
Then D ∼= FunC(M,M) and C ∼= FunD(M,M).
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Setup of the general spin model

Two object bicategory → C,D monoidal category, M a C-D-bimodule.

Leads to the following vector spaces:

Physical vector space: H := ⊕α,β,γ∈IDHomD(α⊗ β, γ)

Auxilliary vectors space V := ⊕A,B∈IM ⊕α∈ID HomM(A.α,B)

Vector spaces for MPO symmetries V := ⊕A,B∈IM ⊕a∈IC HomM(a.A,B)
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c,mn√
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n
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Summary about PEPS

Summary:
Surface Σ with trivalent vertices, e.g. hexagonal lattice ∆:

Vector space for spin model: HΣ :=
⊗

v∈∆0
H

given in terms of Hom spaces of a spherical fusion category D,

H := ⊕α,β,γ∈IDHomD(α⊗ β, γ)

A PEPS given in terms of mixed 6j-symbols for a module category M/C.

State in subspace H0
Σ ⊂ HΣ, obtained by contracting the PEPS tensor

Any (indecomposable, pivotal) module category over D gives a PEPS.

This PEPS exhibits MPO symmetries given by D := FunC(M,M).

Lessons:

Given a spin model in terms of D, the MPO symmetries are not unique.

Different PEPS for different module categories M give different
“coordinates” for the system that allow to see different symmetries.

Dual descriptions are related by categorical Morita equivalence

Hamiltonian → Lewin-Wen
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Chapter 3

PEPS and state-sum TFT with boundaries
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Why TFT?

Goal: go beyond trivalent vertices (and lattices)

Features of state-sum construction, based on spherical fusion category D:

Choose as a auxillary datum a skeleton ∆ of a 3-manifold.

Construct for free boundary surface Σ a big vector space preTFTD(Σ,∆)
that depends on ∆ and a subspace

TFTD(Σ) ⊂ preTFTD(Σ,∆)

that is independent of ∆.

“Holographic” strategy:
Given a closed oriented surface Σ, consider 3-manifold MΣ := Σ× [0, 1]

Physical boundary M × {0} (possibly with a network of boundary Wilson
lines)

Gluing boundary M × {1} with

preTFTD(Σ,∆) = HΣ and TFTD(Σ) = H0
Σ

if ∆ induces hexagonal lattice on Σ.

Then TFTD(Σ) : C→ TFTD(Σ) gives a state described by the PEPS.
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Why TFT?

Goal: go beyond trivalent vertices (and lattices)
Features of state-sum construction, based on spherical fusion category D:

Choose as a auxillary datum a skeleton ∆ of a 3-manifold.248 Chapter 11. Skeletons of 3-manifolds

Figure 11.8: Blowing up a vertex

edges of P lying in S form a connected graph. Next, we apply the moves T2 to P
collapsing the edges of a maximal tree in this graph. This yields a new skeleton
of M , again denoted by P , which gives the same quotient skeleton P/S as before
and which has only one vertex in S. By the above, P and P/S are related by
primary moves. !

Lemma 11.4. Any skeleton of a closed 3-manifold can be transformed by primary
moves into an s-skeleton.

Proof. Let P be a skeleton of a closed 3-manifold M . We define a “blowing up”
of P at a vertex x. Let Γx ⊂ Sx be the link graph of x, where Sx = ∂Bx and
Bx ⊂ M is a P -cone neighborhood of x, see Section 11.2.1. Set

P x = (P \ Int(Bx)) ∪ Sx ⊂ M. (11.1)

The 2-polyhedron P x has the same edges and vertices as P except that the vertex x
is deleted, all edges incident to x are cut near x, and the vertices and edges of Γx

are added to the stratification, see Figure 11.8. This turns P x into a stratified 2-
polyhedron. The regions of P x lying in P are provided with orientation induced by
that of P and the regions of P x lying on the 2-sphere Sx are oriented arbitrarily.
Clearly, M \ P x is a disjoint union of the open 3-ball Int(Bx) and a 3-manifold
homeomorphic to M \ P . Therefore, P x is a skeleton of M .

It is clear that
P x/Sx = (P ∪Bx)/Bx = P.

By Lemma 11.3, there is a sequence of primary moves

P " P x.

Construct for free boundary surface Σ a big vector space preTFTD(Σ,∆)
that depends on ∆ and a subspace

TFTD(Σ) ⊂ preTFTD(Σ,∆)

that is independent of ∆.

“Holographic” strategy:
Given a closed oriented surface Σ, consider 3-manifold MΣ := Σ× [0, 1]

Physical boundary M × {0} (possibly with a network of boundary Wilson
lines)
Gluing boundary M × {1} with

preTFTD(Σ,∆) = HΣ and TFTD(Σ) = H0
Σ

if ∆ induces hexagonal lattice on Σ.
Then TFTD(Σ) : C→ TFTD(Σ) gives a state described by the PEPS.
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Turaev-Viro construction with boundaries

Σ× {0}

Σ× {1}

α
β

γ

B

A

C

Ve0

V ∗
e0

e0

e2 e1

e3

No vertices on the gluing boundary M × {1}
State sum variables assigned to plaquettes

α ∈ D to (blue) plaquettes in interior
A ∈ M to (green) plaquette on the physical boundary

Vector spaces of invariants to each half-edge

HomD(α⊗β, γ) =: Ve0 and HomD(γ, α⊗β) ∼= HomD(α⊗β, γ)∗ = V ∗e0
,

Two vector spaces for same edge are in duality, hence canonical vector in
V ∗e0
⊗ Ve0
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Turaev-Viro construction: evaluation at vertices

Thus, given a skeleton ∆ of 3-manifold, get vector space V∆ with canonical
vector v∆ ∈ V∆.
Next ingredient:
Evaluation at all vertices, using graphical calculus on S2

α
β

γ

B

A

C

BA

C

α

γ

β

For hexagonal lattices, we get tetrahedra on S2 and thus 6j-symbols:

BA

C

α

γ

β
=

α β

γ
A

C

B

j n

m

k
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α
β

γ

B

A

C

BA

C

α

γ

β
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C

α

γ

β
=

α β

γ
A

C

B
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m

k
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Result of evaluation

The evaluations at all vertices v ∈ ∆0 compose to a map

ev∆ := ⊗v∈∆0evv : V∆ → ⊗dangling edgesVe = HΣ

Then
TFTD(MΣ)(1) = ev∆(v∆) = PEPSM,D

Upshot:
A holographic understanding of PEPS that is independent of lattices.

Remark

Can be generalized by including boundary Wilson lines on the free boundary
=MPO symmetries in the tensor network language.
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Chapter 4

Equivariant Frobenius Schur indicators and state-sum TFT
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Equivariant Frobenius Schur indicators and boundaries

Recap

V a finite-dimensional irreducible C[G ]-module.

ν2(V ) :=
1

|G |
∑
g∈G

χV (g 2) ∈ {0,±1}

ν = ±1 ⇔ non-deg. invariant bilinear form on V symmetric or antisymmetric.

ν2(V ) is the trace of the endomor-
phism on the one-dimensional vector
space Hom(V ⊗ V , 1):

Generalization for pivotal categories: V ∈ C and X ∈ Z(C):
[Kashina, Sommerhäuser, Zhu; Ng, Schauenburg]

Generalized Frobenius Schur indicator:
νV ,X ,(n,l) := trξV ,X ,(n,l).
Equivariance under SL(2,Z).
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Application to the equivariant Frobenius-Schur indicators

Generalized Frobenius Schur indicator:
νV ,X ,(n,l) := trξV ,X ,(n,l).
Equivariance under SL(2,Z).

Congruence subgroup conjecture for Drinfeld doubles of fusion categories

FS indicators for big finite groups (∼ 2 · 1018 elements)

Theorem (Farnsteiner, 2020)

 HomC(V⊗n,X ) Solid torus with Wilson line  νV ,X ,(n,l)
SL(2,Z)-equivariance becomes geometric and follows from TFT axioms.
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