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Game on a finite graph

◮ Player unable to move loses

◮ Pick a starting vertex

◮ Choose among options
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Blue player eventually loses

Game on a finite graph

◮ Player unable to move loses

◮ Pick a starting vertex

◮ Choose among options

The pink player was smart
(choosing a winning strategy)

Should I start to play the game or not ?
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◮ stable
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A DAG has a unique kernel
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Wythoff’s game (1907)

Nieuw Arch. voor Wiskunde

◮ 2 piles of token

◮ always remove a positive number of token

◮ remove any number of token from one pile (Nim game) or,

◮ remove the same number from both piles

◮ first player unable to move loses (normal convention).



Wythoff’s game (1907)

It is still a game on a directed acyclic graph:

Hence, P-positions are given by the kernel of the game graph.



Wythoff’s game (1907)

Several characterizations of the P-positions are known

◮ (⌊nϕ⌋, ⌊nϕ2⌋)
◮ 010010100100101001010 · · ·
◮ some using MeX operation. . .



Wythoff’s game (1907)

Using Fibonacci numeration system

Theorem (A. Fraenkel 1982)

A pair (a, b) such that a ≤ b is a P-position IFF
1) repF (a) ends with an even number of zeroes and
2) repF (b) = repF (a)0.

Can Walnut1 be of some use
with combinatorial games

like Wythoff’s ?

R. Fokkink, G. F. Ortega, D. Rust (2022)

1Recall P. Popoli’s talk from yesterday!
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Using walnut

Walnut handles Fibonacci system

◮ 1{0, 1}∗ \ {0, 1}∗11{0, 1}∗
◮ repF ({(x , y , z ) | x +y = z})

Frougny’s normalization (1992)

H. Mousavi, L. Schaeffer, J. Shallit (2016)

Büchi’s thm. (1960) applies:

◮ N is U -recognizable

◮ addition is U -recognizable

i.e., to addable systems U

FO(〈N,+,VU 〉) is decidable
V. Bruyère, G. Hansel, et al. (1994)

É. Charlier, N. Rampersad, J. Shallit (2012)

We can express Fraenkel’s characterization

reg end_even_zeros msd_fib "0*(00|0*1)*":

reg left_shift {0,1} {0,1} "([0,0]|([0,1][1,1]*[1,0]))*":

def ppos_asym "?msd_fib $end_even_zeros(a) & $left_shift(a,b)":

def ppos "?msd_fib $ppos_asym(a,b) | $ppos_asym(b,a)":
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Using walnut

$ppos(9,15) True

0 1 0 0 0 1

1 0 0 0 1 0

DFA accepting P-positions game written in the Fibonacci system.



Using walnut

We can also express stability and absorption

∀x , y ∈ P, x 6→ y ∀x 6∈ P,∃y ∈ P : x → y

eval w_stable "?msd_fib Ap,q,r,s (($ppos(p,q) & $ppos(r,s)

=> ((p=r & q=s) | (p>r & q>s & p+s!=q+r)) )":

eval w_absorbing "?msd_fib Ap,q (~$ppos(p,q) => Ex,y

( x<=p & y<=q & $ppos(x,y) & (p+y=q+x | p=x | q=y) )) ":

True

=⇒ More than a century after Wythoff’s proof, we get an
automatic proof of the characterization of the set of P-positions!
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What are the ingredients ?

Let us recap (if I had to stop my talk now)

◮ The rules of the game can be expressed in FO(〈N,+,VU 〉).
◮ We have an addable numeration system U

“decidability of the theory comes from automata”.

◮ The set of P-positions, when expressed within this system,
is a regular language.

Note that we had a candidate to test for the set P.



I skip some of our results around Wythoff’s game:
https://orbi.uliege.be/handle/2268/323845

Can you add/remove rules such that P is not affected?

◮ Solving a“long-standing”conjecture on extensions preserving
the set of P-positions E. Duchêne, A. Fraenkel, R. Nowakowski, M.R. (2010)

◮ Exploring redundant moves

◮ Nhan Bao Ho’s variant restrictions or extensions JCTA (2012)





Fraenkel’s variations

◮ One may remove k > 0 tokens from one pile and ℓ > 0 from
the other one, provided that |k − ℓ| < m

m = 1 is Wythoff’s game

Consider the quadratic irrational α = 2−m+
√
4+m2

2
= [1,m ] and

the Ostrowski p-system based on the convergents of the CF.

Theorem (A. Fraenkel 1982)

A pair (a, b) such that a ≤ b is a P-position IFF
1) rep

α
(a) ends with an even number of zeroes and

2) rep
α
(b) = rep

α
(a)0.

α =
√
2 A. Baranwal, L. Schaeffer, J. Shallit (2021)

ost ost2 [1] [2]:

def ost2_move "?msd_ost2 (a+b>0) & (a=0 | b=0 |

(a>=b & a<b+2) | (a<b & b<a+2))";
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Fraenkel’s variations

Corollary

For any fixed m, we may apply the same approach as before.

Something new: A move is redundant, if the set of P-positions
is unchanged when the move is deleted from the rule-set.

A move m = (m1,m2) is not redundant, if there exists a
N -position (p, q) such that m is the unique winning move from
(p, q) to some P-position.



Fraenkel’s variations

If moves and P-positions are expressed in FO(〈N,+,VU 〉),
then non-redundancy can also be expressed:

def ost2_non_redundant "?msd_ost2 $ost2_move(a,b)

& Ep,q (~$ost2_ppos(p,q) & $ost2_ppos(p-a,q-b)

& (Ac,d((a!=c|b!=d) & $ost2_move(c,d) & c<=p & d<=q)

=> ~$ost2_ppos(p-c,q-d)))":

def ost2_redundancies "?msd_ost2 $ost2_move(a,b)

& ~$ost2_non_redundant(a,b)":



Fraenkel’s variations

Proposition (m = 2)

The variation of Wythoff’s game where |k − ℓ| < 2, has infinitely
many redundant moves: (n,n + 1) and (n + 1,n) for all n ≥ 3.

Intermediate computations : ≃ 2500 states, 7Gb of memory
We can do the same for m = 3, 4 up to 45Gb (21 minutes)



Beyond Ostrowski systems

Fraenkel (1998) s,m > 0 are integer parameters

◮ Remove a positive number of tokens from one pile,

◮ remove k tokens from one pile and ℓ from the other one,
provided that 0 < k ≤ ℓ < sk +m.

For s = 1, this is the previous game with parameter m.

For s = m = 1, this is Wythoff’s game.

Consider the numeration system U defined by

Un+2 = (s +m − 1)Un+1 + Un and U0 = 1,U1 = m + s

Theorem (A. Fraenkel 1998)

A pair (a, b) such that a ≤ b is a P-position IFF
1) repU (a) ends with an even number of zeroes and
2) repU (b) = repU (a)0.



Beyond Ostrowski systems

We are“lucky” to be in the Pisot case,

◮ We have an addable system
Frougny’s normalization (1992)

◮ We have a regular candidate for the set of P-positions.
We have the“same”Fraenkel’s result for the third time.

◮ The rules can be expressed in FO(〈N,+,VU 〉).
Hence, in principle, we may use Walnut.
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We still have to build an adder.



Beyond Ostrowski systems

Let A = {0, . . . ,m + s − 1} and d = 2(m + s − 1)

Follow the procedure given by C. Frougny, J. Sakarovitch (CANT 2010)

and build the zero automaton over {−d , . . . , d}, states in Z[β].
Since β is a Pisot number, the automaton is finite.

Now replace label ℓ with (a, b, c) ∈ A3 s.t. a + b − c = ℓ.

We provide Walnut with two automata:

◮ one for the U -representations

◮ one for addition

A similar result

A procedure and a tool to get an adder for Dumont–Thomas
numeration in O. Carton, J.-M. Couvreur, M. Delacourt, and N. Ollinger (2024)



Beyond Ostrowski systems

As observed by Carton et al. validity of the adder can be effectively
checked:

eval test1 "?msd_a3ba2 Ax,y Ez x+y=z":

eval test2 "?msd_a3ba2 Ax,y,z,t (x+y=z & x+y=t) => z=t":

eval test3 "?msd_a3ba2 Ax,z (x+0=z) <=> x=z":

eval test4 "?msd_a3ba2 Ax,t (x+1=t) <=>

(x<t & (Ay x<y => t <= y))":

eval test5 "?msd_a3ba2 Ax,y,z,u,t (u=y+1 & t=z+1) =>

(x+y=z <=> x+u=t)":



Conclusions

Fraenkel’s combinatorial games and Walnut:
a marriage made in heaven!

◮ The rules of the game can be expressed in FO(〈N,+,VU 〉).
◮ We have an addable numeration system U

◮ The set of P-positions, when expressed within this system,
is a regular language.

automatic proofs of old and new results ! Build new games, etc.

However,

◮ automatic proofs are obtained for fixed parameters

◮ state complexity could be problematic, Presburger arithmetic
is beyond NP: triple exponential thight bound F. Klaedtke (2005)

◮ difficult to cope with Tribonacci adder E. Duchêne, M.R. (2008)


