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Dirichlet improvability

Dirichlet Theorem. Let o € R. For any real t > 1 there exists
positive integer q such that

lgall < ¢,
1<g<t

|| - || - distance to the nearest integer

A real number « is called Dirichlet improvable (notation a € D)
if there exists a constant ¢ < 1, such that the system

lgal| < £,
I1<qg<t.

can be solved in g € Z, for any large real number t.



Irrationality measure function and continued fractions

.. . 1
Dirichlet: Ya(t) lglgtHxaH <3 vVe>1
Dirichlet improvability: limsupt-1,(t) <1

t—oo

Tools: continued fractions

1
a=ag+ I = [a0; a1, 32, 33, ..., An, ...
a+ I

a + I

as + -+ T

n+ ...

Pn [a0; a1, @2, ..., an] — convergents
dn

Lagrange:  ¢,(t) = [[gna|| for qn <t < gnt1



Lagrange and Dirichlet constants

p
o = [ag; a1, 32,33, ..., an, ..., — = [a0; a1, a2, ..., an],
n
Ma) = liminf t - 9(t) = liminf g, - [|gper|| = lim inf Q1+
. H i 1
d(a) =limsupt - ¢o(t) = limsup gni1 - [|gnal| = limsup G
t—o0 n—o0 n—oo 14+ Til
. * dn—-1 .
here  ant1 = [ant1;anto, -], = q =[0:an, a1, 2]
n

Hurwitz, Szekeres:
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Badly approximable numbers

1
.. _ . 1 S
Dirichlet: Ya(t) = 1?;%”)@‘” < . Vt>1
«a is called badly approximable if

> infrt-a(t) >0
> sup, ap < 00
>  AMa) =liminfiio t - 1a(t) >0
>  d(a) =limsup,_ o t-Ya(t) <1
Davenport and Schmidt:
An irrational number « satisfies o € Dl (= Dirichlet improvable
=d(a)<1)
if and only if it is badly approximable.

Of course almost all numbers are not in DI, but Dl is winning
and HD(DIl) = 1.



Dirichlet improvability in arbitrary norm
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Dirichlet improvability in arbitrary norm

>

>

Strongly symmetric norm F(x, y):
F(x,y) = F(Ix|.ly]), F(1,0) = F(0,1) = 1.
unit disc: Be = {(x,y) € R?: F(x,y) < 1}.

—1
lattice : Aq(t) = GtAaZQ,Gt:< to 0 ),Aa:< 10 >

successive minima : \;(t) = A\j(Aa(t), Bg), i=1,2

critical determinant:
Ar = inf{det A : there are no non-zero points of A inside Br}.

infimum is attained on some lattice - critical lattice.
critical locus: £ - set of all critical lattices

Dirichlet constant of « for the norm F:

dr(a) = limsup A1(t) = limsup A1 (Aa(t), BE).

t—00 t—o0

1

« is called F-Dirichlet improvable if dr(a) < Y




Dirichlet improvability in arbitrary norm

Theorem (Andersen and Duke). For every strongly symmetric
norm F, almost all « in the sense of Lebesgue measure are not
F-Dirichlet improvable, that is, for almost all o« we have the

equality dr(a) = ﬁ.

Theorem (Kleinbock and Rao). If F is an irreducible norm on
R? whose unit ball is not a parallelogram, then the set of all badly
approximable F-Dirichlet non-improvable numbers DIz NBA has full
Hausdorff dimension. In particular, the set of all badly approximable
L,>-Dirichlet non-improvable numbers has full Hausdorff dimension.

Theorem (Kleinbock and Rao). For each norm F the set DI is
of measure zero but winning. In particular, HD(DIg) = 1.

Kleinbock and Rao: many quiestions



Dirichlet improvability in Ly,-norm: selected results
Theorem 1. For any p € [1,00), the set HD(DI, \ BA) = 1.

Theorem 2. HD(DI, \ DI;) = HD(DI; \ Dl;) = 1.

Theorem 3. For p € (2, po) the set of DI, contains no badly
approximable numbers.

Theorem 4. For p € (1,2) U (po, oc) the set DIS N BA # () if and
only if the number o, is badly approximable.

Theorem 5. The set

P={pell,o0):

3 p-Dirichlet non-improvable badly approximable numbers o}
has zero Lebesgue measure, is dense in (1,2) U (pg, ), is
absolutely winning in any interval [a, b] C (1,2) U (po, 00).
Theorem 6. For p € [1,00], the number e = 2.71828... satisfies
e € DI, if and only if p € (1,2) U (po, 00).

op the unique root of the equation o + (1 + 0)P = 2.

po = 2.57... - Davis' constant.



Complete structural theorem for L,




Structural theorem: L;

Number a € DI{ if and only if there exists a sequence of positive
integers {b,}nez, , such that either the continued fraction
expansion of o contains almost symmetric patterns

bV’ bV_17 R b27 bl’ 1’ 17 bl + 1’ b27 AR bV_17 bV or

by,by_1,...,b0,b1 +1,1,1, by, bp,...,b,_1,b,
with arbitrary large v, or a sequence of patterns of at least one of
the following eight forms:
Xy by, by_1,...,b0,b1,1,1, by +1, b, ..., by_1,b,,Y;
X, by, by_1,...,b2,b1,1,1, b1 +1,bp,...,b,_1,b, — 1,1, y;
x,1,b, —1,b,_1,...,b2,b1,1,1, b1 +1,by,...,b,_1,b,,¥;
x,1,b, —1,b,_1,...,b2,b1,1,1,b1 +1,b2,...,b,_1,b, — 1,1, y;
X, by, by—1,...,b2,b1 +1,1,1,b1,b2,...,b,_1,b,,Y;
x,1,b, —1,b,_1,...,b2,b1 +1,1,1,by,by,...,b,_1,b,,Y;
X, by, by_1,...,b2,01 +1,1,1,b1,bp,...,b,_1,b, — 1,1, y;
x,1,b, =1, by,_1,....,b0,b1 +1,1, 1, by, bs,...,b,_1,b, — L, 1y
or patterns x,2,y, or patterns x,1,1,y with x,y — oo.



Structural theorem: L,

Number o« € DIS if and only if either in continued fraction for «
there are patterns of the type x,1,1,y or x,2,y with
min(x,y) — oo or

there exist two irrational numbers
* . ok *
6 :[bO’b].?b;?“'? 1> :7...]7

/8:[bo;blab27"'7bV—17blM°"]7 bgabOZO

satisfying the equation
B : B* = 37
such that in the continued fraction expansion of « there exist
patterns b;,..., b7, by +1,1,b0+1,b1,...,b,
with arbitrary large values of v,

or ... (8+ cases similar to those from Lj).



Critical lattices for L,-disc
After Minkowski classification of critical lattices for 3, was dealt by

C.S. Davis, Note on a conjecture by Minkowski, J. London Math.
Soc. 23, (1948), 172-175,

G.L. Watson, Minkowski's conjectures on the critical lattices of the
region |x|P 4 |y|P < 1. I, J. London Math. Soc. 28, (1953). 305-3009.
G.L. Watson, Minkowski's conjectures on the critical lattices of
the region |x|P + |y|P < 1. /I, J. London Math. Soc. 28, (1953).
402-410.

and finalised by Glazunov, Golovanov, and Malyshev:

H. M. Tnasynos; A. C. lonosanog; A. B. Manbliwes,
LlokazatenbctBo runoressi MuHKoOBCKOro o KpUTMHYECKOM
onpegenntene obnactu |x|P + |y|P < 1, Nccneposatust no Teopun
yncen. 9, 3an. Hay4yH. cem. JIOMW, 151, N3p-8o «Haykay,
JNenunnrpag. otg., J1., 1986, 40-53 (in Russian).



Case 2 < p < pp. In this case the the only two (congruent) critical
lattices for the ball B, are Ay = Q; - Z? and A} = Q) - Z?, where

1 1
1 \»r 1 \»r
o= (1-a%)" (1-3)

1
2 2

Lattice Ay Lattice A}



Case 1l < p<2and p> pp.

op 1
+_ ot . 2 +_ 1/ 1/
N5 = Q5 -Z° where Q5 = ( A, ! ) :

Lattice A Lattice A,



Lattice A7 (a)

Lattice A5(0)




Case p = 2.

pE [0, %] and u =sinyp € [O, %] consider the lattices

I ot 72 of _ sin cos(%+<p) .
M) =082, 90 = (ol SR8 ) -

( u \/3—3éu2—u )
= Vittiey3 |-
1 _ U2 :F%

This parametrisation and some manipulations v — 3, 3* lead to
equation

B (9)) - B* (5 () = 3.



Ly: Minkowski diagonal fraction and spectrum

Those denominators of convergent for which ‘oz — % < ﬁ:
Ql’ Q27"'7 Qn""
Q1 — t t—Q
fa(t) = S ||Qnal[+5——|Qns10ll, Qn <t < Qni
Qn+1 — Wn Qn—l—l - Qn

Minkowski: 1i,(t) is convex.

mM(a) = limsup t - pa(t).

t—+00
M={meR: Jae€R such that m=m(a)}.
Theorem. )
min M = i max M = 5
Open problem: is it true that

M= or # [i,;]
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