Dynamical zeta function and topology. *Higher structures and Field theory*, ESI online

Nguyen Viet Dang ¹ with <u>Yann Chaubet</u>, Colin Guillarmou, <u>Gabriel Rivière</u>, Shu Shen

¹Université Lyon 1

Motivation.

Algebra	Topology	Dynamics	Field theory
dim (V)	Euler $\chi(V, d)$	zeroes of vector fields	SUSY states
	$\sum (-1)^i \dim(V^i)$	$\sum_{c \in Crit(V)} (-1)^{ind} V^{(c)}$	$dim(\mathcal{H}_0) - dim(\mathcal{H}_1)$
trace(T)	Lefschetz $\mathcal{L}(T)$	fixed points of maps	Super trace of (T)
	$\sum_{i=0}^{\dim(M)} (-1)^i \operatorname{Tr}(T _{H^i(M)})$	$\sum_{x=T(x)} \operatorname{ind}_T(x)$	Str(T)
determinants	Torsion τ	periodic orbits flows	Partition function of BF
		$\prod_{\gamma \in \text{ prime}} \det (\mathit{Id} - \rho(\gamma)\Delta(\gamma))^{(-1)^{ind}(\gamma)}$	$\int_{\mathcal{L}} DADBe^{\int_{M} B \wedge d^{\nabla} A}$

2

イロン イロン イヨン イヨン

Motivation.

Algebra	Topology	Dynamics	Field theory
dim (V)	Euler $\chi(V, d)$	zeroes of vector fields	SUSY states
	$\sum (-1)^i \dim(V^i)$	$\sum_{c \in Crit(V)} (-1)^{ind} V^{(c)}$	$dim(\mathcal{H}_0) - dim(\mathcal{H}_1)$
trace(T)	Lefschetz $\mathcal{L}(T)$	fixed points of maps	Super trace of (T)
	$\sum_{i=0}^{\dim(M)} (-1)^i \operatorname{Tr}(T _{H^i(M)})$	$\sum_{x=T(x)} \operatorname{ind}_T(x)$	Str (T)
determinants	Torsion τ	periodic orbits flows	Partition function of BF
		$\prod_{\gamma \in \text{ prime }} \det \left(ld - \rho(\gamma) \Delta(\gamma) \right)^{(-1)^{\text{ind}}(\gamma)}$	$\int_{\mathcal{L}} DADBe^{\int_{M} B \wedge d^{\nabla} A}$

Last column related to work of Hadfield–Kandel–Schiavina and lecture notes of Mnev, Fried conjecture from BV viewpoint.

2

イロン イ団 とくほと くほとう

Geometric context.

• (M, θ) , contact manifold Ex : $S^* \mathcal{M}$.

2

・ロン ・四 と ・ ヨ と ・ ヨ と

Geometric context.

- (M, θ), contact manifold Ex : $S^* \mathcal{M}$.
- **2** X Reeb field, $\theta(X) = 1$. X Anosov i.e. $TM = E_s \oplus E_u \oplus \langle X \rangle$, (E_s, E_u) called stable, unstable bundles $\exists C, \lambda > 0$ s.t. $\forall t \ge 0$:

 $\|de^{tX}(v)\| \leqslant Ce^{-\lambda t}\|v\|, \forall v \in E_s, \ \|de^{-tX}(v)\| \leqslant Ce^{-\lambda t}\|v\|, \forall v \in E_u.$

Ex : X generator of the geodesic flow for metric g of negative curvature.
 A flat bundle (E, ∇) and ρ : π₁(M) → GL_p(C) = monodromy of ∇.

イロト 不得 トイヨト イヨト

э

イロン イ団と イヨン イヨン

Riemann zeta
$$\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{\substack{p \in \text{Primes} \\ \text{factorized}}} (1 - p^{-s})^{-1}.$$

2

イロト イヨト イヨト イヨト

Riemann zeta $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{\substack{p \in \mathsf{Primes} \\ \text{factorized} \\ }} (1 - p^{-s})^{-1}.$ Dirichlet L-function, $\chi : \mathbb{N} \mapsto \mathbb{S}^1$ character, functions of $(s, \chi) :$ $\boxed{\mathcal{L}(s, \chi) = \prod_{p \in \mathsf{Primes}} (1 - \chi(p)p^{-s})^{-1}.}$

Nguyen Viet Dang (Université Lyon 1)

Riemann zeta $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{\substack{p \in \text{Primes} \\ \text{factorized}}} (1 - p^{-s})^{-1}.$ Dirichlet L-function, $\chi : \mathbb{N} \mapsto \mathbb{S}^1$ character, functions of (s, χ) :

$$L(s,\chi) = \prod_{p \in \mathsf{Primes}} (1 - \chi(p)p^{-s})^{-1}.$$

Using (X, χ) , $\chi \in Hom(\pi_1(M), \mathbb{C}^*)$. We can form the twisted Ruelle zeta function (dynamical L functions)

$$\zeta_{X,\chi}(s) = \prod_{\gamma \in \mathcal{P}} \left(1 - \chi(\gamma) e^{-s\ell(\gamma)} \right)$$

 \mathcal{P} prime periodic orbits of e^{tX} , $\ell(\gamma)$ period of γ .

・ロト ・四ト ・ヨト ・ヨト

Riemann zeta $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{\substack{p \in \text{Primes} \\ \text{factorized}}} (1 - p^{-s})^{-1}.$

Dirichlet L-function, $\chi: \mathbb{N} \mapsto \mathbb{S}^1$ character, functions of (s, χ) :

$$L(s,\chi) = \prod_{p \in \mathsf{Primes}} (1 - \chi(p)p^{-s})^{-1}.$$

Using (X, χ) , $\chi \in Hom(\pi_1(M), \mathbb{C}^*)$. We can form the twisted Ruelle zeta function (dynamical L functions)

$$\zeta_{X,\chi}(s) = \prod_{\gamma \in \mathcal{P}} \left(1 - \chi(\gamma) e^{-s\ell(\gamma)}\right)$$

 $\begin{array}{l} \mathcal{P} \text{ prime periodic orbits of } e^{tX}, \ \ell(\gamma) \text{ period of } \gamma. \text{ More generally} \\ \zeta_{X,\rho}(s) = \prod_{\gamma \in \mathcal{P}} \det \Big(1 - \rho(\gamma) e^{-s\ell(\gamma)} \Big). \end{array}$

《曰》《圖》《臣》《臣》

Riemann zeta $\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{\substack{p \in \text{Primes} \\ \text{factorized}}} (1 - p^{-s})^{-1}.$

Dirichlet L-function, $\chi:\mathbb{N}\mapsto\mathbb{S}^1$ character, functions of (s,χ) :

$$L(s,\chi) = \prod_{p \in \mathsf{Primes}} (1 - \chi(p)p^{-s})^{-1}.$$

Using (X, χ) , $\chi \in Hom(\pi_1(M), \mathbb{C}^*)$. We can form the twisted Ruelle zeta function (dynamical L functions)

$$\zeta_{X,\chi}(s) = \prod_{\gamma \in \mathcal{P}} \left(1 - \chi(\gamma) e^{-s\ell(\gamma)}\right)$$

 \mathcal{P} prime periodic orbits of e^{tX} , $\ell(\gamma)$ period of γ . More generally $\zeta_{X,\rho}(s) = \prod_{\gamma \in \mathcal{P}} \det \left(1 - \rho(\gamma)e^{-s\ell(\gamma)}\right)$.

Example

On \mathbb{S}^1 of length ℓ , flow ∂_{θ} , u generator of $\pi_1(M)$, monodromy $\rho(u) \in \mathbb{C}^*$, $\zeta_{X,\rho}(s) = (1 - \rho(u)e^{-s\ell})$.

Nguyen Viet Dang (Université Lyon 1)

Cercle 5¹ monodranie p(u) " Itamport

э

・ロン ・四 と ・ ヨ と ・ ヨ と …

Some questions on $\zeta_{X,\rho}$.

 $\zeta_{X,\rho}$ holomorphic when $Re(s) > h_{top}$. Two natural equations :

• Analytic continuation? Conjectured by Smale.

э

イロン イヨン イヨン イヨン

Some questions on $\zeta_{X,\rho}$.

- $\zeta_{X,\rho}$ holomorphic when $Re(s) > h_{top}$. Two natural equations :
 - Analytic continuation? Conjectured by Smale.

Markov partition techniques : Rugh(1996) 3d analytic Axiom A flows building on Ruelle(1990), Fried(1995) analytic Anosov flows Functional analytic techniques : Liverani(2005) Anosov diffeos, Kitaev(1999) and Baladi–Tsujii(2007) Axiom A diffeos, Giuletti–Liverani–Pollicott(2013) C^{∞} Anosov flows, Dyatlov–Zworski(2013) μ local proof relying on radial estimates of Melrose(1994),Vasy(2013) and results of Faure–Sjöstrand(2009), Dyatlov–Guillarmou(2018) C^{∞} Axiom A flows = Smale's conjecture.

Some questions on $\zeta_{X,\rho}$.

 $\zeta_{X,\rho}$ holomorphic when $Re(s) > h_{top}$. Two natural equations :

• Analytic continuation? Conjectured by Smale.

Markov partition techniques : Rugh(1996) 3d analytic Axiom A flows building on Ruelle(1990), Fried(1995) analytic Anosov flows Functional analytic techniques : Liverani(2005) Anosov diffeos, Kitaev(1999) and Baladi–Tsujii(2007) Axiom A diffeos, Giuletti–Liverani–Pollicott(2013) C^{∞} Anosov flows, Dyatlov–Zworski(2013) μ local proof relying on radial estimates of Melrose(1994),Vasy(2013) and results of Faure–Sjöstrand(2009), Dyatlov–Guillarmou(2018) C^{∞} Axiom A flows = Smale's conjecture.

Theorem

The function $\zeta_{X,\rho}$ has meromorphic continuation to the complex plane for X nonsingular C^{∞} Axiom A hence for X Anosov.

イロト 不得 トイヨト イヨト

Some questions on $\zeta_{X,\rho}$.

 $\zeta_{X,\rho}$ holomorphic when $Re(s) > h_{top}$. Two natural equations :

• Analytic continuation? Conjectured by Smale.

Markov partition techniques : Rugh(1996) 3d analytic Axiom A flows building on Ruelle(1990), Fried(1995) analytic Anosov flows Functional analytic techniques : Liverani(2005) Anosov diffeos, Kitaev(1999) and Baladi–Tsujii(2007) Axiom A diffeos, Giuletti–Liverani–Pollicott(2013) C^{∞} Anosov flows, Dyatlov–Zworski(2013) μ local proof relying on radial estimates of Melrose(1994),Vasy(2013) and results of Faure–Sjöstrand(2009), Dyatlov–Guillarmou(2018) C^{∞} Axiom A flows = Smale's conjecture.

Theorem

The function $\zeta_{X,\rho}$ has meromorphic continuation to the complex plane for X nonsingular C^{∞} Axiom A hence for X Anosov.

• Topological content of ζ , questions by Bowen, Fried.

Some questions on $\zeta_{X,\rho}$.

 $\zeta_{X,\rho}$ holomorphic when $Re(s) > h_{top}$. Two natural equations :

• Analytic continuation? Conjectured by Smale.

Markov partition techniques : Rugh(1996) 3d analytic Axiom A flows building on Ruelle(1990), Fried(1995) analytic Anosov flows Functional analytic techniques : Liverani(2005) Anosov diffeos, Kitaev(1999) and Baladi–Tsujii(2007) Axiom A diffeos, Giuletti–Liverani–Pollicott(2013) C^{∞} Anosov flows, Dyatlov–Zworski(2013) μ local proof relying on radial estimates of Melrose(1994),Vasy(2013) and results of Faure–Sjöstrand(2009), Dyatlov–Guillarmou(2018) C^{∞} Axiom A flows = Smale's conjecture.

Theorem

The function $\zeta_{X,\rho}$ has meromorphic continuation to the complex plane for X nonsingular C^{∞} Axiom A hence for X Anosov.

• Topological content of ζ , questions by Bowen, Fried.

Both problems deeply related.

Abstract abelian BF theory of chain complexes.

- (C^{\bullet}, d) cochain complex, \mathbb{Z} -graded vector space.
- Fields $\mathcal{F} = C^{\bullet}[-1] \oplus (C^{\bullet})^*[-2]$. $(A, B) \in \mathcal{F}$ where A cochain, B chain.
- Action functional : $S(A, B) = \langle B, dA \rangle = \sum_{j=0}^{n-1} \langle B^{j+1}, dA^j \rangle$.
- Chain contraction K on C^{\bullet} satisfies the chain homotopy equation

$$Id - \Pi = dK + Kd \tag{1}$$

defines Hodge decomposition $Im(K) + Im(d) + Im(\Pi)$ where Im(K) called **coexact**.

• Then Lagrangian (BV version of gauge fixing) in ${\cal F}$

$$\mathbb{L}_{K} = C^{\bullet}_{coex}[-1] \oplus (C^{\bullet}_{coex})^{*}[-2] \subset \mathcal{F}$$

 (C^{\bullet}, d) acyclic,

$$\tau(C^{\bullet}, d) = \int_{\mathcal{L}} e^{iS(A,B)} \mu$$
⁽²⁾

イロト イヨト イヨト イヨト

where half-density μ complicated normalization. Gaussian integral.

Acyclicité inage

<ロト <回ト < 回ト < 回ト

•

Geometric implementation.

Follows Mnev, Cattaneo-Mnev-Reshetikhin.

	Combinatorial	Continuum
Spacetime	CW-complex (C^{\bullet}, d)	Riemannian Manifold (M,g)
Fields	$C^{ullet}[-1] \oplus (C^{ullet})^*[-2]$	$\Omega^{-\bullet}(M,E)[1] \oplus \Omega^{-\bullet}(M,E)[n-2]$
Propagator K	[d, K] = Id	${\sf K}=d^{ abla *}\Delta^{-1}$
	chain contraction	Hodge $[d^{\nabla}, K] = Id$
Lagrangian	\mathbb{L}_{K}	\mathbb{L}_{Δ}
Partition fun. $\int_{\mathbb{L}} e^{iS(A,B)} \mu$	$\tau(C^{\bullet},d)=\tau_R$	$ au(M, d^{\nabla}) = \prod_{j=0}^{n} \det_{\zeta} (\Delta_{\Omega^{j}})^{\frac{j}{2}(-1)^{j+1}}$
	CMR, Reidemeister torsion	Schwarz, Ray–Singer

Cheeger–Müller : $\tau_R = \tau_{RS}$ hence both approach coincide.

э

イロン イヨン イヨン イヨン

Hadfield-Kandel-Schiavina's idea.

Instead of using Hodge theory (the **metric** g) for gauge fixing, use the vector field X (**dynamics**). Key idea :

$$\underbrace{[d^{\nabla}, \iota_X] = \mathcal{L}_X^{\nabla}}_{\text{Lie-Cartan}} \text{ versus } \underbrace{[d^{\nabla}, d^{\nabla *}] = \Delta}_{\text{Hodge-de Rham}}.$$

Define Lagrangian (similar to axial gauge fixing)

$$\mathbb{L}_X = Im(\iota_X) \cap \Omega^{-\bullet}(M, E)[1] \oplus Im(\iota_X) \cap \Omega^{-\bullet}(M, E)[n-2].$$

In fact $Im(\iota_X) = \ker(\iota_X)$ since Koszul complex

$$\stackrel{{}^{\iota_{X}}}{\longmapsto} \Omega^{\bullet}(M,E) \stackrel{{}^{\iota_{X}}}{\longmapsto} \Omega^{\bullet-1}(M,E) \stackrel{{}^{\iota_{X}}}{\longmapsto}$$

is acyclic.

Formally or **definition** (HKS) :

$$\int_{\mathbb{L}_{X} \subset \Omega^{1}(M,E) \oplus \Omega^{n-2}(M,E)} e^{iS(A,B)} \mu = \prod_{\substack{j=0\\\text{flat determinants instead of }\zeta}^{n} \det^{\flat}(\mathcal{L}_{X}|_{\Omega^{j}})^{j(-1)^{j}} = \prod_{\substack{\gamma\\ \text{flat determinants instead of }\zeta}^{n} \det^{\flat}(Id - \rho(\gamma))^{(-1)^{d}}.$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

Fried

Relate $|\zeta_{X,\rho}(0)|$ to $\tau_R(\rho)$. **Reformulation** (HKS) : is the BV integral gauge fixing invariant if we go from \mathbb{L}_{Δ} (analytic torsion) to \mathbb{L}_X (Ruelle zeta)? Why is there a difficulty? Because in ∞ -dimension, BV Stokes Theorem might no longer hold true!

Nguyen Viet Dang (Université Lyon 1)

<ロ> (日) (日) (日) (日) (日)

★ロト ★御 と ★注 と ★注 と 一注

Theorem

() when $M = S^*M$ for hyperbolic M, ρ unitary, then Fried(1986) showed

$$\tau_R(\rho) = |\zeta_{X,\rho}(0)|^{(-1)^{d-1}}.$$
(3)

9 *D*-Guillarmou-Rivière-Shen, if for some flat connection ∇ and Anosov X_0 , we have $ker(X_0) = \{0\}$ then

$$\zeta_{X,\rho} = \zeta_{X_0,\rho} \tag{4}$$

(日) (同) (三) (三)

for all X near X_0 . In particular, the Fried conjecture holds true for X Anosov in 3d if $b_1(M) > 0$ and in 5d near geodesic flows of hyperbolic manifolds.

Theorem

() when $M = S^*M$ for hyperbolic M, ρ unitary, then Fried(1986) showed

$$\tau_R(\rho) = |\zeta_{X,\rho}(0)|^{(-1)^{d-1}}.$$
(3)

O-Guillarmou-Rivière-Shen, if for some flat connection ∇ and Anosov X₀, we have ker(X₀) = {0} then

$$\zeta_{X,\rho} = \zeta_{X_0,\rho} \tag{4}$$

(日) (同) (三) (三)

for all X near X_0 . In particular, the Fried conjecture holds true for X Anosov in 3d if $b_1(M) > 0$ and in 5d near geodesic flows of hyperbolic manifolds.

	Ruelle	Ray–Singer
Spacetime	Contact Anosov (M, θ, X)	Riemannian Manifold (M, g)
Fields	$\Omega^{-\bullet}(M,E)[1] \oplus \Omega^{-\bullet}(M,E)[n-2]$	idem
Propagator K	$K = \iota_X \mathcal{L}_X^{\nabla - 1}$	${\cal K}=d^{ abla *}\Delta^{-1}$
	Lie-Cartan	$Hodge\;[\mathit{d}^\nabla, \mathit{K}] = \mathit{Id}$
Lagrangian	\mathbb{L}_X	\mathbb{L}_{Δ}
Partition fun.	$\prod_{\gamma} det(\mathit{Id} - ho(\gamma))^{(-1)^d}$	$\prod_{j=0}^{n} det_{\zeta}(\Delta_{\Omega^{j}})^{rac{j}{2}(-1)^{j+1}}$

- What if ρ acyclic but ker $(X) \neq \{0\}$? $\zeta_{X,\rho}(0)$ might vanish or poles : ill-defined.
- $\bullet\,$ How to remove |.| to capture the phase of zeta ? Compare with complex torsions ?

э

イロト イヨト イヨト イヨト

- What if ρ acyclic but ker $(X) \neq \{0\}$? $\zeta_{X,\rho}(0)$ might vanish or poles : ill-defined.
- How to remove |.| to capture **the phase of zeta**? Compare with complex torsions? If ker $(X) \neq \{0\}$?
- To compute torsion of a chain complex, need basis. No special basis in C(0) for X Anosov.

3

イロン イ団と イヨン イヨン

- What if ρ acyclic but ker $(X) \neq \{0\}$? $\zeta_{X,\rho}(0)$ might vanish or poles : ill-defined.
- How to remove |.| to capture the phase of zeta? Compare with complex torsions?
 If ker(X) ≠ {0}?
- To compute torsion of a chain complex, need basis. No special basis in C(0) for X Anosov.

For CW complex, distinguished basis given by cell-decomposition.

イロン イ団と イヨン イヨン

- What if ρ acyclic but ker $(X) \neq \{0\}$? $\zeta_{X,\rho}(0)$ might vanish or poles : ill-defined.
- How to remove |.| to capture the phase of zeta? Compare with complex torsions?
 If ker(X) ≠ {0}?

To compute torsion of a chain complex, need basis. No special basis in C(0) for X Anosov.

For CW complex, distinguished basis given by cell-decomposition.

Key observation : if X is contact Anosov, canonical involution Γ on C(0).

・ロト ・個ト ・ヨト ・ヨト

Yann Chaubet.

2

イロン 不聞と 不良と 不良とう

Observation : if X contact Anosov, canonical involution Γ on C(0).

2

イロン イ団 とくほと くほとう

Observation : if X contact Anosov, canonical involution Γ on C(0).

Proposition (Braverman-Kappeler)

 Γ defines intrinsic torsion of finite dimensional generalized kernel $\tau_{\Gamma}(X)$.

イロト イヨト イヨト イヨト

Observation : if X contact Anosov, canonical involution Γ on C(0).

Proposition (Braverman-Kappeler)

 Γ defines intrinsic torsion of finite dimensional generalized kernel $\tau_{\Gamma}(X)$.

Definition (Dynamical torsion)

Inspired by Braverman-Kappeler and Hutchings thesis,

$$\tau(X,\rho) = \underbrace{\tau_{\Gamma}(X)}_{\text{torsion of ker}} \times \underbrace{\lim_{s \to 0^+} s^{-m} \zeta_X(s,\rho)}_{\text{renormalized zeta}}.$$

イロト イポト イヨト イヨト

(5)

Observation : if X contact Anosov, canonical involution Γ on C(0).

Proposition (Braverman-Kappeler)

 Γ defines intrinsic torsion of finite dimensional generalized kernel $\tau_{\Gamma}(X)$.

Definition (Dynamical torsion)

Inspired by Braverman-Kappeler and Hutchings thesis,

$$\tau(X,\rho) = \underbrace{\tau_{\Gamma}(X)}_{\text{torsion of ker}} \times \underbrace{\lim_{s \to 0^+} s^{-m} \zeta_X(s,\rho)}_{\text{renormalized zeta}}.$$

Generalizes $\zeta_X(0, \rho)$.

・ロト ・ 四ト ・ ヨト ・ ヨト

(5)

Observation : if X contact Anosov, canonical involution Γ on C(0).

Proposition (Braverman-Kappeler)

 Γ defines intrinsic torsion of finite dimensional generalized kernel $\tau_{\Gamma}(X)$.

Definition (Dynamical torsion)

Inspired by Braverman-Kappeler and Hutchings thesis,

$$\tau(X,\rho) = \underbrace{\tau_{\Gamma}(X)}_{\text{torsion of ker}} \times \underbrace{\lim_{s \to 0^+} s^{-m} \zeta_X(s,\rho)}_{\text{renormalized zeta}}.$$

Generalizes $\zeta_X(0, \rho)$.

In field theory terminology, similar to Wilsonian philosophy and BV fiber integral Torsion = Torsion of low energy fields \times torsion of high energy fields

イロト 不得 トイヨト イヨト

(5)

3

イロト イヨト イヨト イヨト
Euler structures.

Definition

Spider fixes ambiguity of trivialization of (E, ∇) over cells = Euler structures Eul(M). H₁ (M, \mathbb{Z}) acts freely and transitively on Eul(M).

To fix ambiguities of τ_R , consider torsion as holomorphic function of reps in $GL_n(\mathbb{C})$.

2

To fix ambiguities of τ_R , consider torsion as **holomorphic function of reps** in $GL_n(\mathbb{C})$.

- acyclic $\rho =$ flat bundle (E, ∇) .
- $\mathfrak{e} \in Eul(M)$ spider = trivialization of E on cells, twisted complex $(C^{\bullet}_{\mathfrak{e}}, \partial_{\rho})$.

э

イロン イ団と イヨン イヨン

To fix ambiguities of τ_R , consider torsion as holomorphic function of reps in $GL_n(\mathbb{C})$.

- acyclic $\rho =$ flat bundle (E, ∇) .
- $\mathfrak{e} \in Eul(M)$ spider = trivialization of E on cells, twisted complex $(C^{\bullet}_{\mathfrak{e}}, \partial_{\rho})$.

Definition (Turaev torsion) $(\rho, \mathfrak{e}) \mapsto \tau_{\mathfrak{e}}(\rho) = \tau (C^{\bullet}_{\mathfrak{e}}, \partial_{\rho}) \in \mathbb{C}^*.$

3

イロン イロン イヨン イヨン

To fix ambiguities of τ_R , consider torsion as **holomorphic function of reps** in $GL_n(\mathbb{C})$.

- acyclic ρ = flat bundle (E, ∇).
- $\mathfrak{e} \in Eul(M)$ spider = trivialization of E on cells, twisted complex $(C^{\bullet}_{\mathfrak{e}}, \partial_{\rho})$.

Definition (Turaev torsion) $(\rho, \mathfrak{e}) \mapsto \tau_{\mathfrak{e}}(\rho) = \tau (C_{\mathfrak{e}}^{\bullet}, \partial_{\rho}) \in \mathbb{C}^*. \text{ no } |.|.$

э

イロン イロン イヨン イヨン

To fix ambiguities of τ_R , consider torsion as **holomorphic function of reps** in $GL_n(\mathbb{C})$.

- acyclic $\rho =$ flat bundle (E, ∇) .
- $\mathfrak{e} \in Eul(M)$ spider = trivialization of E on cells, twisted complex $(C^{\bullet}_{\mathfrak{e}}, \partial_{\rho})$.

Definition (Turaev torsion) $(\rho, \mathfrak{e}) \mapsto \tau_{\mathfrak{e}}(\rho) = \tau (C_{\mathfrak{e}}^{\bullet}, \partial_{\rho}) \in \mathbb{C}^*. \text{ no } |.|.$

Example

On \mathbb{S}^1 , character variety $Rep = Hom(\pi_1(\mathbb{S}^1), \mathbb{C}^*) \simeq \mathbb{C}^*$.

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

To fix ambiguities of τ_R , consider torsion as holomorphic function of reps in $GL_n(\mathbb{C})$.

- acyclic $\rho =$ flat bundle (E, ∇) .
- $\mathfrak{e} \in Eul(M)$ spider = trivialization of E on cells, twisted complex $(C^{\bullet}_{\mathfrak{e}}, \partial_{\rho})$.

Definition (Turaev torsion) $(\rho, \mathfrak{e}) \mapsto \tau_{\mathfrak{e}}(\rho) = \tau (C_{\mathfrak{e}}^{\bullet}, \partial_{\rho}) \in \mathbb{C}^*. \text{ no } |.|.$

Example

On \mathbb{S}^1 , character variety $Rep = Hom(\pi_1(\mathbb{S}^1), \mathbb{C}^*) \simeq \mathbb{C}^*$. Acyclic part $Rep_0 = \mathbb{C}^* \setminus \{1\}$.

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

To fix ambiguities of τ_R , consider torsion as holomorphic function of reps in $GL_n(\mathbb{C})$.

- acyclic $\rho =$ flat bundle (E, ∇) .
- $\mathfrak{e} \in Eul(M)$ spider = trivialization of E on cells, twisted complex $(C^{\bullet}_{\mathfrak{e}}, \partial_{\rho})$.

Definition (Turaev torsion) $(\rho, \mathfrak{e}) \mapsto \tau_{\mathfrak{e}}(\rho) = \tau (C_{\mathfrak{e}}^{\bullet}, \partial_{\rho}) \in \mathbb{C}^*. \text{ no } |.|.$

Example

On \mathbb{S}^1 , character variety $Rep = Hom(\pi_1(\mathbb{S}^1), \mathbb{C}^*) \simeq \mathbb{C}^*$. Acyclic part $Rep_0 = \mathbb{C}^* \setminus \{1\}$. Choice Euler structure $\mathfrak{e} \in \mathbb{Z}$, $u \in \mathbb{C}^* \setminus \{1\} \mapsto \tau_{\mathfrak{e}}(u) = u^{\mathfrak{e}+1}(u-1)^{-1}$ holomorphic. Observe that $u \in \mathbb{S}^1 \setminus \{1\}$ is acyclic unitary, $|\tau_{\mathfrak{e}}(u)| = |(1-u)^{-1}| = \tau_R(u)$ hence $\tau_{\mathfrak{e}}$ extends and refines τ_R .

(日) (周) (日) (日) (日)

 $\mathcal{A} =$ space of Anosov vector fields on mfd M, open by structural stability. Rep₀ = acyclic reps in $Hom(\pi_1(M), GL_n(\mathbb{C}))$, open in $Hom(\pi_1(M), GL_n(\mathbb{C}))$.

3

 $\mathcal{A} =$ space of Anosov vector fields on mfd M, open by structural stability. Rep₀ = acyclic reps in $Hom(\pi_1(M), GL_n(\mathbb{C}))$, open in $Hom(\pi_1(M), GL_n(\mathbb{C}))$.

Theorem (Chaubet–D)

 $X \in \mathcal{A} \mapsto \tau(X, \rho)$ locally constant.

э

 $\mathcal{A} =$ space of Anosov vector fields on mfd M, open by structural stability. Rep₀ = acyclic reps in $Hom(\pi_1(M), GL_n(\mathbb{C}))$, open in $Hom(\pi_1(M), GL_n(\mathbb{C}))$.

Theorem (Chaubet-D)

 $X \in \mathcal{A} \mapsto \tau(X, \rho)$ locally constant. For all connected open $\mathcal{U} \subset Rep_0$ and $\mathcal{V} \subset \mathcal{A}$, $\exists \mathfrak{e} \in Eul(M)$, $C \in \mathbb{C}^*$

 $\mathcal{A} =$ space of Anosov vector fields on mfd M, open by structural stability. Rep₀ = acyclic reps in $Hom(\pi_1(M), GL_n(\mathbb{C}))$, open in $Hom(\pi_1(M), GL_n(\mathbb{C}))$.

Theorem (Chaubet–D)

 $X \in \mathcal{A} \mapsto \tau(X, \rho)$ locally constant. For all connected open $\mathcal{U} \subset Rep_0$ and $\mathcal{V} \subset \mathcal{A}$, $\exists \mathfrak{e} \in Eul(M)$, $C \in \mathbb{C}^*$

$$\underbrace{\tau(X,\rho)}_{\text{dynamical torsion}} = C \underbrace{\tau_{\mathfrak{e}}(\rho)^{-1}}_{\text{Turaev torsion}}, \forall X \in \mathcal{V}, \forall \rho \in \mathcal{U}$$

constant C does not depend on X, ρ

(日) (周) (王) (王)

 $\mathcal{A} =$ space of Anosov vector fields on mfd M, open by structural stability. Rep₀ = acyclic reps in $Hom(\pi_1(M), GL_n(\mathbb{C}))$, open in $Hom(\pi_1(M), GL_n(\mathbb{C}))$.

Theorem (Chaubet–D)

 $X \in \mathcal{A} \mapsto \tau(X, \rho)$ locally constant. For all connected open $\mathcal{U} \subset Rep_0$ and $\mathcal{V} \subset \mathcal{A}$, $\exists \mathfrak{e} \in Eul(M)$, $C \in \mathbb{C}^*$

$$\underbrace{\tau(X,\rho)}_{\textit{dynamical torsion}} = C \underbrace{\tau_{\mathfrak{e}}(\rho)^{-1}}_{\textit{Turaev torsion}}, \forall X \in \mathcal{V}, \forall \rho \in \mathcal{U}$$

constant C does not depend on X, ρ both sides holomorphic functions of $\rho \in \operatorname{Rep}_0$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Questions.

- What is the BF theory interpretation of Turaev's torsion?
- Can I interpret the fact that if two Anosov vector fields (X_1, X_2) define different Euler structures then $\tau(X_1, \rho) \neq \tau(X_2, \rho)$ as some **failure** of the BV Stokes Theorem in ∞ -dim?
- Analogy with the framing anomalies for Chern-Simons theory?

イロン イ団 とくほと くほとう

Two point function = Poincaré series.

M compact with variable negative curvature, (q_1, q_2) pair of points on *M*. Define the series

$$\eta(q_1, q_2; z) = \sum_{\gamma} e^{-\ell(\gamma)z}$$
(6)

イロト 不得 トイヨト イヨト

where γ denotes the **geodesic** arcs joining q_1, q_2 .

Two point function = Poincaré series.

M compact with variable negative curvature, (q_1, q_2) pair of points on *M*. Define the series

$$\eta(q_1, q_2; z) = \sum_{\gamma} e^{-\ell(\gamma)z}$$
(6)

where γ denotes the **geodesic arcs** joining q_1, q_2 . More generally, for pair (γ_1, γ_2) of closed **homologically trivial** geodesics :

$$\eta(\gamma_1, \gamma_2; z) = \sum_{\gamma} e^{-\ell(\gamma)z}$$
(7)

< ロ > < 同 > < 回 > < 回 > < 回 > <

where sum over **normal geodesic arcs** from γ_1 to γ_2 .

Two point function = Poincaré series.

M compact with variable negative curvature, (q_1, q_2) pair of points on *M*. Define the series

$$\eta(q_1, q_2; z) = \sum_{\gamma} e^{-\ell(\gamma)z}$$
(6)

where γ denotes the **geodesic arcs** joining q_1, q_2 . More generally, for pair (γ_1, γ_2) of closed **homologically trivial** geodesics :

$$\eta(\gamma_1, \gamma_2; z) = \sum_{\gamma} e^{-\ell(\gamma)z}$$
(7)

where sum over normal geodesic arcs from γ_1 to γ_2 .

Poincaré series studied by Margulis (phd 1970), Pollicott, Sharp, Paternain, Mañé, Paulin–Parkkonen and many others

Theorem (Margulis 1970)

Counting function

$$N_T = |\{\gamma|\ell(\gamma) \leqslant T\}| \simeq C e^{h_{top}T} \Longrightarrow$$

 η holomorphic on $Re(z) > h_{top} =$ topological entropy of the geodesic flow.

Do you remember

$$1+1+\dots+1+\dots=\zeta(0)=-rac{1}{2}\in\mathbb{Q}.$$

(8)

2

イロン イ団と イヨン イヨン

Do you remember

$$1+1+\cdots+1+\cdots=\zeta(0)=-\frac{1}{2}\in\mathbb{Q}.$$
(8)

Number theory, rationality of z = 0 value of some *Hecke L-functions* η (Klingen, Siegel, Deligne, Ribet, Cassou–Noguès)

イロン イヨン イヨン イヨン

Do you remember

$$1+1+\cdots+1+\cdots=\zeta(0)=-\frac{1}{2}\in\mathbb{Q}.$$
(8)

Number theory, rationality of z = 0 value of some *Hecke L-functions* η (Klingen, Siegel, Deligne, Ribet, Cassou–Noguès)

Theorem (D-Rivière (2020))

The function $z \mapsto \eta(\gamma_1, \gamma_2; z)$ has analytic continuation to \mathbb{C} . If M surface, then

$$\eta(q_1, q_2; 0) = 1 + \cdots + 1 + \cdots = \frac{1}{\chi(M)} \in \mathbb{Q}.$$
(9)

イロト イ団ト イヨト イヨト

Nguyen Viet Dang (Université Lyon 1)

Do you remember

$$1+1+\cdots+1+\cdots=\zeta(0)=-\frac{1}{2}\in\mathbb{Q}.$$
(8)

Number theory, rationality of z = 0 value of some *Hecke L-functions* η (Klingen, Siegel, Deligne, Ribet, Cassou–Noguès)

Theorem (D-Rivière (2020))

The function $z \mapsto \eta(\gamma_1, \gamma_2; z)$ has analytic continuation to \mathbb{C} . If M surface, then

$$\eta(q_1,q_2;0)=1+\cdots+1+\cdots=\frac{1}{\chi(M)}\in\mathbb{Q}.$$
(9)

イロト イヨト イヨト イヨト

For γ_1, γ_2 closed homologically trivial geodesic :

$$\eta(\gamma_1,\gamma_2;0) = 1 + \dots + 1 + \dots = \frac{\chi(\Omega_1)\chi(\Omega_2)}{\chi(M)} - \chi(\Omega_1 \cap \Omega_2) + \frac{1}{2}\chi(\gamma_1 \cap \gamma_2) \in \mathbb{Q}$$

where Ω_1, Ω_2 surfaces bounding γ_1, γ_2 .

Nguyen Viet Dang (Université Lyon 1)

(10)

Thanks for the invitation and for listening!

2

イロン 不良と 不良とう