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Motivation

e Kreimer-Connes:

[perturbative|] QFT renormalisation «— Hopf algebra stucture

= enables perturbative computations to very high order

e Ecalle: resurgent asymptotics

[perturbative| series — [perturbative + nonperturbative| transseries

= nonperturbative physics encoded in perturbative physics

IDEA: use resurgent trans-series to decode nonperturbative
properties of QFT from their perturbative Hopf algebra
structure




Trans-series

e an interesting observation by Hardy:

No function has yet presented itself in analysis, the laws of
whose increase, in so far as they can be stated at all, cannot be
stated, so to say, in logarithmico-exponential terms

G. H. Hardy, Orders of Infinity, 1910

e deep result: “this is all we need” (J. Ecalle, 1980s)

e also as a closed logic system: Dahn and Goring (1980s)



Resurgent Trans-Series

e Ecalle: resurgent functions closed under all operations:

(Borel transform) + (analytic continuation) + (Laplace transform)
e basic trans-series expansion in QM & QFT applications:
oo oo k-1 l
c1\F 1
IS5 e () (m]))
=0 k=0 1=1 —— o T T/

perturbative fluctuations Kk—instantons
—nstantons - joearithm powers

e transmonomial elements: x, 6_%, In(x), familiar in QFT
e new: analytic continuation encoded in trans-series

e new: trans-series coefficients ¢y, are highly correlated
e new: exponentially improved asymptotics

e explored in ODEs, PDEs, difference eqs., QM, matrix models,
QFT, string theory, ...



“Resurgence”

resurgent functions display at each of their singular points a
behaviour closely related to their behaviour at the origin.
Loosely speaking, these functions resurrect, or surge up - in
a slightly different guise, as it were - at their singularities
J. Ecalle

fluctuations about different singularities are quantitatively related




Resurgence in QFT ? review: GD & M. Unsal (1603.04924)

e resurgence is well established in matrix models and QM

e renormalisation makes resurgence in quantum field theory
extremely interesting and also difficult

e recent progress for regularised QFTs and lattice QFT

e here: invoke Hopf algebra structure of perturbative QFT


http://inspirehep.net/record/1428681

Nonlinear ODEs from Dyson-Schwinger Equations

Combinatoric explosion of renormalization tamed by Hopf
algebra: 30-loop Padé-Borel resummation
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Nonlinear ODEs from Dyson-Schwinger Equations
e Broadhurst/Kreimer 1999/2000; Kreimer/Yeats 2006:

for certain QFTs the renormalisation group equations can be
reduced to coupled nonlinear ODEs for the anomalous
dimension in terms of the renormalised coupling

e resurgence is deeply understood for (nonlinear) ODEs
(Ecalle, Costin, Kruskal, Ramis, Sauzin, Fauvet, ...)

e 5o this is a natural place to start

e some paradigmatic cases: Wess-Zumino model (Bellon,
Schaposnik, Clavier, 2008, 2016, 2018); 4 dim. Yukawa
(Borinsky, GD, 2020); 6 dim. ¢* theory (Bellon & Russo, 2020),
(Borinsky, GD, Meynig, 2020)

e also related: Maiezza, Vasquez (2019, 2020)

e future goal: gauge theories



4 dimensional massless Yukawa theory Broadhurst/Kreimer, 1999

e renormalised fermion self-energy

S(q) = = ¢2(¢%)

e Dyson-Schwinger equation

=0 + 4D + ... — subtractions

e anomalous dimension y(a) (o = renormalised coupling):

v(a) In (1 -%(¢%))

q

dln g2 .
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e renormalisation group = non-linear ODE
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Perturbative Solution (rescale: y(a) :==2C (—2))
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e perturbative solution: C'(x) = Y7, Cpa™ (oEIs: A000699)
C, =[1,1,4,27,248, 2830, 38232, 593859, 10401712, 202601898, . . . ]

e combinatorics: generating function for “connected chord
diagrams”

e large order asymptotics
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https://oeis.org/A000699
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e perturbative solution: C'(x) = Y7, Cpa™ (oEIs: A000699)
C, =[1,1,4,27,248, 2830, 38232, 593859, 10401712, 202601898, . . . ]

e combinatorics: generating function for “connected chord
diagrams”

e large order asymptotics
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e missing boundary condition parameter ?
oo
Ecalle: formal series — trans-series : C(z) = Z o C®) ()


https://oeis.org/A000699

Trans-series Solution M. Borinsky & GD, 2005.04265
e expand C(z) = CO(z) + o CW(e) + 02 CP(z) + ...
e CO(z) = previous formal perturbative series solution
e linear inhomogeneous equations for C*) () for k > 1

(CO(z) + 1)2
2x

cW(z) = 1 vz

e~ 1/(22) 1 5 43 5, 579 4
——r— - — T — ...
2 8 16

e resurgence: C(M(z) expressed in terms of C'©)(x)


https://arxiv.org/abs/2005.04265
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CO(y) = VT

e resurgence: C(M(z) expressed in terms of C'©)(x)
e characteristic signature of resurgent structure:
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e combinatorics of C\: Mahmoud & Yeats, 2020
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Resurgent structure

e large order asymptotics of C’,(Ll) coefficients
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e next nonperturbative solution (£(x) = ﬁ e~1/(2)).
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Resurgent structure

C ~

e large order asymptotics of C’,(Ll) coefficients
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e next nonperturbative solution (£(x) = ﬁ e~1/(2)).
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e continues to all orders = all-orders summation

C(z) = [exp (aax)f(w, ) ;’y) -y] o

= \ﬁ [—1y(y+2)}

e also follows from Borinsky’s alien derivative on the ring of

generating function : f(z,y) =

formal power series
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Resurgence in the 4 dimensional massless Yukawa Model

e trans-series: the (asymptotic) perturbative solution to the
nonlinear ODE for the anomalous dimension can be extended to
a trans-series which resums all nonperturbative orders

e non-perturbative terms C¥)(z) (k > 1) +— singularities of
the Borel transform of the perturbative series

e resurgence: all non-perturbative terms are expressed explicitly
in terms of the original formal series C(%)(z)

fluctuations about different singularities are quantitatively related




Resurgence in the 6 dim. Scalar ¢3 Theory Broadhurst/Kreimer, 1999

e physically more interesting model

1 2. 9 .3 g

e asymptotically free; d = 6 critical dimension; Lipatov
instanton; renormalons; — non-perturbative physics


https://oeis.org/A051862

Resurgence in the 6 dim. Scalar ¢3 Theory Broadhurst/Kreimer, 1999

e physically more interesting model

92
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e asymptotically free; d = 6 critical dimension; Lipatov
instanton; renormalons; — non-perturbative physics

e Broadhurst/Kreimer: 3rd order ODE (with quartic
nonlinearity) for anomalous dimension
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e perturbative solution: C(z) = > 77 | Cp,x™: (OEIs: Aos1862)

|Cnl : {1,11, 376, 20241, 1427156, 121639250, 12007003824, . .. }

e no known combinatorial interpretation of C,


https://oeis.org/A051862

Tl"ans—series AnalySiS Borinsky, GD, Meynig, 2020, to appear

e Broadhurst/Kreimer:  C), ~ (=1)"T" (n + 2)

e with more data
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e now there are 3 “missing” b.c. parameters !




Trans-series Analysis

e Broadhurst/Kreimer:

e with more data
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e now there are 3 “missing” b.c. parameters !

e transseries ansatz for terms “beyond all orders”

C(z) ~ 2°e %" — three solutions
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= three resonant Borel singularities at ¢t = =1, =2, —3



Trans-series Analysis

e full three-term trans-series
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e resurgence relation:
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Borel Analysis

e location and nature of singularities, and associated Stokes
constants S}, can be efficiently extracted numerically

e perturbative series: Borel singularities on negative axis

Log[B(1)]

2 . 30

e implies subleading exponentially small corrections




Borel Analysis

e decoding the full non-perturbative information (e.g. Stokes
constants) requires new Borel analysis: Borel-Padé &
conformal /uniformizing maps |Costin, GD: 2009.01962]

e 2-instanton fluctuations: Borel singularities on
both negative and positive axis

Log[B(t)]
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Borel Analysis

e uniformization map in Borel plane enables (optimal) high

precision extraction of Stokes constants:
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Borel Analysis

e uniformized Borel analysis — large order growth

e fluctuations about ¢t = —2 have interference terms
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Resurgence in the 6 dimensional Scalar ¢ Theory

e richer non-perturbative structure than Yukawa model
e 3rd order ODE with 4th order non-linearity

e 3 different non-perturbative structures, with different
fluctuation powers

e resonance: Borel singularity locations are integer multiples of
leading one

e large order/low order resurgence relations

e non-perturbative terms expressed in terms of formal
perturbative series




Origin of Non-perturbative Physics in 6 dim scalar ¢* QFT ?

e Lipatov instanton = one Borel singularity, repeated

e Hopf algebra iterative structure = 3 independent (but
resonant) Borel branch points, repeated

e “renormalon” bubble-chain diagrams
= rescaled Lipatov Borel singularity (7)

e dominant effect 7  other effects ?

e diagrammatic interpretation ?



Conclusions

perturbative Hopf algebra renormalisation

resurgent |} analysis

’ non-perturbative completion

e does there exist a “natural” Hopf algebraic non-perturbative
(trans-series) structure ?

e functional relation & Borinsky’s “alien derivation” ?
e multi-component fields ? (Gracey, 2015; Giombi et al ...)
e relation with instantons and renormalons ?

e other renormalisation schemes ?

e 2d 0 models, Chern-Simons, SUSY, QED, QCD, ... ?



