3+1-dimensional gravity as a quantum effect in the IKKT matrix model

Harold Steinacker

Department of Physics, University of Vienna

ESI Vienna, september 2023

Quantization

consider the IKKT or IIB model as fundamental starting point

can we get 3 + 1 D (near-)realistic physics from IKKT?

insist: only finitely many d.o.f. in finite volume

 \Rightarrow no compactification ! (otherwise o field theory, ill-def)

consider the IKKT or IIB model as fundamental starting point

can we get 3 + 1 D (near-)realistic physics from IKKT?

insist: only finitely many d.o.f. in finite volume

 \Rightarrow no compactification! (otherwise \rightarrow field theory, ill-def)

 \Rightarrow cannot use holography (gives 9 + 1 D gravity)

consider the IKKT or IIB model as fundamental starting point

can we get 3 + 1 D (near-)realistic physics from IKKT?

insist: only finitely many d.o.f. in finite volume

- \Rightarrow no compactification! (otherwise \rightarrow field theory, ill-def)
- \Rightarrow cannot use holography (gives 9 + 1 D gravity)

alternative approach/regime: weakly coupled gauge theory on 3 \pm 1 -dim. NC branes

physical modes <u>on</u> brane, nothing escapes into bulk (weak coupling!) no compactification of target space!

quantum effects \to IIB SUGRA in bulk (holographic dual, unphysical!) = weak, short-range r^{-8} interaction on brane

consider the IKKT or IIB model as fundamental starting point

can we get 3 + 1 D (near-)realistic physics from IKKT?

insist: only finitely many d.o.f. in finite volume

- \Rightarrow no compactification! (otherwise \rightarrow field theory, ill-def)
- \Rightarrow cannot use holography (gives 9 + 1 D gravity)

alternative approach/regime:

weakly coupled gauge theory on 3 + 1 -dim. NC branes

physical modes <u>on</u> brane, nothing escapes into bulk (weak coupling!) no compactification of target space!

quantum effects → IIB SUGRA in bulk (holographic dual, unphysical!)

= weak, short-range r^{-8} interaction on brane

- novel mechanism for 3+1 gravity on branes $\mathcal{M}^{3,1} \times \mathcal{K}_N \subset \mathbb{R}^{9,1}$
 - 1-loop → induced E-H action on brane for eff. metric = open string metric
 - UV finite, reasonable cosmology without fine-tuning
 - \bullet \mathcal{K}_N finite, gives structure to low-energy gauge theory
 - no compactification of target space, no landscape problem
- NC brane = quantized symplectic spaces = "fuzzy space(time)":
 - natural class of BG with $\int \Omega \sim \dim \mathcal{H}$
 - rigid under deformations, manageable
 - no UV/IR problem due to max SUSY

- novel mechanism for 3+1 gravity on branes $\mathcal{M}^{3,1} \times \mathcal{K}_N \subset \mathbb{R}^{9,1}$
 - 1-loop → induced E-H action on brane for eff. metric = open string metric
 - UV finite, reasonable cosmology without fine-tuning
 - \bullet \mathcal{K}_N finite, gives structure to low-energy gauge theory
 - no compactification of target space, no landscape problem
- NC brane = quantized symplectic spaces = "fuzzy space(time)":
 - natural class of BG with $\int \Omega \sim \dim \mathcal{H}$
 - rigid under deformations, manageable
 - no UV/IR problem due to max SUSY

IKKT = IIB Matrix Model

Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

$$S = Tr([Y^a, Y^b][Y_a, Y_b] + \bar{\Psi}\Gamma_a[Y^a, \Psi])$$

maximal SUSY, closely related to IIB string theory

- gauge invariance $Y^a \rightarrow U^{-1} Y^a U$
- class. solutions / backgrounds = branes
 space-time = suitable 3+1d brane \(\bar{Y}^a\)
- geometric fluctuations → "pre-gravity" ≠ GR
- quantization:

$$Z = \int dY d\Psi e^{iS[Y,\Psi]}$$

1-loop → induced Einstein-Hilbert term, 3+1d gravity

unique model without pathological UV/IR mixing in 3 + 1 dimensions (maximal SUSY in UV)

outline:

- geometric interpretation of Yang-Mills matrix models
- geometrical structures: frame, metric, torsion
- quantization: 1-loop effective action
 - → Einstein-Hilbert action (+ extras)
- covariant quantum space-time $\mathcal{M}_n^{3,1}$

introductory review: arXiv:1911.03162 quantization & E-H action: arXiv:2303.08012, 2110.03936

book "Quantum Geometry, Matrix Models, and Gravity" (very soon)

geometric interpretation of Yang-Mills matrix models:

$$S = Tr([Y^a, Y^b][Y_a, Y_b] + ...)$$

"almost-commuting" matrix config's = quantized symplectic spaces

expect: dominant configs = "almost-commuting" matrix configurations

$$[Y^a, Y^b] \approx 0$$

 Y^a generates algebra of functions $\operatorname{End}(\mathcal{H}) \sim \mathcal{C}(\mathcal{M})$

$$[Y^a, Y^b] \sim i\{y^a, y^b\}$$

matrix configuration / solution $Y^a \in \text{End}(\mathcal{H})$ interpreted as

$$Y^a \sim y^a: \quad \mathcal{M} \to \mathbb{R}^D$$

 (\mathcal{M}, ω) ... symplectic manifold ("brane")

IR: semi-classical correspondence

$$\operatorname{End}(\mathcal{H}) \sim \mathcal{C}(\mathcal{M})$$

$$\Phi \sim \phi(y)$$

$$[\Phi, \Psi] \sim i\{\phi, \psi\}$$

$$\operatorname{Tr}\Phi \sim \int\limits_{\mathcal{M}} \Omega \phi, \qquad \Omega \dots \text{ symp. volume}$$

Quantization

$$\begin{array}{ccc} \operatorname{End}(\mathcal{H}) & & \mathcal{C}(\mathcal{M}) \\ & \cup & & \cup \\ \operatorname{Loc}(\mathcal{H}) & \cong & \mathcal{C}_{\operatorname{IR}}(\mathcal{M}) \end{array}$$

IR: semi-classical correspondence

$$\operatorname{End}(\mathcal{H}) \sim \mathcal{C}(\mathcal{M})$$

$$\Phi \sim \phi(\mathbf{y})$$

$$[\Phi, \Psi] \sim i\{\phi, \psi\}$$

$$\operatorname{Tr}\Phi \sim \int_{\mathcal{M}} \Omega \phi, \qquad \Omega \dots \text{ symp. volume}$$

Quantization

more precisely: approximate isometry below some scale

$$\operatorname{End}(\mathcal{H})$$
 $\mathcal{C}(\mathcal{M})$
 \cup \cup
 $\operatorname{Loc}(\mathcal{H}) \cong \mathcal{C}_{\operatorname{IR}}(\mathcal{M})$

"almost-commutative" = sufficiently large semi-classical IR regime

The effective metric in matrix models

consider transversal fluctuations = scalar fields $\phi \in \operatorname{End}(\mathcal{H})$

$$S[\phi] = -\text{Tr}\eta_{ab}[Y^a, \phi][Y^b, \phi]$$

$$\sim \int \rho_M \eta_{ab} E^{a\mu} \partial_\mu \phi E^{b\nu} \partial_\nu \phi \sim \int \sqrt{|G|} G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$

semi-classical frame & metric:

$$E^{\dot{\alpha}\mu} = \{Y^{\dot{\alpha}}, x^{\mu}\} \sim -i[Y^{\dot{\alpha}}, x^{\mu}]$$

divergence constraint $\nabla_{\nu}(\rho^{-2}E_{\dot{\alpha}}^{\ \nu})=0$

(Jacobi identity)

$$G^{\mu\nu} = \rho^{-2}\eta_{ab}E^{a\mu}E^{b\nu} = \rho^{-2}\gamma^{\mu\nu}$$

 $\rho^2 = \rho_M\sqrt{|\gamma^{\mu\nu}|}$ dilaton

governs all fluctuations in M.M, universal \Rightarrow gravity!

no local Lorentz transformation of the frame!

coupling to fermions \rightarrow talk by Battista \sim

Weitzenböck connection:

$$abla^{(W)} E_{\dot{\alpha}} = 0$$
 (Weitzenböck) $\Rightarrow \nabla^{(W)} G^{\mu\nu} = 0$

flat but torsion:

$$T_{\dot{\alpha}\dot{\beta}} \equiv T[E_{\dot{\alpha}}, E_{\dot{\beta}}] = \nabla_{\dot{\alpha}}E_{\dot{\beta}} - \nabla_{\dot{\beta}}E_{\dot{\alpha}} - [E_{\dot{\alpha}}, E_{\dot{\beta}}]$$

can show:

$$\mid T_{\dot{\alpha}\dot{\beta}}^{\quad \mu} = \{\hat{\Theta}_{\dot{\alpha}\dot{\beta}}, \mathbf{x}^{\mu}\}, \quad \hat{\Theta}_{\dot{\alpha}\dot{\beta}} := -\{\mathbf{Y}_{\dot{\alpha}}, \mathbf{Y}_{\dot{\beta}}\}$$

$$T_{\dot{lpha}}=dE_{\dot{lpha}}, \qquad E_{\dot{lpha}}=E_{\mu\dot{lpha}}dx^{\mu} \qquad ... {\sf coframe}$$

torsion tensor encodes field strength of the NC gauge theory

(HS arXiv:2002.02742, cf. Langmann Szabo hep-th/0105094)

Weitzenböck connection:

$$\nabla_{\nu}^{(W)} T^{\nu}_{\rho\mu} + T_{\nu\mu}^{\sigma} T_{\sigma\rho\nu}^{\nu} = -m^2 \gamma_{\rho\mu}$$

HS arXiv:2002.02742, cf. Hanada-Kawai-Kimura hep-th/0508211

Quantization

Levi-Civita connection:

$$abla^{(G)
u} \left(
ho^2 T_{
u\mu}{}^{\dot{a}}
ight) + rac{1}{2} T^{(AS)
u\sigma}_{\mu} T_{
u\sigma}{}^{\dot{a}} = -m^2 E^{\dot{a}}_{\phantom{\dot{a}}\mu}$$

and

Introduction

$$\star T^{(AS)} = \tilde{T}_{\mu} dx^{\mu}, \qquad \tilde{T}_{\mu} = \rho^{-2} \partial_{\mu} \tilde{\rho}$$

... "gravitational axion"

Fredenhagen, HS arXiv: 2101.07297

E-H action in terms of torsion: identity

$$\int d^4x \sqrt{|G|} \mathcal{R} = -\int d^4x \sqrt{|G|} \Big(\frac{7}{8} T^\mu_{\sigma\rho} \, T_{\mu\sigma'}^{\rho} \, G^{\sigma\sigma'} + \frac{3}{4} \, \tilde{T}_\nu \, \tilde{T}_\mu G^{\mu\nu} \Big) \label{eq:controller}$$

Quantization

(cf. teleparallel gravity)

S. Fredenhagen, H.S. arxiv:2101.07297

on-shell Ricci tensor

$$\mathcal{R}_{\nu\mu} = \frac{1}{4} T^{(AS)\sigma}_{\rho\mu} T^{(AS)\sigma}_{\sigma\nu} - T_{\mu\sigma}^{\rho} T_{\nu\rho}^{\sigma} + 2\rho^{-2} \partial_{\nu}\rho \partial_{\mu}\rho$$
$$+ \frac{1}{4} G_{\nu\mu} \left(T^{\sigma}_{\nu\delta} T_{\sigma\rho}^{\rho} G^{\delta\rho} - \frac{1}{3} T^{(AS)\sigma}_{\rho\mu} T^{(AS)\sigma\rho}_{\sigma\nu} G^{\mu\nu} \right)$$

quadratic in T and $\partial \rho \Rightarrow \text{linearized}$ on-shell metric fluctuations on flat background are Ricci-flat

pre-gravity from classical matrix model:

dynamical geometry, lin. Ricci-flat, differs from GR at non-lin level

• bare action: $S \sim \int \frac{1}{\sigma^2} \Theta_{\dot{\alpha}\dot{\beta}} \Theta^{\dot{\alpha}\dot{\beta}}$... 2 derivatives less than E-H

$$\int \text{d}^4x \sqrt{|\text{G}|} \mathcal{R} = \int \text{d}^4x \sqrt{|\text{G}|} \Big(-\frac{3}{4} \tilde{\textit{T}}_{\nu} \tilde{\textit{T}}_{\mu} \textit{G}^{\mu\nu} - \frac{7}{8} \textit{T}^{\mu}_{\sigma\rho} \, \textit{T}_{\mu\sigma'}^{\rho} \, \textit{G}^{\sigma\sigma'} \Big)$$

Quantization

$$T^{\dot{\alpha}\dot{\beta}\mu} = \{\Theta^{\dot{\alpha}\dot{\beta}}, \mathbf{x}^{\mu}\} \sim \partial\Theta^{\dot{\alpha}\dot{\beta}}$$
 ($\Theta^{\dot{\alpha}\dot{\beta}} = \{\mathbf{Y}^{\dot{\alpha}}, \mathbf{Y}^{\dot{\beta}}\}$)

⇒ different from GR, expected to dominate on large scales

quantization is well-behaved!

• bare action: $S \sim \int \frac{1}{g^2} \Theta_{\dot{\alpha}\dot{\beta}} \Theta^{\dot{\alpha}\dot{\beta}}$... 2 derivatives less than E-H

$$\int \text{d}^4x \sqrt{|\text{G}|} \mathcal{R} = \int \text{d}^4x \sqrt{|\text{G}|} \Big(-\frac{3}{4} \tilde{\textit{T}}_{\nu} \tilde{\textit{T}}_{\mu} \textit{G}^{\mu\nu} - \frac{7}{8} \textit{T}^{\mu}_{\sigma\rho} \, \textit{T}_{\mu\sigma'}^{\rho} \, \textit{G}^{\sigma\sigma'} \Big)$$

$$T^{\dot{\alpha}\dot{\beta}\mu} = \{\Theta^{\dot{\alpha}\dot{\beta}}, \mathbf{x}^{\mu}\} \sim \partial\Theta^{\dot{\alpha}\dot{\beta}}$$
 ($\Theta^{\dot{\alpha}\dot{\beta}} = \{\mathbf{Y}^{\dot{\alpha}}, \mathbf{Y}^{\dot{\beta}}\}$)

⇒ different from GR, expected to dominate on large scales

quantization is well-behaved!

- on covariant quantum spaces (later):
 - all gravitational dof, no ghosts, lin. Schwarzschild etc.

Sperling, HS 1901.03522, HS 1905.07255 ff

- reasonable cosmology without any fine-tuning BBounce, $a(t) \sim \frac{3}{2}t$ at late times
- Feynman propagator

Karczmarek, HS 2207.00399; Battista, HS 2207.01295

1-loop effective action and induced gravity

SUSY → mild quantum effects:

Idea:

Einstein-Hilbert action (+ extra) arises in the 1-loop effective action on $\mathcal{M}^{3,1}$ space-time (cf. Sakharov '67)

Quantization

$$\Gamma_{1-\mathrm{loop}} \ni \int\limits_{\mathcal{M}} T_{\nu\lambda}^{\mu} T_{\nu\lambda}^{\mu} + ... \sim \int\limits_{\mathcal{M}} d^4x \sqrt{G} \, m_{\mathcal{K}}^2 \mathcal{R}[G] + ...$$

requires presence of fuzzy extra dimensions \mathcal{K}

finite, no UV divergence / cutoff!

nonperturbative quantization of MM:

$$Z = \int dY d\Psi e^{iS[Y,\Psi]}, \qquad S = S_{\rm IKKT} + i\varepsilon Y^a Y^b \delta_{ab}$$

cf. numerical work (Nishimura, Tsuchiya, Anagnostopoulos etal.)

Quantization

1-loop effective action

$$e^{i\Gamma_{1 ext{-loop}}[Y]} = \int\limits_{1 ext{ loop}} d\mathcal{A}d\Psi e^{i\mathcal{S}[Y+\mathcal{A},\Psi]}$$

$$\begin{split} \Gamma_{\text{Iloop}}[Y] &= \frac{1}{2} \text{Tr} \Big(\log(\Box - M_{ab}[\Theta^{ab},.]) - \frac{1}{2} \log(\Box - M_{ab}^{(\psi)}[\Theta^{ab},.]) - 2 \log(\Box) \Big) \\ &= \frac{1}{2} \text{Tr} \Bigg(\sum_{n=4}^{\infty} \frac{1}{n} \Big((\Box^{-1} M_{ab}[\Theta^{ab},.])^n - \frac{1}{2} (\Box^{-1} M_{ab}^{(\psi)}[\Theta^{ab},.])^n \Big) \Bigg) \end{split}$$

UV-finite on 4D backgrounds due to max. SUSY!!

$$\text{Tr}_{\text{End}(\mathcal{H})}\mathcal{O} = \frac{1}{(2\pi)^m} \int\limits_{\mathcal{M} \times \mathcal{M}} \textit{dxdy} \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \middle| \left. \mathcal{O} \middle|_y^x \right)$$

string modes:

Introduction

$$\binom{x}{y} := |x\rangle\langle y|$$
 $\in \operatorname{End}(\mathcal{H})$

Quantization

 $|x\rangle$... coherent state on \mathcal{M}

... "string" from x to y, extreme UV but non-local on any NC space

H.S. arXiv:1606.00646, cf. Iso Kawai Kitazawa hep-th/0001027

H.S., J. Tekel arXiv:2203.02376

$$[Y^{a}, {x \choose y}] \approx (x^{a} - y^{a}) {x \choose y}$$

$$\square {x \choose y} \approx (|x - y|^{2} + 2\Delta^{2}) {x \choose y}$$

evaluate trace use string mode formalism

$$\text{Tr}_{\text{End}(\mathcal{H})}\mathcal{O} = \frac{1}{(2\pi)^m}\int\limits_{\mathcal{M}\times\mathcal{M}} \textit{dxdy}\left(_y^x \middle| \mathcal{O} \middle|_y^x\right)$$

string modes:

$$\binom{x}{y} := |x\rangle\langle y|$$
 $\in \operatorname{End}(\mathcal{H})$

Quantization

 $|x\rangle$... coherent state on \mathcal{M}

... "string" from x to y, extreme UV but non-local on any NC space

H.S. arXiv:1606.00646, cf. Iso Kawai Kitazawa hep-th/0001027

H.S., J. Tekel arXiv:2203.02376

diagonalize kinetic operators:

$$\begin{aligned} \left[Y^{a}, \right]_{y}^{x} \right] &\approx \left(x^{a} - y^{a} \right) \Big|_{y}^{x} \right) \\ &\Box \Big|_{y}^{x} \right) &\approx \left(\left| x - y \right|^{2} + 2\Delta^{2} \right) \Big|_{y}^{x} \right) \end{aligned}$$

digression: UV/IR mixing in NC field theory

non-local string modes dominate loops in UV-divergent QFT ⇒ nonlocal effects UV/IR mixing, renormalizability

"nonplanar" contribution:

$$\operatorname{Tr}(.(\Box + \mu^2)^{-1}\phi.\phi) = \int_{\mathcal{M}\times\mathcal{M}} dx dy \frac{1}{|x-y|^2 + \overline{\mu}^2} \phi(x)\phi(y)$$

Quantization

effective action obtained directly in position space!

back to 1-loop of IKKT model:

$$\Gamma_{\text{Iloop;4}}[Y] = \frac{1}{8} \text{Tr} \left((\Box^{-1} (M_{ab}[\Theta^{ab},.])^{4} - \frac{1}{2} (\Box^{-1} M_{ab}^{(\psi)}[\Theta^{ab},.])^{4} \right) \\
= \frac{1}{4} \frac{1}{(2\pi)^{m}} \int_{\mathcal{M} \times \mathcal{M}} dx dy \frac{3S_{4}[\delta\Theta(x,y)]}{(|x-y|^{2}+2\Delta^{2})^{4}}$$

Quantization

where

$$-S_4[\delta\Theta] = 4tr(\delta\Theta\delta\Theta\delta\Theta\delta\Theta) - (tr\delta\Theta\delta\Theta)^2$$
$$\delta\Theta = \Theta^{ab}(x) - \Theta^{ab}(y)$$

note:

- UV-finite (maximally SUSY) → short string modes dominate.
- short-distance regime requires refined analysis:

short string modes as localized Gaussian wave-packets:

$$\Psi_{k;y}^{(L)} := \int d^4z \, e^{-|y-z|^2/L^2} \big|_{z-\frac{k}{2}}^{z+\frac{k}{2}} \big) \cong e^{ikx} e^{-|x-y|^2/L^2}$$

Quantization

locally diagonalize kinetic operators in IR:

$$\Box \Psi_{k;y}^{(L)} \approx \gamma^{\mu\nu}(x) k_{\mu} k_{\nu} \Psi_{k;y}^{(L)}$$

$$[\theta^{ab}, \Psi_{k;y}^{(L)}] \approx -\{\theta^{ab}, x^{\mu}\} k_{\mu} \Psi_{k;y}^{(L)}$$

Trace formula for UV-finite traces on NC spaces:

$$\text{Tr}\mathcal{O} = \frac{1}{(2\pi)^m}\int\limits_{\mathcal{M}\times\mathcal{M}} \Omega_x \Omega_y \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \middle| \mathcal{O} \left| \begin{smallmatrix} x \\ y \end{smallmatrix} \right) \ \approx \frac{1}{(2\pi)^m}\int\limits_{\mathcal{M}} \sqrt{G} dx \int \frac{1}{\sqrt{G}} dk \langle \Psi_{k,x}^{(L)}, \mathcal{O} \Psi_{k,x}^{(L)} \rangle$$

use this to evaluate 1-loop eff. action

a priori: 4-derivative action

however: brane $\mathcal{M} \times \mathcal{K} \subset \mathbb{R}^{9,1}$ with fuzzy extra dim.

from 6 transversal directions $\langle \phi^i \rangle \neq 0$

mixed term $(\delta \Theta^{\alpha\beta} \delta \Theta^{\alpha\beta}) (\delta \Theta^{ij} \delta \Theta^{ij})$ leads to induced E-H action

$$\begin{split} \{\theta^{\alpha\beta}, \{\theta^{\alpha\beta}, \psi_{k;y}\}\} & \approx -\{\theta^{\alpha\beta}, x^{\mu}\} \{\theta^{\alpha\beta}, x^{\nu}\} k_{\mu} k_{\nu} \psi_{k;y} \\ & = -T^{\alpha\beta\mu} k_{\mu} T^{\alpha\beta\nu} k_{\nu} \psi_{k;y} \\ & \qquad \qquad \text{(torsion } T^{\alpha\beta\mu} = \{\theta^{\alpha\beta}, x^{\mu}\} \text{)} \end{split}$$

Quantization

$$\begin{split} \Gamma_{lloop} & \sim -\int\limits_{\mathcal{M}} \textit{d}^4 x \sqrt{\textit{G}} \, \textit{c}_{\mathcal{K}}^2 \textit{m}_{\mathcal{K}}^2 \, \textit{T}_{\sigma\mu}^{\rho} \, \textit{T}_{\rho'}^{\sigma_{\mu}} \, \textit{G}^{\mu\mu'} \\ & \sim \int \textit{d}^4 x \sqrt{\textit{G}} \, \textit{c}_{\mathcal{K}}^2 \textit{m}_{\mathcal{K}}^2 \left(8 \mathcal{R}[\textit{G}] + 6 \, \tilde{\textit{T}}_{\nu} \, \tilde{\textit{T}}_{\mu} \, \textit{G}^{\mu\nu} \right) \end{split}$$

where

 m_{κ}^2 ... KK scale on \mathcal{K}

HS 2110.03936

bottom line:

• Γ_{1loop} includes Einstein-Hilbert action, eff. Newton constant

$$rac{1}{G_N} \sim c_{\mathcal{K}}^2 m_{\mathcal{K}}^2$$

set by Kaluza-Klein mass scale on K

large vacuum energy

$$\Gamma_{\rm 1loop}^{\mathcal{K}} \sim -\int\limits_{\mathcal{M}} \Omega \, \rho^{-2} m_{\mathcal{K}}^4 \sum_{\Lambda s} \frac{V_{4,\Lambda}}{\mu_{\Lambda}^4} + \dots$$

not c.c., leads to stabilization of $m_{\mathcal{K}}$ at one loop!

• $S \sim \int \Theta^{\alpha\beta} \Theta^{\alpha\beta} + S_{E-H}$ bare action dominates extreme IR (=cosm. !)

4D covariant quantum spaces & hs

issues:

- Poisson structure $\theta^{\mu\nu}$ breaks Lorentz / rotation invariance
- enough dof for metric, frame ?

quantized twistor space as brane:

$$\mathbb{C}P_N^{1,2} \stackrel{loc}{\cong} S^2 \times \mathcal{M}^{3,1} \subset \mathbb{R}^{9,1}$$

- sympl. equivariant S^2 bundle over space(time) $\mathcal{M}^{3,1}$
 - $\bullet \langle \theta^{\mu\nu} \rangle_{\mathcal{M}} = 0!$
 - price to pay: higher-spin theory, all dof for metric on M^{3,1}
 - vol.-preserving diffeos on $\mathcal{M} \subset$ higher-dim symplectomorphisms

HS: 1606.00769, M. Sperling, HS 1806.05 ff, HS, T. Tran 2203.05436

Quantization

MM description: 2-step procedure

• $\mathbb{C}P_n^{1,2}$ = quantized S_n^2 -bundle over H_n^4 equivariant under SO(4,1)

realized by MM background $Y^a := \frac{1}{B} \mathcal{M}^{a5}$, a = 0, ..., 4

... minimal discrete unitary irrep \mathcal{H}_n of $\mathfrak{so}(4,2)$

$$\operatorname{End}(\mathcal{H}_n) \cong \mathcal{C}(\mathbb{C}P^{1,2}) \cong \bigoplus_{s=0}^n \mathcal{C}^s$$

would-be KK modes

 \rightarrow spin s modes on H^4 taking values in $\mathfrak{hs} = \oplus$

matrix model \rightarrow higher spin gauge theory, truncated at n

• further projection $H^4 \to \mathcal{M}^{3,1}$... FLRW quantum space-time manifest homogeneous & isotrop, Big Bounce M. Sperling, HS 1901.03522

MM description: 2-step procedure

• $\mathbb{C}P_n^{1,2}$ = quantized S_n^2 -bundle over H_n^4 equivariant under SO(4, 1)

realized by MM background $Y^a := \frac{1}{R} \mathcal{M}^{a5}$, a = 0, ..., 4

... minimal discrete unitary irrep \mathcal{H}_n of $\mathfrak{so}(4,2)$

$$\operatorname{End}(\mathcal{H}_n) \cong \mathcal{C}(\mathbb{C}P^{1,2}) \cong \bigoplus_{s=0}^n \mathcal{C}^s$$

would-be KK modes

 \rightarrow spin s modes on H^4 taking values in $\mathfrak{hs} = \oplus$

Quantization

matrix model \rightarrow higher spin gauge theory, truncated at n

• further projection $H^4 \to \mathcal{M}^{3,1}$... FLRW quantum space-time manifest homogeneous & isotrop, Big Bounce M. Sperling, HS 1901.03522

summary & open questions

gravity arises as quantum effect on 3+1-dim. quantum space-time in the IKKT matrix model (maximally SUSY!)

- MM = "pre-gravity", suitable for quantization
- quantization → induced Einstein-Hilbert action, no c.c. problem (? TBC)
- cross-over GR ↔ cosm. background (class.)
- covariant quantum spaces = twisted S^2 bundles over $\mathcal{M}^{3,1}$
 - → higher spin gauge theory rotation invariance manifest
- new physics (axion, dilaton, hs ...)

IKKT = distinguished model for emergent near-realistic (?) physics string theory without compactification

Fuzzy extra dimensions K

consider backgrounds with product structure

$$\mathcal{M}^{3,1} \times \mathcal{K}$$
 $(\subset \mathbb{R}^{9,1}!)$

K ... quantized compact symplectic space

Quantization

realized by

$$Y^{\dot{a}} \sim y^{\dot{a}}: \qquad \mathcal{M} \hookrightarrow \mathbb{R}^{3,1}, \qquad \dot{a} = 0, ..., 3$$

 $Y^{i} \sim y^{i}: \qquad \mathcal{K} \hookrightarrow \mathbb{R}^{6}, \qquad i = 4, ..., 9$

acting on $\mathcal{H} = \mathcal{H}_{\mathcal{M}} \otimes \mathcal{H}_{\mathcal{K}}$

matrix d'Alembertian decomposes as

$$\square = [Y^{\dot{a}}, [Y_{\dot{a}}, .]] + [Y^{i}, [Y_{i}, .]] = \square_{\mathcal{M}} + \square_{\mathcal{K}}.$$

internal □_K has a positive spectrum

$$\Box_{\mathcal{K}}\lambda_{\Lambda}=m_{\Lambda}^2\,\lambda_{\Lambda}$$

hence

$$\Box \phi_{\Lambda} = (\Box_{\mathcal{M}} + m_{\Lambda}^{2})\phi_{\Lambda} , \qquad [\Theta^{ij}, [\Theta^{ij}, \lambda_{\Lambda}]] = m_{\mathcal{K}}^{4} C_{\Lambda}^{2} \lambda_{\Lambda}$$

 \mathcal{K} ... fuzzy space (quantized symplectic space), e.g. S_N^2 , $\mathbb{C}P^2$, ... stabilization of K: either

• add cubic term $\operatorname{Tr} f_{ijk} Y^{i} [Y^{j}, Y^{k}]$ by hand (breaks SUSY...) cf. Chatzistavrakidis HS Zoupanos 1107.0265 ff, Andrews Dorey hep-th/0505107 etc.

Quantization

• better: 1-loop effect (interaction $\mathcal{K} \leftrightarrow \mathcal{M}^{3,1}$) stabilizes radius!

$$V(m_{\mathcal{K}}^2) = -c^2 m_{\mathcal{K}}^2 + \frac{d^2}{g^2} m_{\mathcal{K}}^4$$

where $m_{\mathcal{K}} \sim r_{\mathcal{K}}$, nontriv. minimum

HS 2110.03936

gauge transformations as diffeos

... arise from $Y^a \rightarrow U^{-1}Y^aU$ on NC branes M

scalar fields:

$$\delta_{\Lambda}\phi = \{\Lambda, \phi\} = \xi^{\mu}\partial_{\mu}\phi = \mathcal{L}_{\xi}\phi, \qquad \xi^{\mu} = \{\Lambda, \mathbf{x}^{\mu}\}$$

Quantization

vector fields (frame!):

$$\begin{array}{ll} \delta_{\Lambda} Y_{\dot{\alpha}} &= \{\Lambda, Y_{\dot{\alpha}}\} \\ \\ \delta_{\Lambda} E_{\dot{\alpha}} &= \{\Lambda, \{Y_{\dot{\alpha}}, .\}\} - \{Y_{\dot{\alpha}}, \{\Lambda, .\}\} = \mathcal{L}_{\xi} E_{\dot{\alpha}} \end{array} \quad \text{(Jacobi)}$$

hence

$$\delta_{\mathsf{\Lambda}} {\mathsf{E}_{\dot{lpha}}}^{\mu} = \mathcal{L}_{\xi} {\mathsf{E}_{\dot{lpha}}}^{\mu}, \qquad \delta_{\mathsf{\Lambda}} {\mathsf{G}}^{\mu
u} = \mathcal{L}_{\xi} {\mathsf{G}}^{\mu
u}$$

diffeos from NC gauge trafos!

 $\{\Lambda,.\}$... Hamiltonian VF

on covariant quantum space $\mathcal{M}^{3,1}$: all dof for vol-preserving diffeos

