# Shifted substitution in noncommutative power series

Nikolas Tapia joint work with K. Ebrahimi-Fard, F. Patras, and L. Zambotti

February 20, 2025, Recent Perspectives on noncrossing Partitions





Introduction: Power series

Given a sequence of (real) numbers  $m_0, m_1, \ldots$  we encode it as an (exponential) power series:

$$M(t) \coloneqq \sum_{n=0}^{\infty} m_n \frac{t^n}{n!}.$$

Consider the ring  $R = \mathbb{K}[[t]]$  with the usual product

$$PQ(t) = \sum_{n=0}^{\infty} \left( \sum_{j=0}^{n} {n \choose j} p_j q_{n-j} \right) \frac{t^n}{n!}.$$

The set  $G^1 := \{ M \in R : m_0 = 1 \}$  is a group for this product.



Recent Perspectives on noncrossing Partitions, Shifted substitution in noncommutative power series

#### Introduction: Power series

Each  $M \in G^1$  has a logarithm:

$$K(t) := \log M(t) = \sum_{n=1}^{\infty} k_n \frac{t^n}{n!} \in G^0 := \{ K \in R : k_0 = 0 \}.$$

where

$$k_n = \sum_{j=1}^n (-1)^{j-1} (j-1)! B_{n,j}(m_1, \dots, m_{n-j}).$$



Introduction: Hopf algebras (Umbral calculus?)

We can also encode the sequence  $m_0, m_1, \ldots$  as a linear map  $\mu \colon \mathbb{K}[x] \to \mathbb{K}$  via

 $\mu(x^n) \coloneqq m_n,$ 

and we get a linear map  $\Lambda$ : Hom<sub>Vect</sub>( $\mathbb{K}[x],\mathbb{K}$ )  $\to R, \phi \mapsto \sum_{n=0}^{\infty} \phi(x^n) \frac{t^n}{n!}$ .

Endow  $H = \mathbb{K}[x]$  with a Hopf algebra structure where the product is the usual polynomial product and the coproduct is

$$\Delta x^n := \sum_{j=0}^n \binom{n}{j} x^j \otimes x^{n-j}.$$



# Introduction: Hopf algebras

#### **Theorem 1**

Endow  $H^* = \text{Hom}_{\text{Vect}}(\mathbb{K}[x], \mathbb{K})$  with the convolution product

$$\boldsymbol{\phi} \ast \boldsymbol{\psi} \coloneqq (\boldsymbol{\phi} \otimes \boldsymbol{\psi}) \circ \boldsymbol{\Delta}.$$

The map  $\wedge : H^* \to R$  is an algebra isomorphism.

In particular, we can recover the previous formulas from known Hopf-algebraic statements.



#### Introduction: Hopf algebras

WI AS

The set  $\mathcal{G}(H) := \{ \phi \in H^* : \phi(1) = 1 \}$  is group under \*, unit  $\varepsilon(p) = p(0)$  and inverses given by

$$\boldsymbol{\phi}^{-1} = \sum_{j\geq 0} (\boldsymbol{\varepsilon} - \boldsymbol{\phi})^{*j},$$

that is

$$\phi^{-1}(x^n) = \sum_{j=0}^n (-1)^j \sum_{n_1 + \dots + n_j = n} \frac{n!}{n_1! \cdots n_j!} \phi(x^{n_1}) \cdots \phi(x^{n_j}).$$

There is a logarithm  $\log_* : \mathcal{G}(H) \to \mathcal{L}(H) =: \{ \phi \in H^* : \phi(1) = 0 \}$  given by

$$\log_*(\boldsymbol{\phi}) = \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j} (\boldsymbol{\phi} - \boldsymbol{\varepsilon})^{*j}.$$



Introduction: Character trick

Hom<sub>Alg</sub>(H,  $\mathbb{K}$ ) =: Char(H) is a group under \* with unit  $\varepsilon$ , inverse is given by  $\phi^{-1} = \phi \circ S$ where  $S : H \to H$  is the antipode, satisfying

$$S * \mathsf{id} = \mathsf{id} * S = 1\varepsilon.$$

Solving yields  $S(x^n) = (-1)^n x^n$ .

The Lie algebra of Char(H) is formed by the *infinitesimal characters*, such that

 $\gamma(pq) = \varepsilon(p)\gamma(q) + \gamma(p)\varepsilon(q).$ 

It can be shown that  $\log_*$ : Char(*H*)  $\rightarrow$  InfChar(*H*).



Introduction: Character trick

Trick: extend *H* to  $\hat{H} \coloneqq \text{Sym}(H)$  whose product we denote by  $x^n | x^m \neq x^{n+m}$ , with antipode

$$\hat{S}(x^n) = \sum_{k=1}^n (-1)^k \sum_{n_1 + \dots + n_k = n} \frac{n!}{n_1! \cdots n_k!} x^{n_1} | \cdots | x^{n_k}.$$

#### Theorem 2 (EFPTZ 2018)

*H* is a (left) comodule over  $\hat{H}$ , and the restriction  $\text{Char}(\hat{H}) \to \mathcal{G}(H)$  is a group isomorphism.

Application to Wick polynomials:

$$G(t,X) := \sum_{n=0}^{\infty} : X^n : \frac{t^n}{n!} = \frac{e^{tX}}{\mathbb{E}[e^{tX}]} \longleftrightarrow \mathbb{W} = \left( \mathsf{id} \otimes \phi^{-1} \right) \circ \Delta.$$



# Noncommutative power series

Let  $R = A(\langle x_1, x_2, \ldots \rangle)$  for some commutative  $\mathbb{K}$ -algebra A. A generic element:

$$f(\mathbf{x}) = f_0 + \sum_{k=1}^{\infty} \sum_{(i_1,\dots,i_k) \in \mathbb{N}^k} f_{i_1\dots i_k} \mathbf{x}_{i_1} \cdots \mathbf{x}_{i_k}$$
$$= \sum_{\mathbf{w} \in \mathbb{N}^*} f_{\mathbf{w}} \mathbf{x}_{\mathbf{w}},$$

where 
$$x_{i_1\cdots i_k} = x_{i_1}\cdots x_{i_k}$$
.

#### **Definition 1**

We set

$$G^1 := \{ f \in R : f_0 = 1 \}, \quad G^0 := \{ f \in R : f_0 = 0 \}.$$

2025-02-20 9/19



#### Shifted composition

## Definition 2

For  $f, g \in G^1$ , we set

$$(f \bullet g)(\mathbf{x}) = g(\mathbf{x})f(\mathbf{x}g(\mathbf{x}))$$

where

$$(\boldsymbol{x}\boldsymbol{g}(\boldsymbol{x}))_i = x_i \boldsymbol{g}(\boldsymbol{x}) = x_i + \sum_{\boldsymbol{w} \in \mathbb{N}^{\star}_+} \boldsymbol{g}_{\boldsymbol{w}} x_{i\boldsymbol{w}}$$

and

$$(\mathbf{x}\mathbf{g}(\mathbf{x}))_{i_1\cdots i_k} = x_{i_1}\mathbf{g}(\mathbf{x})x_{i_2}\mathbf{g}(\mathbf{x})\cdots x_{i_k}\mathbf{g}(\mathbf{x}).$$

In the univariate case this reduces to composition of "tangent-to-identity" formal diffeomorphisms ( $f_0 = 0, f_1 = 1$ ).



# Hopf algebras again

Let *V* be the linear span of  $\mathbb{N}_{+}^{\star}$  and H = T(V) whose product we denote again by |. *H* is linearly spanned by "sentences"  $w_1 | w_2 | \cdots | w_k$ , where  $w_j \in \mathbb{N}^{\star}$ .

#### Definition 3 (Ebrahimi-Fard, Patras 2014)

Define  $\Delta \colon V \to V \otimes H$ 

$$\Delta(i_1\cdots i_n)=\sum_{S\subseteq [n]}i_S\otimes i_{J_1^S}\mid\cdots\mid i_{J_k^S}$$

where  $[n] \setminus S = J_1^S \cup \cdots \cup J_k^S$  and each is an interval. Extend to  $\Delta: H \to H \otimes H$  multiplicatively.

For example

$$\Delta(i_1i_2i_3) = \mathbf{1} \otimes i_1i_2i_3 + i_1 \otimes i_2i_3 + i_2 \otimes i_1 | i_3 + i_3 \otimes i_1i_2 + i_1i_2 \otimes i_3 + i_1i_3 \otimes i_2 + i_2i_3 \otimes i_1 + i_1i_2i_3 \otimes \mathbf{1}$$



W

# Hopf algebras and group laws

#### Theorem 3 (EFPTZ 2023)

 $\Lambda$ : Char(H)  $\rightarrow$  G<sup>1</sup> defined by

$$\Lambda(\phi)(\boldsymbol{x}) = \phi(1) + \sum_{\boldsymbol{w} \in \mathbb{N}_+^{\star}} \phi(\boldsymbol{w}) \boldsymbol{x}_{\boldsymbol{w}}$$

is a group isomorphism, that is, if  $f = \Lambda(\phi), g = \Lambda(\gamma)$  then

$$\Lambda(\phi * \gamma)(\mathbf{x}) = (f \bullet g)(\mathbf{x}) = g(\mathbf{x})f(\mathbf{x}g(\mathbf{x})).$$

#### Half (co)products

# Definition 4 (Ebrahimi-Fard, Patras 2014)

Define

$$\Delta_{\prec}(i_1\cdots i_n)=i_1\cdots i_n\otimes \mathbf{1}+\sum_{1\in S\subseteq [n]}i_S\otimes i_{J_1^S}\mid\cdots\mid i_{J_k^S}$$

#### and

$$\Delta_{\succ}(i_1\cdots i_n) = \mathbf{1}\otimes i_1\cdots i_n + \sum_{1\notin S\subseteq [n], S\neq\emptyset} i_S\otimes i_{J_1^S} |\cdots| i_{J_k^S}.$$

Then,  $\Delta = \Delta_{\prec} + \Delta_{\succ}$  and they endow *H* with the structure of an unshuffle bialgebra.





In turn, this splits the convolution product into two "half-shuffles":

$$\phi \prec \gamma \coloneqq (\phi \otimes \gamma) \circ \Delta_{\prec}, \quad \phi \succ \gamma \coloneqq (\phi \otimes \gamma) \circ \Delta_{\succ}.$$

#### Theorem 4 (EFPTZ 2023)

Let  $\phi \in \text{Hom}_{\text{Vect}}(H_+, A)$ ,  $\gamma \in \text{Char}(H)$  so that  $f \in G^0$ ,  $g \in G^1$ . Then

 $\Lambda(\phi \prec \gamma) = f(\mathbf{x}\mathbf{g}(\mathbf{x})), \quad \Lambda(\phi \succ \gamma) = (\mathbf{g}(\mathbf{x}) - 1)f(\mathbf{x}\mathbf{g}(\mathbf{x})).$ 



2025-02-20 14/19

#### Lie structure

WI

The group  $G^1$  is left-linear, thus its tangent space at 1  $G^0$  has a pre-Lie structure.

Theorem 5

The operation

$$\mathbf{x}_{i_1}\cdots\mathbf{x}_{i_n} \triangleleft \mathbf{x}_{j_1}\cdots\mathbf{x}_{j_m} \coloneqq \sum_{k=0}^n \mathbf{x}_{i_1}\cdots\mathbf{x}_{i_k}\mathbf{x}_{j_1}\cdots\mathbf{x}_{j_m}\mathbf{x}_{i_{k+1}}\cdots\mathbf{x}_{i_n}$$

is (right) pre-Lie, i.e.,

$$\mathbf{a}_{\triangleleft}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \coloneqq (\mathbf{x} \triangleleft \mathbf{y}) \triangleleft \mathbf{z} - \mathbf{x} \triangleleft (\mathbf{y} \triangleleft \mathbf{z})$$

is symmetric in y and z.

In the single variable case  $x^n \triangleleft x^m = (n+1)x^{n+m}$  (Faà di Bruno).





# Theorem 6 (EFPTZ 2023)

Let 
$$\phi \in \text{Hom}_{\text{Vect}(H,A)}$$
,  $\gamma \in \mathcal{L}(A)$  so that  $f \in R$ ,  $g \in G^0$ . Then

 $\Lambda(\phi*\gamma)=f\triangleleft g.$ 







#### Link with noncommutative probability

Let  $(B, \varphi)$  a ncps and  $(b_1, \ldots)$  be nc rvs on *B*. We define  $\phi : V \to \mathbb{C}$  by  $\phi(i_1 \cdots i_n) = \varphi(b_{i_1} \cdot_B \cdots \cdot_B b_{i_n})$ . It extends uniquely to  $\Phi \in \text{Char}(H)$ .

Theorem 7 (Ebrahimi-Fard, Patras 2016 & 2018)

The equations

$$\Phi = \varepsilon + \Phi \succ \beta, \quad \Phi = \varepsilon + \kappa \prec \Phi$$

define  $\beta, \kappa \in \text{InfChar}(H)$ , and

$$\Phi(i_1 \cdots i_n) = \sum_{\pi \in \mathsf{NC}(n)} \prod_{B \in \pi} \kappa(i_B) = \sum_{\pi \in \mathsf{Int}(n)} \prod_{B \in \pi} \beta(i_B)$$





Link with noncommutative probability

### Corollary 1 (EFPTZ 2023)

Denoting M, K, B the generating series of  $\Phi, \kappa, \beta$  respectively, we have

 $M(\mathbf{x}) = 1 + K(\mathbf{x}M(\mathbf{x})) = 1 + B(\mathbf{x})M(\mathbf{x}).$ 

#### Theorem 8 (Ebrahimi-Fard, Patras 2018)

 $\rho = \log_* \Phi$  defines an infinitesimal character corresponding to monotone cumulants.

Introduce a formal parameter *t* and set  $\Phi_t = \exp_*(t\rho)$ .





Trees

## Theorem 9 (EFPTZ 2023, Hasebe-Saigo 2011)

Let *R* be the generating function of  $\rho$ . Then

$$\dot{M}_t(\boldsymbol{x}) = R(\boldsymbol{x}) + ((M_t - 1) \triangleleft R)(\boldsymbol{x}),$$

that is

$$\begin{split} M_t &= 1 + tR + (R \triangleleft R) \frac{t^2}{2} + ((R \triangleleft R) \triangleleft R) \frac{t^3}{6} + \cdots \\ &= \exp_{\triangleleft}(R) \\ &= 1 + \sum_{\tau} \frac{1}{\tau! \sigma(\tau)} P_h(\tau) t^{|\tau|}, \end{split}$$

where e.g.  $P_h(\mathbf{1}) = R \triangleleft R, P_h(\mathbf{V}) = (R \triangleleft R) \triangleleft R - R \triangleleft (R \triangleleft R)$ , etc.

