
Dirichlet improvability in Lp-norms

by Nikolay Moshchevitin

Vienna, 24 April 2025



joint work with Nikita Shulga
https://arxiv.org/abs/2408.06200

Nikita Shulga

Hello and welcome! 

My name is Nikita Shulga, I am currently working at La Trobe University, Australia

with Mumtaz Hussain.

Previously, I finished postgraduate studies and a bachelor's plus master's degree at

Moscow State University under the supervision of Nikolay Moshchevitin.

My research interests lie in number theory, additive combinatorics, broadly

understood dynamical systems, and how these topics interact with each other. In

particular, I work in Diophantine approximation theory, in both metrical and regular

approximation problems. 

Mathematical biology/neuroscience enthusiast.

You can find a full list of my publications on the page Publications. 

I am in the postdoctoral/lecturer job market starting in 2025.

Latest updates:

Took part in creating the most modern benchmark for evaluating the capabilities of LLM’s called Humanity’s Last Exam. See arXiv
and the official website.

Paper "Restricted slowly growing digits for infinite iterated function systems" was accepted in Journal of Mathematical Analysis and
Applications.  (authored with G. Gonzalez Robert, M. Hussain and H. Takahasi).

Contact:
Personal email: nikos1279@gmail.com

Institutional email: N.Shulga@latrobe.edu.au

Nikita's math website Main Publications



Dirichlet improvability

Dirichlet Theorem. Let α ∈ R. For any real t ≥ 1 there exists
positive integer q such that{

||qα|| < 1
t ,

1 ≤ q ≤ t.

|| · || - distance to the nearest integer

A real number α is called Dirichlet improvable (notation α ∈ DI∞)
if there exists a constant c < 1, such that the system{

||qα|| < c
t ,

1 ≤ q ≤ t.

can be solved in q ∈ Z+ for any large real number t.



Irrationality measure function and continued fractions

Dirichlet: ψα(t) = min
1≤x≤t

||xα|| < 1
t

∀ t ≥ 1

Dirichlet improvability: lim sup
t→∞

t · ψα(t) < 1

Tools: continued fractions

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·+ 1
an + . . .

= [a0; a1, a2, a3, ..., an, ...]

pn
qn

= [a0; a1, a2, ..., an]− convergents

Lagrange: ψα(t) = ||qnα|| for qn ≤ t < qn+1



Lagrange and Dirichlet constants

α = [a0; a1, a2, a3, ..., an, ...],
pn
qn

= [a0; a1, a2, ..., an],

λ(α) = lim inf
t→∞

t · ψα(t) = lim inf
n→∞

qn · ||qnα|| = lim inf
n→∞

1
αn+1 + α∗

n

d(α) = lim sup
t→∞

t · ψα(t) = lim sup
n→∞

qn+1 · ||qnα|| = lim sup
n→∞

1
1 + α∗

n
αn+1

here αn+1 = [an+1; an+2, ...], α
∗
n =

qn−1

qn
= [0; an, an−1, ..., a1]

Hurwitz, Szekeres:

0 ≤ λ(α) ≤ 1√
5
,

1
2
+

1
2
√

5
≤ d(α) ≤ 1.



Badly approximable numbers

Dirichlet: ψα(t) = min
1≤x≤t

||xα|| < 1
t

∀ t ≥ 1

α is called badly approximable if

▶ inft t · ψα(t) > 0
▶ supn an <∞
▶ λ(α) = lim inft→∞ t · ψα(t) > 0
▶ d(α) = lim supt→∞ t · ψα(t) < 1

Davenport and Schmidt:
An irrational number α satisfies α ∈ DI∞ (= Dirichlet improvable

= d(α) < 1)
if and only if it is badly approximable.

Of course almost all numbers are not in DI∞, but DI∞ is winning
and HD(DI∞) = 1.



Dirichlet improvability in arbitrary norm
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Dirichlet improvability in arbitrary norm
▶ Strongly symmetric norm F (x , y):

F (x , y) = F (|x |, |y |), F (1, 0) = F (0, 1) = 1.
▶ unit disc : BF = {(x , y) ∈ R2 : F (x , y) ≤ 1}.

▶ lattice : Λα(t) = GtAαZ2,Gt=

(
t−1 0
0 t

)
,Aα=

(
1 0
−α 1

)
▶ successive minima : λi (t) = λi (Λα(t),BF ), i = 1, 2
▶ critical determinant:

∆F = inf{detΛ : there are no non-zero points of Λ inside BF}.

▶ infimum is attained on some lattice - critical lattice.
critical locus: LF - set of all critical lattices

▶ Dirichlet constant of α for the norm F :

dF (α) = lim sup
t→∞

λ1(t) = lim sup
t→∞

λ1(Λα(t),BF ).

▶ α is called F -Dirichlet improvable if dF (α) < 1√
∆F



Dirichlet improvability in arbitrary norm

Theorem (Andersen and Duke). For every strongly symmetric
norm F , almost all α in the sense of Lebesgue measure are not
F -Dirichlet improvable, that is, for almost all α we have the
equality dF (α) =

1√
∆F

.

Theorem (Kleinbock and Rao). If F is an irreducible norm on
R2 whose unit ball is not a parallelogram, then the set of all badly
approximable F -Dirichlet non-improvable numbers DIcF ∩BA has full
Hausdorff dimension. In particular, the set of all badly approximable
L2-Dirichlet non-improvable numbers has full Hausdorff dimension.

Theorem (Kleinbock and Rao). For each norm F the set DIF is
of measure zero but winning. In particular, HD(DIF ) = 1.

Kleinbock and Rao: many quiestions



Dirichlet improvability in Lp-norm: selected results
Theorem 1. For any p ∈ [1,∞), the set HD(DIp \ BA) = 1.

Theorem 2. HD(DI2 \ DI1) = HD(DI1 \ DI2) = 1.

Theorem 3. For p ∈ (2, p0) the set of DIcp contains no badly
approximable numbers.

Theorem 4. For p ∈ (1, 2) ∪ (p0,∞) the set DIcp ∩ BA ̸= ∅ if and
only if the number σp is badly approximable.

Theorem 5. The set
P = {p ∈ [1,∞) :
∃ p-Dirichlet non-improvable badly approximable numbers α}
has zero Lebesgue measure, is dense in (1, 2) ∪ (p0,∞), is
absolutely winning in any interval [a, b] ⊂ (1, 2) ∪ (p0,∞).
Theorem 6. For p ∈ [1,∞], the number e = 2.71828... satisfies
e ∈ DIp if and only if p ∈ (1, 2) ∪ (p0,∞).

σp the unique root of the equation σp + (1 + σ)p = 2.
p0 = 2.57... - Davis’ constant.



Complete structural theorem for Lp

(a) Let 2 < p < p0. Then α ∈ DIcp if and only if in

the continued fraction for α there are patterns of the type

x, 1, 1, y or x, 2, y

with min(x, y) → ∞.

(b) Let p ∈ (1, 2) ∪ (p0,∞).

(b1) If σp ∈ Q, consider its regular finite continued
fraction expansion

σp = [0; s1, s2, . . . , sk], sk ≥ 2.

Then α ∈ DIcp if and only if in its continued fraction expan-

sion of α there occur patterns of at least one of the following
four forms:

x, sk, sk−1, . . . , s2, s1, 1 s1, s2, . . . , sk−1, sk, y;

x, 1, sk − 1, sk−1, . . . , s2, s1, 1 s1, s2, . . . , sk−1, sk, y;

x, sk, sk−1, . . . , s2, s1, 1 s1, s2, . . . , sk−1, sk − 1, 1, y;

x, 1, sk −1, sk−1, . . . , s2, s1, 1 s1, s2, . . . , sk−1, sk −1, 1, y

with min(x, y) → ∞.

(b2) If σp ̸∈ Q, consider its regular continued fraction
expansion

σp = [0; s1, s2, . . . , sν , . . .].

Then α ∈ DIcp if and only if in its continued fraction ex-

pansion of α there occur palindromic patterns of the form

sν , sν−1, . . . , s2, s1, 1 s1, s2, . . . , sν−1, sν

with arbitrary large values of ν.

(c) Number α ∈ DIc1 if and only if there exists a se-
quence of positive integers {bn}n∈Z+

, such that either the

continued fraction expansion of α contains almost symmet-
ric patterns

bν , bν−1, . . . , b2, b1, 1, 1, b1 + 1, b2, . . . , bν−1, bν

or

bν , bν−1, . . . , b2, b1 + 1, 1, 1, b1, b2, . . . , bν−1, bν

with arbitrary large values of ν

or a sequence of patterns of at least one of the follow-
ing eight forms:

x, bν , bν−1, . . . , b2, b1, 1, 1, b1 + 1, b2, . . . , bν−1, bν , y;

x, bν , bν−1, . . . , b2, b1, 1, 1, b1+1, b2, . . . , bν−1, bν−1, 1, y;

x, 1, bν−1, bν−1, . . . , b2, b1, 1, 1, b1+1, b2, . . . , bν−1, bν , y;

x, 1, bν−1, bν−1, . . . , b2, b1, 1, 1, b1+1, b2, . . . , bν−1, bν−1, 1, y;

x, bν , bν−1, . . . , b2, b1 + 1, 1, 1, b1, b2, . . . , bν−1, bν , y;

x, 1, bν−1, bν−1, . . . , b2, b1+1, 1, 1, b1, b2, . . . , bν−1, bν , y;

x, bν , bν−1, . . . , b2, b1+1, 1, 1, b1, b2, . . . , bν−1, bν−1, 1, y;

x, 1, bν−1, bν−1, . . . , b2, b1+1, 1, 1, b1, b2, . . . , bν−1, bν−1, 1, y

with fixed ν, b1, . . . , bν and min(x, y) → ∞,
or patterns x, 2, y with min(x, y) → ∞, or patterns x, 1, 1, y
with min(x, y) → ∞.

(d) Number α ∈ DIc2 if and only if either in continued
fraction for α there are patterns of the type

x, 1, 1, y or x, 2, y

with min(x, y) → ∞ or
there exist two irrational numbers

β
∗

= [b
∗
0 ; b

∗
1 , b

∗
2 , . . . , b

∗
ν−1, b

∗
ν , . . .],

β = [b0; b1, b2, . . . , bν−1, bν , . . .], b
∗
0 , b0 ≥ 0

satisfying the equation such that in the continued fraction
expansion of α there exist patterns

b
∗
ν , . . . , b

∗
1 , b

∗
0 + 1, 1, b0 + 1, b1, . . . , bν

or
bν , . . . , b1, b0 + 1, 1, b

∗
0 + 1, b

∗
1 , . . . , b

∗
ν

with arbitrary large values of ν or

there exist two rational numbers β∗ and β satisfying and

in the continued fraction expansion of α there exists a se-

quence of one of the eight patterns with min(x, y) → ∞

constructed from β∗ = [b∗0 ; b
∗
1 , . . . , b

∗
k
], β = b0; b1, . . . , bν ]

similarly to those from statement (c)1.

1
If β∗, β are both rational, then their continued fractions are not necessarily of the same length. One should interpret

the pattern structure in the following way.

For example, one of the eight patterns is x, b∗
k
, . . . , b∗1 , b

∗
0 +1, 1, b0+1, b1, . . . , bν , y with min(x, y) → ∞ and b∗

k
, bν ≥ 2

and the rest are constructed from this one in the same way as in the case (c) by changing last partial quotient bν to

bν −1, 1 and so on. Note that for β = 1 there’s no partial quotient ≥ 2, but it has still two representations β = [0; 1] = [1].

1



Structural theorem: L1
Number α ∈ DIc1 if and only if there exists a sequence of positive
integers {bn}n∈Z+ , such that either the continued fraction
expansion of α contains almost symmetric patterns

bν , bν−1, . . . , b2, b1, 1, 1, b1 + 1, b2, . . . , bν−1, bν or

bν , bν−1, . . . , b2, b1 + 1, 1, 1, b1, b2, . . . , bν−1, bν

with arbitrary large ν, or a sequence of patterns of at least one of
the following eight forms:

x , bν , bν−1, . . . , b2, b1, 1, 1, b1 + 1, b2, . . . , bν−1, bν , y ;

x , bν , bν−1, . . . , b2, b1, 1, 1, b1 + 1, b2, . . . , bν−1, bν − 1, 1, y ;
x , 1, bν − 1, bν−1, . . . , b2, b1, 1, 1, b1 + 1, b2, . . . , bν−1, bν , y ;

x , 1, bν − 1, bν−1, . . . , b2, b1, 1, 1, b1 + 1, b2, . . . , bν−1, bν − 1, 1, y ;
x , bν , bν−1, . . . , b2, b1 + 1, 1, 1, b1, b2, . . . , bν−1, bν , y ;

x , 1, bν − 1, bν−1, . . . , b2, b1 + 1, 1, 1, b1, b2, . . . , bν−1, bν , y ;

x , bν , bν−1, . . . , b2, b1 + 1, 1, 1, b1, b2, . . . , bν−1, bν − 1, 1, y ;
x , 1, bν − 1, bν−1, . . . , b2, b1 + 1, 1, 1, b1, b2, . . . , bν−1, bν − 1, 1, y

or patterns x , 2, y , or patterns x , 1, 1, y with x , y → ∞.



Structural theorem: L2

Number α ∈ DIc2 if and only if either in continued fraction for α
there are patterns of the type x , 1, 1, y or x , 2, y with
min(x , y) → ∞ or

there exist two irrational numbers

β∗ = [b∗0; b
∗
1, b

∗
2, . . . , b

∗
ν−1, b

∗
ν , . . .],

β = [b0; b1, b2, . . . , bν−1, bν , . . .], b∗0, b0 ≥ 0

satisfying the equation
β · β∗ = 3,

such that in the continued fraction expansion of α there exist
patterns b∗ν , . . . , b

∗
1, b

∗
0 + 1, 1, b0 + 1, b1, . . . , bν

with arbitrary large values of ν,

or ... (8+ cases similar to those from L1).



Critical lattices for Lp-disc

After Minkowski classification of critical lattices for Bp was dealt by

C.S. Davis, Note on a conjecture by Minkowski, J. London Math.
Soc. 23, (1948), 172-175,
G.L. Watson, Minkowski’s conjectures on the critical lattices of the
region |x |p + |y |p ≤ 1. I, J. London Math. Soc. 28, (1953). 305-309.
G.L. Watson, Minkowski’s conjectures on the critical lattices of
the region |x |p + |y |p ≤ 1. II, J. London Math. Soc. 28, (1953).
402-410.

· · · · · · · · ·

and finalised by Glazunov, Golovanov, and Malyshev:

Н. М. Глазунов; А. С. Голованов; А. В. Малышев,
Доказательство гипотезы Минковского о критическом
определителе области |x |p + |y |p < 1, Исследования по теории
чисел. 9, Зап. научн. сем. ЛОМИ, 151, Изд-во «Наука»,
Ленинград. отд., Л., 1986, 40-53 (in Russian).



Case 2 < p < p0. In this case the the only two (congruent) critical
lattices for the ball Bp are Λ1 = Ω1 · Z2 and Λ′

1 = Ω′
1 · Z2, where

Ω1 =

 (
1 − 1

21/p

) 1
p
(
1 − 1

21/p

) 1
p

−1
2

1
2


Ω′

1 =

 1
2

1
2

−
(
1 − 1

21/p

) 1
p
(
1 − 1

21/p

) 1
p

 .

1
2

−1
2 zzz ′

zzz ′′

zzz ′′ − zzz ′

zzz ′

zzz ′′

1
2 zzz ′′ + zzz ′

Lattice Λ1 Lattice Λ′
1



Case 1 < p < 2 and p > p0.

Λ±
2 = Ω±

2 · Z2 where Ω±
2 =

(
σp

21/p
1

21/p

∓1+σp

21/p ± 1
21/p

)
.

zzz ′

zzz ′′

π/4

zzz ′ + zzz ′′

zzz ′′

zzz ′

π/4
−π/4

zzz ′ + zzz ′′

Lattice Λ+
2 Lattice Λ−

2



Case p = 1.

a ∈
[
0, 1

2

)
,

Λ±
3 (a) = Ω±

3 (a) · Z
2, where Ω±

3 (a) =

(
a 1

2
±(a− 1) ±1

2

)
.

Lattice Λ−
3 (0)Lattice Λ+

3 (a)

zzz ′′

zzz ′

zzz ′ + zzz ′′

zzz ′ + zzz ′′
zzz ′ + 2zzz ′′

zzz ′

zzz ′′



Case p = 2.

φ ∈
[
0, π6

]
and u = sinφ ∈

[
0, 1

2

]
, consider the lattices

Λ±
4 (φ) = Ω±

4 (φ)·Z
2, Ω±

4 (φ) =

(
sinφ cos

(
π
6 + φ

)
± cosφ ∓ sin

(
π
6 + φ

) ) =

=

(
u

√
3−3u2−u

2
±
√

1 − u2 ∓
√

1−u2+u
√

3
2

)
.

This parametrisation and some manipulations u 7→ β, β∗ lead to
equation

β(Ω±
4 (φ)) · β

∗(Ω±
4 (φ)) = 3.



L1: Minkowski diagonal fraction and spectrum
Those denominators of convergent for which

∣∣∣α− pn
qn

∣∣∣ < 1
2q2

n
:

Q1,Q2, ...,Qn, ...

µα(t) =
Qn+1 − t

Qn+1 − Qn
·||Qnα||+

t − Qn

Qn+1 − Qn
·||Qn+1α||, Qn ≤ t ≤ Qn+1

Minkowski: µα(t) is convex.

m(α) = lim sup
t→+∞

t · µα(t).

M = {m ∈ R : ∃α ∈ R such that m =m(α)}.

Theorem.
minM =

1
4
, maxM =

1
2
.

Open problem: is it true that

M = or ̸=
[
1
4
,
1
2

]
.
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