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What this talk is about

This talk is about U(1) duality invariance in Fradkin-Tseytlin models
for conformal higher-spin fields, their nonlinear and generalised
versions.

Duality is understood in this talk as a continuous symmetry of EoMs.

There exist different approaches to duality, such as a manifest
symmetry of the action, see e.g. Bunster & Henneaux (2011, 2012).

Many colleagues in this audience have worked on different aspects of
duality. I apologise for not being able to discuss their work.
(A separate talk would be required to review various approaches to
duality in field theory.)

However, I’d like to mention the oldest (and truly influential) work:
E. S. Fradkin & A. A. Tseytlin, “Quantum equivalence of dual field
theories,” Annals Phys. 162 (1985) 31.

... and the most recent one:
Z. Avetisyan, O. Evnin & K. Mkrtchyan, “Democratic Lagrangians
for nonlinear electrodynamics,” [arXiv:2108.01103 [hep-th]].
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Electromagnetic duality: Maxwell’s theory

Maxwell’s electrodynamics is the simplest and oldest example of a
duality-invariant theory in four spacetime dimensions.

LMaxwell(F ) = −1

4
F abFab =

1

2

(
~E 2 − ~B2

)
, Fab = ∂aAb − ∂bAa

The Bianchi identity and the equation of motion read

∂bF̃ab = 0 , ∂bFab = 0

where F̃ab := 1
2 εabcd F

cd is the Hodge dual of F .

Since these differential equations have the same functional form, one
may consider so-called duality rotations

F + iF̃ → eiϕ
(
F + iF̃

)
⇐⇒ ~E + i~B → eiϕ

(
~E + i~B

)
, ϕ ∈ R

Lagrangian LMaxwell(F ) changes, but the energy-momentum tensor

T ab =
1

2

(
F + iF̃

)ac(
F − iF̃

)bd
ηcd = F acF bdηcd −

1

4
ηabF cdFcd

is invariant under U(1) duality transformations.



Electromagnetic duality: Born-Infeld theory

In 1934, Born & Infeld put forward a particular model for
nonlinear electrodynamics

LBI(F ) =
1

g2

{
1−

√
− det(ηab + gFab)

}
= −1

4
F abFab +O(F 4)

as a new fundamental theory of the electromagnetic field (with g
the coupling constant).

In 1935, Schrödinger showed that the Born-Infeld theory possessed
invariance under generalised U(1) duality rotations.
More precisely, he reformulated the Born-Infeld theory in such a way
that there was manifest U(1) duality invariance.

Although the great expectations of Born and Infeld never came true,
the Born-Infeld action has re-appeared in the spotlight since the
1980’s as a low-energy effective action in string theory.

Fradkin & Tseytlin (1985)



Electromagnetic duality: Nonlinear electrodynamics

Patterns of duality invariance in extended supergravity
Ferrara, Scherk & Zumino (1977)

Cremmer & Julia (1979)

General theory of duality invariance in four dimensions
Gaillard & Zumino (1981)

Gibbons & Rasheed (1995)
Gaillard & Zumino (1997)

General theory of duality invariance in higher dimensions
Gibbons & Rasheed (1995)

Araki &Tanii (1999)
Aschieri, Brace, Morariu & Zumino (2000)

General theory of duality invariance for N = 1 and N = 2
supersymmetric nonlinear electrodynamics

SMK & Theisen (2000)
Partial SUSY breaking often implies U(1) duality invariance.

Remarkable reformulation of duality-invariant nonlinear
electrodynamics (manifest duality-invariant self-interaction).

Ivanov & Zupnik (2001,2002)



U(1) duality in nonlinear electrodynamics

Nonlinear electrodynamics

L(Fab) = −1

4
F abFab +O(F 4)

Using the definition

G̃ab(F ) :=
1

2
εabcd G

cd(F ) = 2
∂L(F )

∂F ab
, G (F ) = F̃ +O(F 3),

the Bianchi identity (BI) and the equation of motion (EoM) read

∂bF̃ab = 0 , ∂bG̃ab = 0 .

The same functional form of BI and EOM gives us a rationale to
introduce a duality transformation(

G ′(F ′)
F ′

)
=

(
a b
c d

) (
G (F )
F

)
,

(
a b
c d

)
∈ GL(2,R)

For G ′(F ′) one should require

G̃ ′ab(F ′) = 2
∂L′(F ′)

∂F ′ab

Transformed Lagrangian, L′(F ), always exists.



U(1) duality in nonlinear electrodynamics

The above considerations become nontrivial if the model is required to be
duality invariant (self-dual)

L′(F ) = L(F ) .

The requirement of self-duality implies the following:

Only U(1) duality transformations can consistently be defined in the
nonlinear case.(

G ′(F ′)
F ′

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

) (
G (F )
F

)
Maxwell’s theory also allows scale duality transformations which,
however, are forbidden if the energy-momentum tensor is required to
be duality invariant.

The Lagrangian is a solution of the self-duality equation

G ab G̃ab + F ab F̃ab = 0 , G̃ab(F ) = 2
∂L(F )

∂F ab

Gibbons & Rasheed (1995) Gaillard & Zumino (1997)



Properties of U(1) duality-invariant models

Duality invariance of the energy-momentum tensor.

SL(2,R) duality invariance in the presence of dilaton and axion.

Self-duality under Legendre transformation.

Legendre transformation for nonlinear electrodynamics L(F ).

Associate with L(F ) an equivalent auxiliary model defined by

L(F ,FD) = L(F )− 1

2
F · F̃D , FD

ab = ∂aAD
b − ∂bAD

a ,

in which Fab is an unconstrained two-form (auxiliary field).

Eliminate Fab using its equation of motions G (F ) = FD to yield

LD(FD) :=
(
L(F )− 1

2
F · F̃D

) ∣∣∣
F=F (FD)

.

If L(F ) solves the self-duality equation G · G̃ + F · F̃ = 0, then

LD(F ) = L(F ) .

Self-dual electrodynamics



General structure of self-dual electrodynamics

Given a model for nonlinear electrodynamics, its Lagrangian L(Fab)
can be realised as a real function of one complex variable,

L(Fab) = L(ω, ω̄) , ω = α + iβ = FαβFαβ ,

where α = 1
4 F

abFab and β = 1
4 F

abF̃ab are the EM invariants.

L(ω, ω̄) = −1

2

(
ω + ω̄

)
+ ω ω̄ Λ(ω, ω̄) .

Self-duality equation (SDE), G · G̃ + F · F̃ = 0, turns into

Im

{
∂(ω Λ)

∂ω
− ω̄

(
∂(ω Λ)

∂ω

)2}
= 0 .

Assuming Λ(ω, ω̄) to be real analytic, the general solution of SDE involves a real
function of one real argument f (ωω̄)

Λ(ω, ω̄) =
∞∑
n=0

∑
p+q=n

cp,q ω
pω̄q , cp,q = cq,p ∈ R

SDE uniquely fixes the level-n coefficients cp,q with p 6= q through those at

lower levels, while cr,r remain undetermined.



Duality-invariant theories with higher derivatives

In the case of theories with higher derivatives, the scheme should be
generalised in accordance with the rules given in

SMK & Theisen (2000)
Aschieri, Ferrara & Zumino (2008)

Chemissany, Kallosh & Ortin (2012)

Definition

G̃ ab(F ) :=
1

2
εabcd Gcd(F ) = 2

∂L(F )

∂Fab
.

is replaced with

G̃ ab[F ] = 2
δS [F ]

δFab
.

Self-duality equation G̃ abGab + F̃ abFab = 0 is replaced with∫
d4x
(
G̃ abGab + F̃ abFab

)
= 0 .

This must hold for S [F ] being a functional of an unconstrained
two-form Fab.



Formulation with manifestly U(1) invariant interaction

Self-duality equation G · G̃ + F · F̃ = 0 is a nonlinear equation on
the Lagrangian L(F ), and U(1) duality-invariant deformations of
L(F ) are difficult to control.

In 2001, Ivanov & Zupnik proposed a reformulation of nonlinear
electrodynamics with the property that U(1) duality invariance
becomes equivalent to manifest U(1) invariance of the interaction.

Twisted self-duality constraint put forward by Bossard & Nicolai
(2011) and by Carrasco, Kallosh & Roiban (2012) proves to be a
variant of the Ivanov-Zupnik formulation.



Formulation with manifestly U(1) invariant interaction

The Ivanov-Zupnik formulation involves an auxiliary (unconstrained)
antisymmetric tensor Vab = −Vba, which is equivalently described by
a symmetric rank-2 spinor Vαβ = Vβα and its conjugate V̄α̇β̇ , where
α, β = 1, 2.
Inspired by the structure of N = 3 supersymmetric Born-Infeld
action in N = 3 harmonic superspace, Ivanov & Zupnik replaced
L(Fab) with a new Lagrangian

L(Fab,Vab) =
1

4
F abFab +

1

2
V abVab − V abFab + Lint(Vab) .

The original Lagrangian L(Fab) is obtained from L(Fab,Vab) by
integrating out the auxiliary variables.
In terms of L(Fab,Vab), the condition of U(1) duality invariance
proves to be equivalent to the requirement that the self-interaction

Lint(Vab) = Lint(ν, ν̄) , ν := V αβVαβ

is invariant under linear U(1) transformations ν → eiϕν, with ϕ ∈ R,

Lint(ν, ν̄) = Lint(e
iϕν, e−iϕν̄) =⇒ Lint(ν, ν̄) = h(νν̄) ,

with h a real function of one real variable.



Duality invariance and (super)conformal symmetry

Perturbative scheme to construct N = 2 superconformal U(1) duality-invariant
actions for the N = 2 vector multiplet (e.g., low-energy effective action for
N = 4 SU(N) super-Yang-Mills theory on its Coulomb branch)

SMK & Theisen (2000)

S =
1

8

∫
d4xd4θW2 +

1

8

∫
d4xd4θ̄ W̄2 +

1

4

∫
d4xd4θd4θ̄L ,

L = c lnW ln W̄ +
1

4
c2
(

lnW∇ lnW + c.c.
)

+
1

4
c3 d (∇ lnW) ∇̄ ln W̄ −

1

8
c3
(

lnW (∇ lnW)2 + c.c.
)

+
1

16
c4

(
(1− 4d) (∇ lnW)2 ∇̄ ln W̄ + (2d − 1) (∇ lnW) ∇̄∇ lnW

+
5

3
lnW (∇ lnW)3 + c.c.

)
+ O(∇4) .

c the anomaly coefficient; ∇ := 1
W̄2 D4 and ∇̄ := 1

W2 D̄4.

W chiral field strength of the N = 2 vector multiplet, D̄α̇i W = 0,

DαiDαjW = D̄α̇
i D̄α̇jW̄.

In 2000, we did not look at the simpler N = 0 and N = 1 cases.

Twenty years later, other people have studied the N = 0 case.



Conformal duality-invariant electrodynamics

ModMax theory

Lconf(ω, ω̄) = −1

2
cosh γ

(
ω + ω̄

)
+ sinh γ

√
ωω̄ ,

with γ a positive parameter.
Bandos, Lechner, Sorokin & Townsend arXiv:2007.09092

Kosyakov arXiv:2007.13878

Derivation of ModMax using the Ivanov-Zupnik approach
SMK arXiv:2106.07173

Unique conformal duality-invariant model corresponds to

Lint,conf(ν, ν̄) = κ
√
νν̄ ,

with κ a coupling constant. Integrating out the auxiliary variables
Vαβ and V̄α̇β̇ leads to Lconf(ω, ω̄) with

sinh γ =
κ

1− (κ/2)2
.



Superconformal duality-invariant electrodynamics

N = 1 supersymmetric ModMax theory
Bandos, Lechner, Sorokin & Townsend arXiv:2106.07547

SMK arXiv:2106.07173

S [W , W̄ ] =
1

4
cosh γ

∫
d4xd2θ EW 2 + c.c.

+
1

4
sinh γ

∫
d4xd2θd2θ̄ E

W 2 W̄ 2

√
uū

,

where u := 1
8 (D2 − 4R̄)W 2, W 2 = W αWα, and

Wα = −1

4
(D̄2 − 4R)DαV , D̄β̇Wα = 0

is the chiral field strength of the vector multiplet.



Conformal geometry in D > 3 dimensions

Kaku, Townsend & van Nieuwenhuizen (1977)

The conformal algebra in D > 2 dimensions, so(D, 2), is spanned by the
generators of translation (Pa), Lorentz (Mab), special conformal (Ka) and
dilatation (D). The non-vanishing commutation relations are:

[Mab,Mcd ] = 2ηc[aMb]d − 2ηd [aMb]c ,

[Mab,Pc ] = 2ηc[aPb] , [Mab,Kc ] = 2ηc[aKb] ,

[Ka,Pb] = 2ηabD + 2Mab , [D,Pa] = Pa , [D,Ka] = −Ka .

Conformal covariant derivatives ∇a

∇a = ea
m∂m −

1

2
ωa

bcMbc − baD− fa
bKb .

For D > 3 the algebra of conformal covariant derivatives is

[∇a,∇b] = −
1

2
CabcdM

cd −
1

2(D − 3)
∇dCabcdK

c .

It is determined by a single primary tensor field, the Weyl tensor Cabcd .

Primary field Φ of dimension ∆ is characterised by the condition:

KaΦ = 0 , DΦ = ∆Φ .

Gauge condition ba = 0 =⇒ tractor calculus.



Conformal geometry in four dimensions

In the D = 4 case, the two-component spinor formalism is indispensable

ha → hαα̇ = (σb)αα̇hb ⇐⇒ ha = −
1

2
(σ̃a)β̇βhββ̇

Given a symmetric and traceless field ha(s) := ha1...as , it is equivalently described
by a symmetric spinor field hα(s)α̇(s) := h(α1...αs )(α̇1...α̇s ) defined by

ha(s) → hα1...αs α̇1...α̇s = (σa1 )α1α̇1
· · · (σas )αs α̇s ha1...as = hα(s)α̇(s)

The algebra of conformal covariant derivatives[
∇αα̇,∇ββ̇

]
= −

(
εα̇β̇CαβγδM

γδ + εαβC̄α̇β̇γ̇δ̇M̄
γ̇δ̇
)

−
1

4

(
εα̇β̇∇

δγ̇Cαβδ
γ + εαβ∇γδ̇C̄α̇β̇δ̇

γ̇
)
Kγγ̇ .

Here Cαβγδ and C̄α̇β̇γ̇δ̇ are the self-dual and anti self-dual parts of the Weyl

tensor Cabcd , and are primary.

Important commutation relation[
Kαα̇,∇ββ̇

]
= 4

(
εα̇β̇Mαβ + εαβM̄α̇β̇ − εαβεα̇β̇D

)
.

The Lorentz generators act on vectors and Weyl spinors as follows:

MabVc = 2ηc[aVb] , Mαβψγ = εγ(αψβ) , M̄α̇β̇ψ̄γ̇ = εγ̇(α̇ψ̄β̇) .



Conformal higher-spin fields in curved space

Given an integer s ≥ 1, consider a real spin-s field
hα(s)α̇(s) := hα1...αs α̇1...α̇s = h(α1...αs )(α̇1...α̇s ) in curved spacetime.
Its conformal properties are fixed by demanding

Kbhα(s)α̇(s) = 0 , Dhα(s)α̇(s) = (2− s)hα(s)α̇(s) .

Associated with hα(s)α̇(s) is its descendant

Cα(2s) = ∇(α1

β̇1 . . .∇αs

β̇shαs+1...α2s )β̇(s)

with nice conformal properties:

KbCα(2s) = 0 , DCα(2s) = 2Cα(2s) .

Since Cα(2s) is primary and of dimensions +2, the functional

S
(s)
FTL[C, C̄] =

(−1)s

2

∫
d4x e

{
Cα(2s)Cα(2s) + c.c.

}
is locally conformally invariant.



Conformal higher-spin fields in curved space

The conformal properties of hα(s)α̇(s) are consistent with gauge
transformations of the form

δζhα(s)α̇(s) = ∇(α1(α̇1
ζα2...αs )α̇2...α̇s ) ,

where the gauge parameter ζα(s−1)α̇(s−1) is also primary.

However, for a generic background, the gauge transformations leave
the field strength Cα(2s) invariant only when s = 1, δζCα(2) = 0.

For s ≥ 2 gauge invariance holds only if the background is
conformally flat,

Cα(4) = 0 =⇒ δζCα(2s) = 0 .

In what follows, the background spacetime is assumed to be
conformally flat, Cα(4) = 0.



Bianchi identity (BI) and equation of motion (EoM)

Let S (s)[C, C̄] be a gauge-invariant action functional describing the
propagation of a conformal spin-s field hα(s)α̇(s).

The field strengths Cα(2s) and C̄α̇(2s) obey BI

∇β1
(α̇1

. . .∇βs
α̇s )Cα(s)β(s) = ∇(α1

β̇1 . . .∇αs )
β̇s C̄α̇(s)β̇(s) .

Extending S (s)[C, C̄] to be a functional of an unconstrained field
Cα(2s) and its conjugate, we introduce primary dimension-2 field

iMα(2s) :=
δS (s)[C, C̄]

δCα(2s)
, KbMα(2s) = 0 , DMα(2s) = 2Mα(2s) ,

where the functional derivative is defined by

δS (s)[C, C̄] =

∫
d4x e δCα(2s) δS

(s)[C, C̄]

δCα(2s)
+ c.c.

Varying S (s)[C, C̄] with respect to hα(s)α̇(s) yields EoM

∇β1
(α̇1

. . .∇βs
α̇s )Mα(s)β(s) = ∇(α1

β̇1 . . .∇αs )
β̇sM̄α̇(s)β̇(s) .

The BI and EoM have the same functional form.



U(1) duality invariance

The functional form of EoM mirrors that of BI. Consequently, we
can introduce SO(2) ∼= U(1) duality transformations:

δλCα(2s) = λMα(2s) , δλMα(2s) = −λCα(2s) ,

where λ is a constant, real parameter.

Two equivalent expressions for the variation of S (s)[C, C̄]

δλS
(s)[C, C̄] =

iλ

4

∫
d4x e

{
C2 −M2

}
+ c.c. = −

iλ

2

∫
d4x eM2 + c.c.

Self-duality equation

Im

∫
d4x e

{
Cα(2s)Cα(2s) +Mα(2s)Mα(2s)

}
= 0

It must hold for unconstrained fields Cα(2s) and C̄α̇(2s) .

s = 1: Gibbons-Rasheed-Gaillard-Zumino self-duality equation.



Simplest solutions of the self-duality equation

Fradkin-Tseytlin-Linetsky conformal spin-s action

S
(s)
FTL[C, C̄] =

(−1)s

2

∫
d4x e

{
Cα(2s)Cα(2s) + c.c.

}
M4: Fradkin & Tseytlin (1985); Fradkin & Linetsky (1989)
Conformally flat backgrounds: SMK & Ponds (2019)

Higher-spin ModMax theory

S
(s)
ModMax[C, C̄] =

(−1)scosh γ

2

∫
d4x e

{
C2 + C̄2

}
+sinh γ

∫
d4x e

√
C2C̄2 ,

with C2 = Cα(2s)Cα(2s).
SMK & Raptakis (2021)

This nonlinear theory is conformal and U(1) duality-invariant. It is a

one-parameter (γ ∈ R) extension of S
(s)
FTL[C, C̄].

For s = 1 the model coincides with ModMax electrodynamics.



Auxiliary field formulation

To generate duality-invariant higher-spin models, a formulation with auxiliary
variables is desirable.

Consider the following action functional

S(s)[C, C̄, η, η̄] = (−1)s
∫

d4x e
{

2ηC − η2 −
1

2
C2
}

+ c.c. + S(s)
int [η, η̄]

Here ηα(2s) is an unconstrained primary dimension-2 field,

Kbηα(2s) = 0 , Dηα(2s) = 2ηα(2s) .

Equation of motion for ηα(2s)

ηα(2s) = Cα(2s) +
(−1)s

2

δS(s)
int [η, η̄]

δηα(2s)

allows one to express ηα(2s) as a functional of Cα(2s) and C̄α̇(2s).

U(1) duality invariance is equivalent to the requirement that S(s)
int [η, η̄] is

invariant under rigid U(1) phase transformations

S(s)
int [eiϕη, e−iϕη̄] = S(s)

int [η, η̄] , ϕ ∈ R .



Nonlinear duality-invariant conformal spin-2 model

Algebraic invariants of the symmetric rank-(2s) spinor ηα(2s)

η2 := (−1)sηα(s)
β(s)ηβ(s)

α(s) , η3 := ηα(s)
β(s)ηβ(s)

γ(s)ηγ(s)
α(s) , . . .

If s is odd, all invariants η2n+1 vanish.

For s = 2 there are two independent algebraic invariants, η2 and η3.

s = 2 : η4 =
1

2
(η2)2

Conformal U(1) invariant self-interaction for s = 2

S(2)
int [η, η̄] =

∫
d4x e

{
β
(
η2η̄2

) 1
2 + κ

(
η3η̄3

) 1
3

}
,

where β and κ are real coupling constants.

Elimination of the auxiliary variables gives

S(2)[C, C̄] =

∫
d4x e

{
1

2

(
1 +

1

2
β2
)

(C2 + C̄2) + β(C2C̄2)
1
2 + κ(C3C̄3)

1
3

+
1

2
βκ

(C3)2C̄2 + (C̄3)2C2

(C3C̄3)
2
3 (C2C̄2)

1
2

+
1

12
κ2 (C2)2 + (C̄2)2

(C3C̄3)
1
3

−
1

24
κ2 (C3)2(C̄2)2 + (C̄3)2(C2)2

(C3C̄3)
4
3

+ . . .

}
.



U(1) duality for complex conformal higher-spin fields

So far our attention was restricted to conformal higher-spin (CHS)
models described by real gauge prepotentials hα(s)α̇(s).

Supersymmetric duality-invariant CHS theories also involve fermionic
gauge prepotentials ψα(s+1)α̇(s), and thus there should exist a way to
define duality transformations for fermions.

More generally, one may consider a complex CHS gauge prepotential
φα(m)α̇(n), with m, n ≥ 1 and m 6= n, defined modulo gauge
transformations

δ`φα(m)α̇(n) = ∇(α1(α̇1
`α2...αm)α̇2...α̇n) .

Conformal properties

Kbφα(m)α̇(n) = 0 , Dφα(m)α̇(n) = (2− 1

2
(m + n))φα(m)α̇(n)

M4: Vasiliev (2009)
SMK, Manvelyan & Theisen (2017)

Conformally flat backgrounds: SMK & Ponds (2019)



U(1) duality for complex conformal higher-spin fields

Introduce field strengths

Ĉα(m+n) = ∇(α1

β̇1 . . .∇αn

β̇nφαn+1...αm+n)β̇(n) ,

Čα(m+n) = ∇(α1

β̇1 . . .∇αm

β̇m φ̄αm+1...αm+n)β̇(m) .

They are primary fields in generic backgrounds,

KbĈα(m+n) = 0 , DĈα(m+n) =
(

2 +
1

2
(n −m)

)
Ĉα(m+n) ;

KbČα(m+n) = 0 , DČα(m+n) =
(

2 +
1

2
(m − n)

)
Čα(m+n) .

They are gauge-invariant in any conformally flat background,

Cα(4) = 0 =⇒ δ`Ĉα(m+n) = δ`Čα(m+n) = 0 .

Free gauge-invariant CHS action

S
(m,n)
free [Ĉ, Č, ¯̂C, ¯̌C] = im+n

∫
d4x e Ĉα(m+n)Čα(m+n) + c.c.



U(1) duality for complex conformal higher-spin fields

Bianchi identity

∇β1
(α̇1

. . .∇βm
α̇m)Ĉα(n)β(m) = ∇(α1

β̇1 . . .∇αn)
β̇n Čα̇(m)β̇(n) .

Given a dynamical system with action S (m,n)[Ĉ, Č, ¯̂C, ¯̌C], the equation
of motion for φα(m)α̇(n) is

∇β1
(α̇1

. . .∇βm
α̇m)M̂α(n)β(m) = ∇(α1

β̇1 . . .∇αn)
β̇nM̌α̇(m)β̇(n) ,

where we have defined

im+n+1M̂α(m+n) :=
δS (m,n)[Ĉ, Č, ¯̂C, ¯̌C]

δČα(m+n)
,

im+n+1M̌α(m+n) :=
δS (m,n)[Ĉ, Č , ¯̂C, ¯̌C]

δĈα(m+n)
,

Conformal properties of the equations of motion:

KbM̂α(m+n) = 0 , DM̂α(m+n) =
(

2 +
1

2
(n −m)

)
M̂α(m+n) ;

KbM̌α(m+n) = 0 , DM̌α(m+n) =
(

2 +
1

2
(m − n)

)
M̌α(m+n) .



U(1) duality for complex conformal higher-spin fields

U(1) duality rotations

δλĈα(m+n) = λM̂α(m+n) , δλČα(m+n) = λM̌α(m+n) ,

δλM̂α(m+n) = −λĈα(m+n) , δλM̌α(m+n) = −λČα(m+n) .

Self-duality equation

im+n+1

∫
d4x e

{
Ĉα(m+n)Čα(m+n) + M̂α(m+n)M̌α(m+n)

}
+ c.c. = 0

The simplest solution of this equation is the free CHS action

S
(m,n)
free [Ĉ, Č, ¯̂C, ¯̌C] = im+n

∫
d4x e Ĉα(m+n)Čα(m+n) + c.c.



Thank you!
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