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Introduction

(1) — TED K-Theory
via Cohesive co-Topos Theory

(2) — Interacting enhancement
via Hypothesis H

(3) — Anyon braiding
via Cohesive Homotopy Type Theory
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(1) Systematic construction of TED K-theory using cohesive co-topos theory
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Evaluate TED K-cohomology not on Brillouin torus/spacetime-orbifold itself,
but on its configuration space of points, and generally: on its Cohomotopy moduli
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Claim: The TED K-cohomology of n-point configurations in Brillouin torus
classifies valence bundle of n-electron interacting states  [arX:2206.13563]
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Quantum symmetries.
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Free topological phases of matter.

= Idea: Single-particle valence bundle of electrons 1n crystalline insulator
classified by topological K-theory of Brillouin torus
equivariant wrt quantum symmetries |Kitacv 09] [FM12]
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CPT Quantum symmetries.

pure quantum T-symmetry

B({e,T}) — L —T B(
s v
B({e, P} x{e,T})

U(H) x U(H)
U(1)

x {e, T}) —— B(BU(1) x {e, T'})

Let’s use the previous machinery to compute the possible quantum T-symmetries...
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CPT Quantum symmetries.

pure quantum T-symmetry
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So ¢ = ¢ and hence there are two choices for quantum T-symmetry, up to homotopy:

T?=+1 and similarly C?=+1.



Example — Orientifold KR-theory

Let I be Inversion action on 2-torus T2 ~ R? /72 and trivial action on observables

2 I 72 0 LN 0
T > T FlredC /Fred(C

If T acts as 7 on T2, then KRT*=+1ig Atiyah’s Real K-theory aka orienti-fold K-theory:

( )

Fredg//(U(ﬂ{) x{e,T})
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Example — Orientifold KR-theory

Let I be Inversion action on 2-torus T2 ~ R? /72 and trivial action on observables

0
Fred o
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If T acts as 7 on T2, then KRT*=+1ig Atiyah’s Real K-theory aka orienti-fold K-theory:
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Fredg//(U(ﬂ{) x{e,T})
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But what happens on /-fixed loc1 1.e.

?

on “‘orientifolds”



CPT Quantum symmetries — 10 global choices.

(following [FM12, Prop. 6.4])

Equivariance group G=|| {e} | {eP} {e,T} {e,C} {e,T} x{e,C}
)
Realization as "= 1 -1 +1 -1 -1 +1
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. . 0
Chfford action E.o= B B B (g —[3> B B B B B B
anticommuting with
all G-invariant odd E. = (0 1) C Cp | CB
I
Fredholm operators i ! 9 P
E.p= (? 5) iCB iCB
0 -T Fap
Eyy= 0 ) i7C
_ 0 iT
Eva= (if o)
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Example — T I-equivariant KR-theory is KO"-theory.

The combination 7" -1

acts trivially on the domain space and
by complex conjugation on observables.

Hence (T - I)-equivariant (72 = +1)-twisted KR-theory is KO°-theory:
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Example — 7'/-equivariant KR-theory of punctured torus.

So the T'I-equivariant (fz = +1)-twisted KR-theory of the N-punctured torus is
KR(fz = +1) (@2 \ {kla o ;kN})
~ KO (T*\ {ki,-- ,kn})
~ 0 1
~ KO'(\/, ,S:) =1
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The B-field twist.

Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field.

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

BU(H) —— B(U(H)/U(1)) —2 B>U(1)
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The B-field twist.

Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field.

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

BU(H) —— B(U(H)/U(1)) —2 B*U(1)

induces a surjection of equivalence classes of equivariant higher bundles

equivariant projective bundles equivariant bundle gerbes

o Maps(f//\(;,B(U(}[)/Ua))) DD-, noMaps(f//\G,BZUu))

which has a natural section:

- “stable twists™ -
mMaps (X /G, B*U(1)) — mMaps (X//G, B (U(ﬂ%?g(ﬂ) x ({e,C} x {e,P}) ) ) .

equivariant bundle gerbes

full quantum-symmetry twists



The B-field twist — Inner local systems.

On fixed loci (orbi-singularities)
X/)G ~ Xxx//G = XxBG
the B-field twist induces secondary twists by “inner local systems™:

stable twists over fixed locus

Maps (X x /G, B*U(1)) ~Maps(X x BG, B*U(1))

~ Maps (X, Maps(BG, B*U(1)))



The B-field twist — Inner local systems.

On fixed loci (orbi-singularities)
X/)G ~ Xxx//G = XxBG
the B-field twist induces secondary twists by “inner local systems™:

stable twists over fixed locus

Maps (X x /G, B*U(1)) ~ Maps(X x BG, B*U(1))
~ Maps (X, Maps(BG, B*U(1)))

~ Maps (X, BG* x B*U(1))

Here we are assuming G - SU(2) so that H(z}rp (G,U(1)) =0.
n

And G* := Hom(G,U(1)) denotes the Pontrjagin-dual group.



The B-field twist — Inner local systems.

On fixed loci (orbi-singularities)
X/)G ~ Xxx//G = XxBG
the B-field twist induces secondary twists by “inner local systems™:

stable twists over fixed locus

Maps (X x /G, B*U(1)) ~ Maps(X x BG, B*U(1))
~ Maps (X, Maps(BG, B*U(1)))
~ Maps (X, BG* x B*U(1))

~ Maps (X, BG*) x Maps(X, B*U(1))

inner local systems bundle gerbes

Here we are assuming G - SU(2) so that H(z}rp (G, U(1)) =0.
n

And G* := Hom(G,U(1)) denotes the Pontrjagin-dual group.



The B-field twist — Inner local systems — The diagrammatics.

Hence the

inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X

arises as follows:

KU (x) = <

Fred{. /PU(H)
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The B-field twist — Inner local systems — The diagrammatics.

Hence the

inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X

arises as follows:

KU (x) =

Maps(BG, Fred{. /PU(H))

~

adjunct twist

» Maps(BG, BPU(H))

/ ~htpy



The B-field twist — Inner local systems — The diagrammatics.

Hence the

inner local system-twisted KU-cohomology

of a G-orbi-singularity of shape X

arises as follows:

KU (x) =
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X

inner local system
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-
-
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o, —— BG* — Maps(BG, BPU(#H))

automorphisms of
univ. stable equiv. twist
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The B-field twist — Inner local systems — The diagrammatics.

Hence the

inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X

arises as follows:

KU (x) =

X

(Fred(.) G//G* -+ Maps(BG, Fredf. /PU(#H))
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e ~N ~
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inner local system automorphisms of

univ. stable equiv. twist

\

/ ~htpy



The B-field twist — Inner local systems — The proof.

For the proof we consider the following diagram [SS22-Bun, Ex. 4.1.56][SS22, §3]:

stblg
. T
BG llpec BPU(H)
I
stbly
vi—> 1p®v
. D pi*(C) ” > B pi*(C)
[pi] € pil€
Irr(G) / Irr(G)
8 [g](m(g)@id) p(g)(1p) [g?](l)i(g)@id)
. ® pi®*(C) — > @ pi(*(C)
pilc ’ pil €

Irr(G) Irr(G)



The B-field twist — Inner local systems — The proof.
For the proof we consider the following diagram [SS22-Bun, Ex. 4.1.56][SS22, §3]:

stblg
"
BG llpec BPU(H)
I
stbly

stable G-representation

P, pi ® *(C) > @, pi @ (*(C)

F lp]-1
Fre : -
dbo/m action of group character on equivariant Fredholm operator
0
p@ra
lop

vn—>1p®v

Vl—>1p®v

ol .pi ®0*(C) > @, pi®*(C)
691 pl®€ (C) @l p ! ® E (C tensoring with unit of group character ‘ @l p ! ® E C
p] ti;/];ll.l/g[ 10 .L'I[
¥ l‘{[[or
@01 2(C) @, pilg)sid st g o ®,pilg)eid

x 1 j

P, pi ® *(C) > @, pi @ (*(C)

V|—>1p®v



The B-field twist — Inner local systems — Chern character.

One aspect of these twistings becomes transparent under the Chern character:

COII]plCX K—theory periodic de Rham cohomology

KU’ (X)  KU(XC) =~ @ H (@8 (X:C),d)

Chern character



The B-field twist — Inner local systems — Chern character.

One aspect of these twistings becomes transparent under the Chern character:

COmpleX K—theory periodic de Rham cohomology

KU(X) . KUY(X;C) ~ @HY ( . (X C),d)
deN

Chern character

For twist by B-field §2 there 1s a closed differential 3-form /73 such that:

plain B-field
-twisted K-theory 3-twisted periodic de Rham cohomology

KU B2 (X wited o pegBy (X Q) ~ @ HA( Q0 (X: C),d+ Hs A
dR

Chern character
deZ




The B-field twist — Inner local systems — Chern character.

One aspect of these twistings becomes transparent under the Chern character:

COmpleX K—theOI'y periodic de Rham cohomology

KU(X) . KUY(X;C) ~ @ HY ( . (X C),d)
deN

Chern character

For twist by B-field §2 there 1s a closed differential 3-form /73 such that:

plain B-field

-twisted K-theory 3-twisted periodic de Rham cohomology
B\ wiste N B\ . ~ ° .
KUn+ 2 (X) Chertn chtal(‘iacter ’ KU 2 (X’ C) - d@ZHn+2d ( dR (X’ C) ) d —I_ H3 /\ )
€

For twist by inner C-local system, there is closed 1-form ®; with holon. in Cx C U(1)
such that:

inner local system

-twisted K-theory I-twisted periodic de Rham cohomology
n—+ [a)l] twisted equivariant . +2d ® .
KUCK (X) Chern character ! d?ZHn ( dR (X’ C) ) d —l_ r- wl /\ )

of A-type singularity

1<r<k



The B-field twist — Inner local systems — Chern character.

One aspect of these twistings becomes transparent under the Chern character:

This 1s the hidden 1-twisting in TED-K — that we will next relate to anyons. ——

inner local system

-twisted K-theory 1-twisted periodic de Rham cohomology
n—+ [a)l] twisted equivariant . +2d ° .
KUCK (X) Chern character ! d?ZHn ( dR (X’ C) ) d —I_ r- wl /\ )

of A-type singularity

1<r<xk
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Introduction

(1) - TED K-Theory
via Cohesive co-Topos Theory

(2) — Interacting enhancement
via Hypothesis H

(3) - Anyon braiding
via Cohesive Homotopy Type Theory

Summary



This part 1s a lightning indication
of the basic 1dea 1n these articles:

Framed M-branes and topological invariants
ADE-Equivariant Cohomotopy and M-branes
The rational higher structure of M-theory

Cohomotopy implies M-theory anom. canc.
Cohomotopy implies M5-brane WZ term
Cohomotopy implies tadpole cancellation
Cohomotopy implies intersecting brane obs.
Cohomotopy implies M5-brane anom. canc.
Cohomotopy implies String structure on M5
Cohomotopy implies GS-mechanism
Cohomotopy implies GS-mechanism on M5

M/F-Theory as Mf-theory

larX:
larX:
larX:
larX:
larX:
arX:
larX:
larX:
larX:
larX:
larX:
larX:

1310.
1805.
1903.

1904.
1906.
1909.
1912.
2002.
2002.
2008.
2011.

2103.

1060]
05987]
02834]

10207]
07417
12277]
10425
07737]
11093]
08544]
06533]

01877



https://arxiv.org/pdf/1310.1060.pdf#page=17
https://ncatlab.org/schreiber/show/Equivariant+homotopy+and+super+M-branes
https://ncatlab.org/schreiber/show/The+rational+higher+structure+of+M-theory
https://ncatlab.org/schreiber/show/Twisted+Cohomotopy+implies+M-theory+anomaly+cancellation+on+8-manifolds
https://ncatlab.org/schreiber/show/Twisted+Cohomotopy+implies+M5+WZ+term+level+quantization
https://ncatlab.org/schreiber/show/Equivariant+Cohomotopy+implies+orientifold+tadpole+cancellation
https://ncatlab.org/schreiber/show/Differential+Cohomotopy+implies+intersecting+brane+observables
https://ncatlab.org/schreiber/show/Twisted+Cohomotopy+implies+M5-brane+anomaly+cancellation
https://ncatlab.org/schreiber/show/Twisted+Cohomotopy+implies+twisted+String+structure+on+M5-branes
https://ncatlab.org/schreiber/show/Twistorial+Cohomotopy+implies+Green-Schwarz+anomaly+cancellation
https://ncatlab.org/schreiber/show/The+Character+Map+in+Equivariant+Twistorial+Cohomotopy
https://ncatlab.org/schreiber/show/M%2FF-Theory+as+Mf-Theory
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singularities
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This locus is known as the configuration space of » points.
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Slater determinants of Bloch states
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in complement of N “nodal”
points inside the Brillouin torus exclusion

This locus is known as the configuration space of » points.

Deep theorems (Hopf, Pontrjagin, Segal — next slides) relate configurations of points
to Cohomotopy theory — a non-abelian generalized cohomology theory:



Interacting n-electron wavefunctions are functions on the space of n points in Bri-torus
Pauli exclusion = these span vector bundle away from the locus of coinciding points:

Slater determinants of Bloch states

Slater-Bloch valence bundle of . . 1 1 - ( n I’l)
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singularities

in complement of N “nodal”
points inside the Brillouin torus exclusion

This locus is known as the configuration space of » points.

Deep theorems (Hopf, Pontrjagin, Segal — next slides) relate configurations of points
to Cohomotopy theory — a non-abelian generalized cohomology theory:
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Pontrjagin’s theorem. Normal. framed submanifolds carry charge in Cohomotopy:
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Pontrjagin’s theorem. Normal. framed submanifolds carry charge in Cohomotopy:
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Special case: Hopf degree theorem.
On n-manifolds, n-Cohomotopy agrees with integral n-cohomology
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This part 1s a brief indication
of a few aspects discussed 1n:

Anyonic Defect Branes in TED-K
Anyonic Topological Order in TED-K

Topological Quantum Programming in TED-K
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Anyons in condensed matter & string theory.

In solid state physics

anyons are presumed pointlike defects
in gapped topological phases of
effectively 2-dimensional materials
whose adiabatic dynamics 1s that of
Wilson lines in s1(2)-CS theory.
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Anyons in condensed matter & string theory.

In solid state physics In string theory
anyons are presumed pointlike defects exotic branes of codimension=2,
in gapped topological phases of such as D7-branes @ ALE in 9+1 D
effectively 2-dimensional materials or M3 = M5 1 M5 branes in 5+1 dim,
whose adiabatic dynamics is that of are thought to carry SL(2)-charges
Wilson lines in su(2)-CS theory. and to be anyonic [dBS13, p.65]
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In solid state physics

anyons are presumed pointlike defects
in gapped topological phases of
effectively 2-dimensional materials
whose adiabatic dynamics 1s that of
Wilson lines in su(2)-CS theory.

In string theory

exotic branes of codimension=2,

such as D7-branes @ ALE in 9+1 d
or M3 = M5 | M5 branes in 5+1 dim,
are thought to carry SL(2)-charges
and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it 1s expected that:

ground state wave functions of
4 spin=w; Suyk-anyons at
positions z, in transverse plane

space of “conformal blocks”

>~ ConfBlck® STk (W,2)

As the positions z, move, these spaces constitute braid group representations.

Previously Open Question: Is this structure at all reflected in TED-K-Theory?

Yes! ——
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TED-Cohomological incarnation of Conformal blocks.

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

Conf (X) := {zl, L7eX |V z#z’}

{17"'7’1} l<]

wi o= 3 y W & ) 2 & Conf (€ {2)

i_ .

Then:



TED-Cohomological incarnation of Conformal blocks.

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

Conf (X) := {zl, L7eX |V z#z’}

{1, ,n} i<

with @ = ) Z_WI ) 2 ide on  Conf (C\{z})
1<i<n 1 K Z— ZI 1<i<j<n K7 —2 {1,---n}

Then:

1-twisted deg=n de Rham cohomology

su(2)-affine deg=n of configuration space of n points
conformal blocks

CnfBlck” 4 (W,2) — H" <Q(‘1R ({S‘?.‘}ﬁ} (C\ {Z})) ,d+ o A ) [FSV94, Cor. 3.4.2]



TED-Cohomological incarnation of Conformal blocks.

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

Conf (X) := {zl, L7eX |V z#z’}

(1, ,n} i<

with @ = ) Z_WI ) 2 ide on  Conf (C\{z})
1<i<n 1. K27 Zl I<icj<n KZ =2 {1}

Then:

1-twisted deg=n de Rham cohomology

su(2)-affine deg=n of configuration space of n points
conformal blocks

CnfBlck” 4 (W,2) — H" <Q(‘1R ({S‘?.‘}ﬁ} (C\ {Z})) ,d+ o A ) [FSV94, Cor. 3.4.2]

— KUt (({Fonf} (C\ {z})) X % [/ Cye; C) [SS22, Thm. 2.18]

inner local system-twisted deg=n K-theory
of configurations in A,_{-singularity



TED-Cohomological incarnation of Conformal blocks.

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

Conf (X) := {zl, LeX |V z#z’}

(1,1} i<

with @ = ) Z_WI ) 2 ide on  Conf (C\{z})
1<i<n 1 K Z— ZI 1<i<j<n KZ =2 {1,---n}

Then:

I-twisted deg=n de Rham cohomology

su(2)-affine deg=n of configuration space of n points
conformal blocks

CnfBlek” 4 (W,2) — H" <Q(‘1R ({S‘?.‘}ﬁ} (C\ {Z})) ,d+ o A ) [FSV94, Cor. 3.4.2]

— KUt (({Fonf} (C\ {z})) X % [/ Cye; C) [SS22, Thm. 2.18]

inner local system-twisted deg=n K-theory
of configurations in A, _{-singularity

The previous statement is subsumed since C?r}lf(X) = X.
I
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while in general degree it 1s compatible under Hypothesis H, which asserts [SS19]
that quantum states of branes are in the generalized cohomology of

Cohomotopy cocycle spaces of spacetime:

3-Cohomotopy cocycle space 3-Cohomotopy cocycle space
for codim=1 branes for codim-2 branes

orggrli(ilgll)l(l).?nttig?nsg?ec e1:3103fne Map* <R+ /J\\(Ccpt, S3 ) = Map* (chtj/i(c-f- ) S 3 ) =
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Fiber product of respective configuration spaces
(of un-ordered points escaping to transverse infinity)
reflecting the brane intersections

MK6
The moduli space of flat M3-branes
according to Hypothesis H is the con-
figuration space of ordered points in
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