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What is higher-spin gravity (HSGRA)?

e Some of the most promising approaches toward a quantum theory of gravity involve
higher-spin fields (string theory, bulk reconstruction ...)

e Higher-spin gravities (HSGRA) are theories where the massless spin-2 graviton
becomes part of the unique higher spin multiplet of massless gauge fields with
spin-s =0,1,2,...,00.

e The main idea: the more massless fields, the more gauge symmetries. The more
gauge symmetries, the fewer counter terms.

?
Higher-spin symmetry — quantum gravity

e In the context of the AdS/CFT correspondence: HSGRAs in AdS should be the dual
theories of (large N) free or weakly coupled Vector Model (Ising) and Chern-Simons
matter theories.

‘ HSGRAs may help us to make CFT predictions ‘




Are there local higher-spin theories that can avoid no-go theorems?

e There are two notable no-go theorems that forbid the existence of interacting
massless higher-spin theories in flat space

1- Weinberg's soft theorem: ruled out the existence of low energy massless
higher-spin fields in any local Lorentz-invariant theory by studying conservation
laws from a simple but stringent relation

E gsiplt...p T =0
i

2- Coleman-Mandula theorem: There is no higher-spin charge if the S-matrix of a
finite number of particles is non-trivial and analytic.

‘R1’3 x SO(1,3) x (internal symmetry group)

> The above theorems imply that

Higher-spin scattering amplitudes of massless fields in flat space should be trivial




If we insist on higher-spin theories, is there a way out?

e Higher-spin problem can be resolved with certain prices.

1-

Light-cone approach. Dealing directly with physical degrees of freedom and can
be used to construct local higher-spin theories (Bengtsson, Bengtsson, Brink;
Metsaev; Ponomarev-Skvortsov, )

e Not covariance.

Go to 3d. Typically topological and can be written in Chern-Simons form
(Blencowe+(Berhshoeff-Stelle); Pope-Townsend; Fradkin-Linetsky; Kuzenko;
Henneaux-Rey; Campoleoni-Fredenhagen-Pfenninger-Theisen; ...)

e No propagating degree of freedom.

Higher-spinization of Weyl gravity. One can write down covariant local action for
conformal HSGRA (Tseylin-Segal; Grigoriev-Tseylin; Bakaert-Joung-Mourad;...)
e Non-unitary due to higher derivatives in the kinetic action



If we insist on higher-spin theories, is there a way out?

4-

Twistor theory. Locality is controllable from the beginning by working with chiral
representations. All vertices match with the ones of the light-cone approach.

= Self-dual conformal HSGRA (Adamo-Hahnel-Mcloughlin)
= Self-dual HS Yang-Mills and gravity (Adamo-T; Herfray, Krasnov, Skvortsov)

e Parity invariance is violated by construction.

Matrix model type HS. Work with IKKT matrix model on quantized twistor
space where higher-spin fields are introduced to mitigate the effect of Lorentz
violation by the non-commutativity of matrices (Steinacker et. al.)

e Parity invariance is violated by construction.

> In constructing higher-spin theories, there is no free lunch.

Unitary higher-spin theories are non-local. (Boulanger, Kessel, Skvortsov,
Taronna ; Bakaert, Erdmenger, Ponomarev, Sleight ; Das, de Mello Koch,
Jevicki-Rodrigues, Yoon)

Local higher-spin theories are either non-unitary or non parity-invariant.



This talk

e Part I.
© Review of no-go theorems/results and some approaches that seem to work.

e Part Il.

¢ Discuss Fronsdal and chiral representations.

¢ Revisit Weinberg's soft theorem.

© Some examples of local higher-spin theories obtained from twistor space.

e Part Ill.
o IKKT matrix model type higher-spin gauge theory.

e Part IV.
o Conclusion.



Fronsdal and chiral representations used in 4-dim higher-spin theories

o Any massless higher-spin field in 4d can be represented as To(m) &(n) ¢ S(m, n).

e Fronsdal rep (m=n):

- Fields are Lorentzian real. They can
propagate on flat and (A)dS.

- Theories constructed from Fronsdal
representation are unitary, parity-invariant
but suffer from non-locality issues.

- Subject to Weinberg's soft theorem in
flat space.

- Flat limit of interacting (A)dS theories
are hard to achieved.

e Chiral rep (m>n>0,n=0,1):

- Fields are not Lorentzian real. They can
propagate on any self-dual background.

- Theories constructed from chiral rep are

instrinsically chiral and local (vertices
have bounded number of derivatives).

- Do not have problem with Weinberg's
soft theorem (parity violation).

- Flat limit of interacting (A)dS theories
can be taken smoothly.



Back to Weinberg's soft theorem

O Setup. Let M, be an n-point scattering amplitude between scalar fields ¢; with
momentum pf‘ ~ pj"é‘ and consider a soft emitting higher-spin field As with
momentum k,, ~ kqa. Gauge invariance of the S-matrix implies the following
constraints.

Hs

o Fronsdal rep. We have Zigs,,-plf‘l ...p;*"" = 0. In particular,

= s=1 we have Z,’gf = 0 [charge conservation]

= s=2 we have Zig,-pf‘ = 0 which can be satisfied if g; = const and Zipf.‘ =)
[low-energy equivalence principle]

= s>2wehavegi=0 = ’ No local parity-invariant higher-spin theory‘

o Chiral rep. All constraints of Weinberg are accompanied by the soft momentum
. i B R o ¥ Yo
ke - In particular, Zm (E’ &s,m,i Piary - - - p,a7> ko' ...k, =0.
m times m times
= m is the number of derivatives in cubic vertices.
= Weinberg's soft theorem is related to derivatives rather than spins.

= As k — 0, there is no restriction on higher-spin interactions, which implies

It is possible to have local non-parity-invariant higher-spin theories




Examples of (quasi-)chiral HSGRAs

There are a few examples of (quasi-)chiral HSGRAs:

= Chiral HSGRA and its contractions. They are chiral theory with complex actions
and trivial S-matrix.
(Metsaev; [“Ponomarev”-({Skvortsov}]-T-Tsulaia)]|
(Sharapov-Skvortsov)-Sukhanov-van Dongen ...)

= HS-YM. A quasi-chiral theory with non-trivial scattering amplitudes (Adamo-T)

= HS-IKKT. It is closely related to HS-YM and is also a quasi-chiral theory
((Sperling-[Steinacker)-T])



HS-IKKT

PART Ill - HS-IKKT model

= (HS-)IKKT in general

= Semi-classical limit

= Algebra of functions on Hy, and P'?
= Hopf maps

e Our result: Local spinorial descriptions of HS-IKKT in Lorentzian and
Euclidean signature.



HS-IKKT - Generality

o IKKT matrix model (Ishibashi, Kawai, Kitazawa, Tsuchiya-96') is an alternative and
constructive description of type 1B superstring theory with SO(1, 9)-invariant action

0,1,...,9

Si= Tr([v’, YY1, Y+ Y a(3)AB Y, \uB]> o

where Y! are N x N hermitian matrices, and W are the SO(1,9) matrix-valued
Majorana-Weyl spinors. The action is invariant under § Y/ = U~1Y'U with U being an
arbitrary unitary matrix.

= Obtained by dimensional reduction of 10-dim SYM theory to a point

= Spacetime along with physical fields emerge from matrix dof. by considering the
fluctuations of the background Y as Y/ = y! + Al

= Naturally induces a HS gauge theory (HS-IKKT) on fuzzy (quantized) twistor
space (Steinacker et. al.) to mitigate the effect of Lorentz violation.

= HS-IKKT can be defined to be Lorentzian real but there is a price to pay
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HS-IKKT — Semi-classical limit

o In the large N limit, matrices become effectively commutative and we have the
dequantization rules (Review: 1911.03162)

Quantum/fuzzy geometry +—  Semi-classical /dequantized geometry
(matrix) Y —  y'= (Y] (function)
[L1 —» .} (Poisson bracket)

Tr — /U (symplectic volume form)

o y!'={y2 yT} can be used to define certain variety (Sy, Hy) embedded in R1:°.

© To construct a higher-spin gauge theory in 4d spacetime with Lorentzian signature,
2N
__P

we let y? € RL* where y,y? = —R? = 21— The Poisson bracket between y? is
{r%y*}=0"=-6m®, ab=01,234
where m?® are generators of so(1, 4)

{Map, Mg} = (MadNbe — Machbd — MbdNac + MbcTad)

{Mab, Ye} = Yanbe — YbNac
The above relations form an s0(2,4) algebra and describe a fuzzy 4-hyperboloid H,‘\‘,.
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HS-IKKT — Algebra of functions on Hy,

e The algebra of functions on H,‘\‘, consists of polynomials in terms of (y?, m3P)

subjects to the self-duality relation | €,5c0em?’y" = —4N/lp mye | . Note that

’ The presence of ¢4 breaks parity invariance of HS-IKKT ‘

which has been already realized at linearized level [upon integrating out 62°]
(Sperling-Steinacker)

e The space of functions on H,‘\‘, reads

B, m) = Z Fatn)c(s),b() 07 -+ O7Y° .y = @ nts
n,s

n,s

Truncated higher-spin algebra as subspace of ¢

N
ths(so(1,4)) = Zga(n),b(n)eab 07 = @ n

n
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HS-IKKT — Algebra of functions on P!

o It is useful to view H,‘\’, as P12 since it is a 6 real dimensional coadjoint orbit of
50(2,4) ~ SU(2,2).

o Let Z* (which are su(2,2) vectors) be homogeneous coordinates on P2 with
A =1,2,3,4. The Dirac conjugate Z 4 = ZT( 0)B 4 of ZA which obeys the Poisson

algebra
{ZA7 ZB} = (SAB

can be used to defined the number operator N := Z 7% = N = 2R/£p, which gives
the gradation

{N}ZA}:72A7 {szA}:+ZA

Then, the algebra of functions of P12

¢(P2) = End(Hn) = (N,0,0) ® (0,0, N) = ZfA MZAMZ gy

where Hpy = (0,0, N) = (0,0,1)®N is N-particle Fock space, consists of polynomials
with equal number of Z and Z.
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HS-IKKT — Hopf maps

o There are two Hopf maps we consider for the case of H,‘\‘I:
HY: ZM = ”ZA(w) sZ%, a=0,1,2,3,4
g _
H?? ZH»@::?ZA@Mf&ﬁ, 3=0,1,2,3,5

where t; transform as vectors under SO(2, 3) and

A 1 oy
b b
{ta,t}:ﬁma,
' = B2 4t — £ = , i=1,2,3,
=2 2 =1/¢2 1,2,3
Yot = 0=yt ©n=0,1,2,3

Due to the last relation, t* are understood as generators of the internal space-like S?
which underlies the higher-spin structure of HS-IKKT in Lorentzian signature.

e To get a Lorentzian SO(1, 3)-covariant spacetime M3, there are two projections
one can consider
7ry:ma"H>)/“:€,,m“57 nwy“}/’:—Rz—yi:—chosh2(T)
ab Y2

1 1
i me = tH = Em““, Tt & = 72 + ﬁ = +Z_ cosh2(‘r)
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HS-IKKT - Spinorial description

e Decompose ZA = (A%, u®) for « = 0,1 and & = 0,1 where the spinors (), )
transform in the fundamental rep of the compact subgroup SU(2) x SU(2) C SU(2,2).
(A, ) are not Weyl spinors.

In spinor notation, the number operator reduces to
N=Z,2=0N —[pial=N
Here, (ab) = —a“bPe,g = a%ba, [ab] = 78db56d6 = a%bg, where €91 =1 = ¢q;.

e The correspondence between P12 and H* is expressed via the incidence relations:

S I S b
(AX)
Substitute this to the Hopf maps, we obtain
_ i 1 . .
Y =R+ 6[uf], = _ﬁ(ﬂa'u +ufo’n),  (global)
1 ; 1 . .
0= i (;ﬂ)\ + ATN) , Ge= +H? ()\TU’A + ;ﬂa’u) , (local) .
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HS-IKKT - local spinor description of SO(1, 3)-covariant spacetime M3

In contrast to y* = ()P, y'), t* = (2, ') are not defined globally. Using the SO(1, 3)
isometry of M3, we can choose a reference point p = (p°,0,0,0) € M3 where
t“‘P = (0, t'). This spans the local P! which can be described by (X, \).

e It can be shown that at the reference point p, t' ~ Afo/\.
e Any function supported by an open subset U, C M3 can be effectively written as

e(ylt) = Z pie ') = Z PpEs APEORAE)
s=0 s=0

The ‘derivative’ wrt. to momenta background t* is defined by
{t, oI\ )} ’u,, = ({t",y"}0, + {t",X*}0a + {tﬂ,X“}éa)w(y|A,X)|Up

The effective metric can be computed by considering the kinetic term
{t*, () Htu, o(y)} (Steinacker)

ARV = kv sinhQ(T)
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HS-IKKT — Gauge fixing and propagating dof. in Lorentzian HS-IKKT

¢ Unlike the standard massless, massive or conformal HS theories, the number of
propagating dof. in HS-IKKT fall between the ones of massive and conformal theories.

ay = Z .A,,(S)mty(s)
s

which has a total 4(2s+ 1) off-shell dof., we can remove (2s+ 1) degrees of freedom
by removing the pure gauge modes with the gauge transformation

day = {tu, &}

and removing an extra (2s+ 1) dof. by choosing the gauge fixing condition to be
{tu,a"} =0

This leaves us with a total of 252(25—4— 1) physical dof. Thus,

e Starting with

’ A spin-s field has 2(2s — 1) dof. in HS-IKKT

e Remarks:

= All higher-spin fields are not divergence-less a priori.

= |f we can impose divergence-free condition, we get down to the standard massless
higher-spin fields.



HS-IKKT — In progress

e On-going work with Lorentzian HS-IKKT:

= Spinorial description for (HS-)IKKT model with Lorentzian signature is not
evident as spinors are space-like and transform under SU(2) x SU(2)
rather than SL(2, C) [local Lorentz invariance is not manifest].

= Understand more about these space-like spinors.
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HS-IKKT — Euclidean case

¢ In Euclidean signature, things seem to be a bit better. In particular, we can obtain
the full action of HS-IKKT in spinorial description

1 1 8, 4 » 1 .
S= / Sfaaf® + 5{paa,¢}{pad,¢} + E{paw”}{pm,dm}

I
= X T{Pag X Ty 2X I{Pa57X5 I+ XaI{}’O» }_7XQI{YO7X 1}

1
2{)/0717 Y0, Pac} + = {YO7¢>}{Y0,¢}+ {YO7¢IJ}{YO»¢IJ}

i

+ =Xaz{d, NO‘I}— Xaz{d% I}—*f(aI{GSIJ X7} + - Xa HHorg, %47}

+ {8}, 6} + 5{557 o Hb, o} + §{¢”7 MM b1y, dun}

N = N

where fo¢ = {p@4, p&} = {y®4 + a%, y*¢ + a%%}. Our results are:

= Higher-spin modes can be shown to be completely disentangled in the YM sector
(f? term) using spinorial formalism.

= We attempted to compute scattering amplitudes of the massless sector in 2 term
by imposing the divergence-less condition *“a,g = 0 to reduce the dof. to 2.
We found that M, = 0 in this sector.
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Conclusion — Remarks

e Take-home message.

= Unitary higher-spin theories are non-local.
= Local higher-spin theories are either non-unitary or non parity-invariant.
= Weinberg's soft theorem is related to derivatives rather than spins.

= Local higher-spin theories constructed from chiral reps with
higher-derivative interactions tend to have simple S-matrices.
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Conclusion — Outlook

Some future directions:

= Explore the landscape of consistent local higher-spin theories by probing for
quasi-chiral higher-spin theories.
= Search for a world-sheet description.

= Compute some observables of (HS)-IKKT theory.

And many more to come :)
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Keep calm and work on higher-spin theories
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