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following points:

 What is the two time physics?

 How can we describe the Carroll particles in this contest?

 Why is this interesting?
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The two time physics
What is it and what is not

The two time physics is a model with an additional time-like dimension
and an additional space-like dimension.

The additional dimensions are not added by hands.

 It is a gauge theory of the
phase space

 Gauging of Sp(2,R)
 Forces the introduction of a

new coordinate
 The one time spacetime is

obtained through a gauge fixing

(XM ,PM)

↓(
X ′M

P ′
M

)
= A

(
XM

PM

)
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The two-time physics
What is it and what is not

Different one-time theories are the same in two times

Dual theories
↓

They are separated by an
Sp(2,R) transformation.
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The two time physics
The global Sp(2,R)

The phase-space coordinates

Sp(2,R) global transformations

δωX
M
i = ϵijω

jkXM
k .

The worldline action

S =
1
2

∫
dτ ϵijηMN ∂τX

M
i XN

j .
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The two time physics
The local Sp(2,R)

Sp(2,R) local transformations

δωX
M
i = ϵijω

jk(τ)XM
k .

The covariant derivative

∂τX
M
i → DτX

M
i = ∂τX

M
i − ϵijA

jk(τ)XM
k ,

δωA
ij(τ) = ∂τω

ij + ωikϵklA
lj + ωjkϵklA

li .

The worldline gauged action

S =
1
2

∫
dτ ϵijηMNDτX

M
i XN

j ,

Q11 = X · X , Q12 = X · P, Q22 = P · P.
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The two time physics
Why two "times"?

Where the additional time-like dimension come from?

X · X = X · P = P · P = 0

Let us consider different situations.

Euclidean metric −→ XM = 0 and PM = 0.

Minkowski metric −→
{

X 2
0 = |X|2

P2
0 = |P|2 ⇒ |X||P| = ±X ·P.

The additional time is necessary in order to have a non trivial dynamics.
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The two time physics
The symmetries of the action

Let us consider the symmetries of the action

S =

∫
dτ

[
ηMN∂τXMPN − 1

2
Aij(τ)Qij

]

It is manifestly invariant under the action of

Sp(2,R)

⊗ SO(2, d)

↓

↓
Local Global

The SO(2, d) generators:

LMN = XMPN − XNPM = ϵijXM
i XN

j −→ Invariant under Sp(2,R)

When the gauge is fixed, the SO(2, d) remains a symmetry of the action.
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The two time physics
The gauge fixing

How can we deduce the one-time classical theory?

δωX
M
i = ϵijω

jk(τ)XM
k

The one-time theory is defined by a gauge fixing −→ ω11, ω12, ω22

Qij = 0 −→ Fix other 3 degrees of freedom.

XM = XM(x i , pi ) PM = PM(x i , pi )

LMN = LMN(x i , pi )

↓

S =

∫
dτ

[
ẋ ipi − H(τ)

]

{
ẊM = A12XM + A22PM

ṖM = −A12PM − A11XM

↓{
ẋ i = ∂H

∂pi

ṗi = − ∂H
∂x i

9 / 26
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ṖM = −A12PM − A11XM

↓{
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ṗi = − ∂H
∂x i

9 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

The two time physics
The gauge fixing

How can we deduce the one-time classical theory?

δωX
M
i = ϵijω

jk(τ)XM
k

The one-time theory is defined by a gauge fixing −→ ω11, ω12, ω22

Qij = 0 −→ Fix other 3 degrees of freedom.

XM = XM(x i , pi ) PM = PM(x i , pi )

LMN = LMN(x i , pi )

↓

S =

∫
dτ

[
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The two time physics
An example: the massless relativistic particle

X+
i = 1

2

(
X0′
i +X1′

i

)
X−
i = 1

2

(
X0′
i −X1′

i

)
+ − µ

XM X+ X− Xµ

PM P+ P− Pµ

Choice of the gauge field: S =
∫
dτ

[
ηMN∂τXMPN − 1

2A
ij(τ)Qij

]
A11 = A12 = 0 and A22 = λ.

Equations for the µ component:
{

ẊM = A12XM + A22PM

ṖM = −A12PM − A11XM

Ẋµ = λPµ → Xµ = xµ, Pµ = pµ

Gauge choices:

X+ = 1 and P+ = 0
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ẊM = A12XM + A22PM
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The two time physics
An example: the massless relativistic particle

The action reduces to the one expected for the relativistic massless
particle in the first order formalism

S =

∫
dτ

[
ẋ · p − λ

2
p2
]

The SO(2, d) generators:

Lµν = xµpν − xνpµ, L+µ = pµ, L+− = x · p

L−µ =
1
2
x2pµ − x · p xµ.

The Poisson brackets
remain unchanged. δS = 0

LMN generate the
conformal

symmetry of the
relativistic particle.
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The two time physics
Another example: the non-relativistic particle

We can define a parametrization also for the non-relativistic particle

+ − 0 i

XM t x·p−tH
m ±

∣∣x − t
mp

∣∣ x i

PM m H 0 pi

A11 = A12 = 0

A22 =
λ

m

The action reduces to

S =

∫
dτ

[
−ṫE + ẋ · p + λ

(
H − p2

2m

)]
and the equations of motion become

ṫ = λ, ẋ = λ
p
m
, Ė = 0, ṗ = 0.
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ṫ = λ, ẋ = λ
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The two time physics
Another example: the non-relativistic particle

The SO(2, d) generators:

Lij = x ipj − x jpi , L0i = ±
∣∣∣x − t

m
p
∣∣∣ pi , L+i = tpi −mx i

L−i =
x · p − tH

m
pi − Hx i , L+− = −p · x,

L−0 = ∓
∣∣∣x − t

m
p
∣∣∣H, L+0 = ∓

∣∣∣x − t

m
p
∣∣∣m.
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The two time physics
Other "dual" theories

I. Bars, "Dual Field Theories In (d − 1) + 1 Emergent Spacetimes From A Unifying Field Theory In d + 2
Spacetime"
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The Carroll dynamics from the two time physics

The two time physics is able to describe
relativistic and non-relativistic particles

Why not the Carroll particles?

Some consequences:

Dualities

Galilei Carroll

Relativistic
Hidden symmetries

SO(2, d) group

Different limits of the speed of light can be understood in terms of
different gauge fixing
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The Carroll dynamics from the two time physics
The rest particle

We want to reproduce the dynamics of the particle at rest

S =

∫
dτ

[
−ṫE + ẋ · p + λt (E − E0)

]
,

which is is invariant under the Carroll group

E , pi , B i = Ex i and Lij = x ipj − x jpi

with the following equations of motion

ṫ = λt , ẋ i = 0, Ė = 0 and ṗi = 0.
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The Carroll dynamics from the two time physics
The rest particle

+ − 0 i

XM X+ X− X 0 X i

PM P+ P− P0 P i

A11 = A12 = 0, A22 = λt .

The equations of motions:

Ẋ i = λtP
i

Ṗ i = 0

The constraints:

X · X = tX · P = t2P · P P · P = −2(E − E0)

17 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

The Carroll dynamics from the two time physics
The rest particle

+ − 0 i

XM X+ X− X 0 X i

PM P+ P− P0 P i

A11 = A12 = 0, A22 = λt .

The equations of motions:
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The Carroll dynamics from the two time physics
The rest particle: Gauge fixing

The final gauge choice: P+ = E0, P0 = 0

+ − 0 i

XM E0 t p·x
E0

+ t
E0

(
E − E0 +

p·p
2

) √
x · x x i + tpi

PM E0
E−E0+

p·p
2

E0
0 pi

The action:

S =

∫
dτ

[
−ṫE + ẋ · p + λt (E − E0)

]

↓

S =

∫
dτ [ẋ · p − E0]
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The Carroll dynamics from the two time physics
The rest particle: Gauge fixing

The SO(2, d) generators: (r =
√

x · x)

Lij = x ipj − x jpi , L0i = r pi , L+i = −E0x
i

L−i = −E − E0

E0
x i − p · p

2E0
x i +

p · x
E0

pi , L+− = −p · x,

L−0 = −r

(
E − E0

E0
+

p · p
2E0

)
, L+0 = −rE0.

The invariance of the action:

δxk = εij{Lij , xk}
δpk = εij{Lij , pk}

→ δS = 0

The Poisson brackets: {LMN , LRS} = ηMRLNS + ηNSLMR − ηMSLNR − ηNRLMS

{L−i , L−j} = −2
E − E0

E 2
0

Lij
?
= 0
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The Carroll dynamics from the two time physics
The rest particle: Quantization

The quantization is defined by means of the canonical
commutation rules:

[x i , pj ] = iδi j

LMN and Qij are functions of the operators x i and pi . They become
Hermitian operators written in terms of x i and pi operators.

The ordering problem:

p2r → pi rp
i

p2r → rpi r
−1pi r = pi rp

i − d − 3
2r

p2r → rλpi r
1−2λpi rλ = pi rp

i +
λ(λ− d + 2)

2r
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The Carroll dynamics from the two time physics
The rest particle: The ordering problem

We can make the following requirements:

 the commutation rules of the LMN describes the SO(2, d) algebra

{LMN , LRS} ↔ [LMN , LRS ]

 The constraints on Qij translates to

Qij |Phys⟩ = 0

An observation about the Casimir operators

C2(Sp(2,R)) = XMP2XM − (X · P)(P · X )

C2(SO(2, d)) = C2(Sp(2,R)) +
(

1 − d2

4

) One can observe the
same behavior for the

higher Casimirs

C2(Sp(2,R))|Phys⟩ = 0 ⇒ C2(SO(2, d))|Phys⟩ =
(

1 − d2

4

)
|Phys⟩
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The Carroll dynamics from the two time physics
The rest particle: The ordering problem

We can find an ordering that satisfies our conditions:

Lij = x ipj − x jpi , L0i =
1
2
(
r pi + pi r

)
, L+i = −E0x

i

L−i = − 1
2E0

pjx
ipj +

1
2E0

(
p · xpi + pix · p

)
+

x i

8E0r2 ,

L+− = −1
2
(x · p + p · x) , L−0 = − 1

2E0
pi rp

i − 5 − 2d
8E0r

, L+0 = −E0r .

These generators forms the SO(2, d) algebra, with the following
commutation rules[

LMN , LRS
]
= iηMRLNS + iηNSLMR − iηMSLNR − iηNRLMS
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The Carroll dynamics from the two time physics
The rest particle and the Hydrogen atom

The quantized theory reveals a curious relation
with the hydrogen atom.

The SO(2, d) generators are the same at τ = 0.

I. Bars,
"Conformal Symmetry and Duality between Free Particle, H-atom

and Harmonic Oscillator"
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The Carroll dynamics from the two time physics
The rest particle and the Hydrogen atom

This can be understood as follows

We can define some generators of the SO(1, 2) subgroup of SO(2, d)

J0 = −L−0 − 1
2
L+0, J1 = −L−0 +

1
2
L+0, J2 = −L+−.

C2(SO(1, 2)) = j(j + 1) → J0|j , j0⟩ = j0|j , j0⟩

Using the definitions of the LMN ’s, we see that J0 = r
1
2

(
p2

2E0
+ E0

2

)
r

1
2 .

r−
1
2 J0 |j , j0⟩

With some manipulation, we arrive to(
p̃2

2E0
− 1

r̃

)
|Ψj,j0⟩ =

E0

2j20
|Ψj,j0⟩

24 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

The Carroll dynamics from the two time physics
The rest particle and the Hydrogen atom

This can be understood as follows

We can define some generators of the SO(1, 2) subgroup of SO(2, d)

J0 = −L−0 − 1
2
L+0, J1 = −L−0 +

1
2
L+0, J2 = −L+−.

C2(SO(1, 2)) = j(j + 1) → J0|j , j0⟩ = j0|j , j0⟩

Using the definitions of the LMN ’s, we see that J0 = r
1
2

(
p2

2E0
+ E0

2

)
r

1
2 .

r−
1
2 J0 |j , j0⟩

With some manipulation, we arrive to(
p̃2

2E0
− 1

r̃

)
|Ψj,j0⟩ =

E0

2j20
|Ψj,j0⟩

24 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

The Carroll dynamics from the two time physics
The rest particle and the Hydrogen atom

This can be understood as follows

We can define some generators of the SO(1, 2) subgroup of SO(2, d)

J0 = −L−0 − 1
2
L+0, J1 = −L−0 +

1
2
L+0, J2 = −L+−.

C2(SO(1, 2)) = j(j + 1) → J0|j , j0⟩ = j0|j , j0⟩

Using the definitions of the LMN ’s, we see that J0 = r
1
2

(
p2

2E0
+ E0

2

)
r

1
2 .

r−
1
2 J0 |j , j0⟩

With some manipulation, we arrive to(
p̃2

2E0
− 1

r̃

)
|Ψj,j0⟩ =

E0

2j20
|Ψj,j0⟩

24 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

The Carroll dynamics from the two time physics
The rest particle and the Hydrogen atom

This can be understood as follows

We can define some generators of the SO(1, 2) subgroup of SO(2, d)

J0 = −L−0 − 1
2
L+0, J1 = −L−0 +

1
2
L+0, J2 = −L+−.

C2(SO(1, 2)) = j(j + 1) → J0|j , j0⟩ = j0|j , j0⟩

Using the definitions of the LMN ’s, we see that J0 = r
1
2

(
p2

2E0
+ E0

2

)
r

1
2 .

r−
1
2 J0 |j , j0⟩

With some manipulation, we arrive to(
p̃2

2E0
− 1

r̃

)
|Ψj,j0⟩ =

E0

2j20
|Ψj,j0⟩

24 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

The Carroll dynamics from the two time physics
The rest particle and the Hydrogen atom

This can be understood as follows

We can define some generators of the SO(1, 2) subgroup of SO(2, d)

J0 = −L−0 − 1
2
L+0, J1 = −L−0 +

1
2
L+0, J2 = −L+−.

C2(SO(1, 2)) = j(j + 1) → J0|j , j0⟩ = j0|j , j0⟩

Using the definitions of the LMN ’s, we see that J0 = r
1
2

(
p2

2E0
+ E0

2

)
r

1
2 .

r−
1
2 J0 |j , j0⟩

With some manipulation, we arrive to(
p̃2

2E0
− 1

r̃

)
|Ψj,j0⟩ =

E0

2j20
|Ψj,j0⟩

24 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

The Carroll dynamics from the two time physics
The rest particle and the Hydrogen atom

This can be understood as follows

We can define some generators of the SO(1, 2) subgroup of SO(2, d)

J0 = −L−0 − 1
2
L+0, J1 = −L−0 +

1
2
L+0, J2 = −L+−.

C2(SO(1, 2)) = j(j + 1) → J0|j , j0⟩ = j0|j , j0⟩

Using the definitions of the LMN ’s, we see that J0 = r
1
2

(
p2

2E0
+ E0

2

)
r

1
2 .

r−
1
2 J0 |j , j0⟩ →

(
p2

2E0
+

E0

2

)
|Ψj,j0⟩ =

j0
r
|Ψj,j0⟩

(
|Ψj,j0 ⟩=r

1
2 |j,j0⟩

)

With some manipulation, we arrive to(
p̃2

2E0
− 1

r̃

)
|Ψj,j0⟩ =

E0

2j20
|Ψj,j0⟩

24 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

The Carroll dynamics from the two time physics
The rest particle and the Hydrogen atom

This can be understood as follows

We can define some generators of the SO(1, 2) subgroup of SO(2, d)

J0 = −L−0 − 1
2
L+0, J1 = −L−0 +

1
2
L+0, J2 = −L+−.

C2(SO(1, 2)) = j(j + 1) → J0|j , j0⟩ = j0|j , j0⟩

Using the definitions of the LMN ’s, we see that J0 = r
1
2

(
p2

2E0
+ E0

2

)
r

1
2 .

r−
1
2 J0 |j , j0⟩ →

(
p2

2E0
+

E0

2

)
|Ψj,j0⟩ =

j0
r
|Ψj,j0⟩

(
|Ψj,j0 ⟩=r

1
2 |j,j0⟩

)

With some manipulation, we arrive to(
p̃2

2E0
− 1

r̃

)
|Ψj,j0⟩ =

E0

2j20
|Ψj,j0⟩

24 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

The Carroll dynamics from the two time physics
The rest particle and the Hydrogen atom

This can be understood as follows

We can define some generators of the SO(1, 2) subgroup of SO(2, d)

J0 = −L−0 − 1
2
L+0, J1 = −L−0 +

1
2
L+0, J2 = −L+−.

C2(SO(1, 2)) = j(j + 1) → J0|j , j0⟩ = j0|j , j0⟩

Using the definitions of the LMN ’s, we see that J0 = r
1
2

(
p2

2E0
+ E0

2

)
r

1
2 .

r−
1
2 J0 |j , j0⟩ →

(
p2

2E0
+

E0

2

)
|Ψj,j0⟩ =

j0
r
|Ψj,j0⟩

(
|Ψj,j0 ⟩=r

1
2 |j,j0⟩

)

With some manipulation, we arrive to r̃ = j0r , p̃i = pi

j0(
p̃2

2E0
− 1

r̃

)
|Ψj,j0⟩ =

E0

2j20
|Ψj,j0⟩

24 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

The Carroll dynamics from the two time physics
The rest particle and the Hydrogen atom

This can be understood as follows

We can define some generators of the SO(1, 2) subgroup of SO(2, d)

J0 = −L−0 − 1
2
L+0, J1 = −L−0 +

1
2
L+0, J2 = −L+−.

C2(SO(1, 2)) = j(j + 1) → J0|j , j0⟩ = j0|j , j0⟩

Using the definitions of the LMN ’s, we see that J0 = r
1
2

(
p2

2E0
+ E0

2

)
r

1
2 .

r−
1
2 J0 |j , j0⟩ →

(
p2

2E0
+

E0

2

)
|Ψj,j0⟩ =

j0
r
|Ψj,j0⟩

(
|Ψj,j0 ⟩=r

1
2 |j,j0⟩

)

With some manipulation, we arrive to r̃ = j0r , p̃i = pi

j0(
p̃2

2E0
− 1

r̃

)
|Ψj,j0⟩ =

E0

2j20
|Ψj,j0⟩ → Different notion of time and energy

24 / 26



Introduction The two time physics The Carroll dynamics from the two time physics Thank you

Recap and concluding remarks

 We defined a gauge fixing that is able to reproduce the dynamics of
a Carroll particle from the two time physics.

 The SO(2, d) generators show peculiar correspondence with the H
Atom.

 We are working on a gauge fixing that describe Carrollian tachyons.

 A systematic characterization and comprehension of the
"sub-theories" would be useful.
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Thank you

Thank you for listening!
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