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What is higher-spin gravity (HSGRA)?

• Some of the most promising approaches toward a quantum theory of gravity involve
higher-spin fields (string theory, bulk reconstruction ...)

• Higher-spin gravities (HSGRA) are theories where the massless spin-2 graviton
becomes part of the unique higher spin multiplet of massless gauge fields with
spin-s = 0, 1, 2, . . . , ∞ .
• The main idea: the more massless fields, the more gauge symmetries. The more
gauge symmetries, the fewer counter terms.

Higher-spin symmetry ?−→ quantum gravity

• In the context of the AdS/CFT correspondence: HSGRAs in AdS should be the dual
theories of (large N) free or weakly coupled Vector Model (Ising) and Chern-Simons
matter theories.

HSGRAs may help us to make CFT predictions
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Are there local higher-spin theories that can avoid no-go theorems?

• There are two notable no-go theorems that forbid the existence of interacting
massless higher-spin theories in flat space

1- Weinberg’s soft theorem: ruled out the existence of low energy massless
higher-spin fields in any local Lorentz-invariant theory by studying conservation
laws from a simple but stringent relation∑

i

gs,i pµ1
i . . . pµs−1

i = 0

2- Coleman-Mandula theorem: There is no higher-spin charge if the S-matrix of a
finite number of particles is non-trivial and analytic.

R1,3 ⋊ SO(1, 3) × (internal symmetry group)

▷ The above theorems imply that

Higher-spin scattering amplitudes of massless fields in flat space should be trivial
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If we insist on higher-spin theories, is there a way out?

• Higher-spin problem can be resolved with certain prices.

1- Light-cone approach. Dealing directly with physical degrees of freedom and can
be used to construct local higher-spin theories (Bengtsson, Bengtsson, Brink;
Metsaev; Ponomarev-Skvortsov, ...).
• Not covariance.

2- Go to 3d. Typically topological and can be written in Chern-Simons form
(Blencowe+(Berhshoeff-Stelle); Pope-Townsend; Fradkin-Linetsky; Kuzenko;
Henneaux-Rey; Campoleoni-Fredenhagen-Pfenninger-Theisen; ...)
• No propagating degree of freedom.

3- Higher-spinization of Weyl gravity. One can write down covariant local action for
conformal HSGRA (Tseylin-Segal; Grigoriev-Tseylin; Bakaert-Joung-Mourad;...)
• Non-unitary due to higher derivatives in the kinetic action
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If we insist on higher-spin theories, is there a way out?

4- Twistor theory. Locality is controllable from the beginning by working with chiral
representations. All vertices match with the ones of the light-cone approach.

• Self-dual conformal HSGRA (Adamo-Hahnel-Mcloughlin)
• Self-dual HS Yang-Mills and gravity (Adamo-T; Herfray, Krasnov, Skvortsov)

• Parity invariance is violated by construction.

5- Matrix model type HS. Work with IKKT matrix model on quantized twistor
space where higher-spin fields are introduced to mitigate the effect of Lorentz
violation by the non-commutativity of matrices (Steinacker et. al.)
• Parity invariance is violated by construction.

▷ In constructing higher-spin theories, there is no free lunch.

• Unitary higher-spin theories are non-local. (Boulanger, Kessel, Skvortsov,
Taronna ; Bakaert, Erdmenger, Ponomarev, Sleight ; Das, de Mello Koch,
Jevicki-Rodrigues, Yoon)

• Local higher-spin theories are either non-unitary or non parity-invariant.
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This talk

• Part I.
� Review of no-go theorems/results and some approaches that seem to work.

• Part II.
� Discuss Fronsdal and chiral representations.
� Revisit Weinberg’s soft theorem.
� Some examples of local higher-spin theories obtained from twistor space.

• Part III.
� IKKT matrix model type higher-spin gauge theory.

• Part IV.
� Conclusion.

5



Fronsdal and chiral representations used in 4-dim higher-spin theories

� Any massless higher-spin field in 4d can be represented as Tα(m) α̇(n) ∈ S(m, n).

• Fronsdal rep (m=n):

- Fields are Lorentzian real. They can
propagate on flat and (A)dS.

- Theories constructed from Fronsdal
representation are unitary, parity-invariant
but suffer from non-locality issues.

- Subject to Weinberg’s soft theorem in
flat space.

- Flat limit of interacting (A)dS theories
are hard to achieved.

• Chiral rep (m ≥ n ≥ 0 , n = 0, 1):

- Fields are not Lorentzian real. They can
propagate on any self-dual background.

- Theories constructed from chiral rep are
instrinsically chiral and local (vertices
have bounded number of derivatives).

- Do not have problem with Weinberg’s
soft theorem (parity violation).

- Flat limit of interacting (A)dS theories
can be taken smoothly.
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Back to Weinberg’s soft theorem

□ Setup. Let Mn be an n-point scattering amplitude between scalar fields ϕi with
momentum pµ

i ∼ pαα̇
i and consider a soft emitting higher-spin field As with

momentum kµ ∼ kαα̇. Gauge invariance of the S-matrix implies the following
constraints.

� Fronsdal rep. We have
∑

i gs,i pµ1
i . . . pµs−1

i = 0. In particular,

• s = 1 we have
∑

i gi = 0 [charge conservation]
• s = 2 we have

∑
i gipµ

i = 0 which can be satisfied if gi = const and
∑

i pµ
i = 0

[low-energy equivalence principle]
• s > 2 we have gi = 0 ⇒ No local parity-invariant higher-spin theory

� Chiral rep. All constraints of Weinberg are accompanied by the soft momentum
kαα̇. In particular,

∑
m

( ∑n
i gs,m,i piαγ̇ . . . piαγ̇︸ ︷︷ ︸

m times

)
k γ̇

α . . . k γ̇
α︸ ︷︷ ︸

m times

= 0.

• m is the number of derivatives in cubic vertices.
• Weinberg’s soft theorem is related to derivatives rather than spins.
• As k → 0, there is no restriction on higher-spin interactions, which implies

It is possible to have local non-parity-invariant higher-spin theories
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Examples of (quasi-)chiral HSGRAs

There are a few examples of (quasi-)chiral HSGRAs:

• Chiral HSGRA and its contractions. They are chiral theory with complex actions
and trivial S-matrix.
(Metsaev; [“Ponomarev”-({Skvortsov}]-T-Tsulaia)||
〈Sharapov-Skvortsov〉-Sukhanov-van Dongen ...)

• HS-YM. A quasi-chiral theory with non-trivial scattering amplitudes (Adamo-T)
• HS-IKKT. It is closely related to HS-YM and is also a quasi-chiral theory

((Sperling-[Steinacker)-T])
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HS-IKKT

PART III - HS-IKKT model

• (HS-)IKKT in general
• Semi-classical limit
• Algebra of functions on H 4

N and P1,2

• Hopf maps

• Our result: Local spinorial descriptions of HS-IKKT in Lorentzian and
Euclidean signature.
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HS-IKKT – Generality

� IKKT matrix model (Ishibashi, Kawai, Kitazawa, Tsuchiya-96’) is an alternative and
constructive description of type IIB superstring theory with SO(1, 9)-invariant action

S = Tr
(

[Y I, Y J][Y I, Y J] + ΨA(γ̃I)AB[YI, ΨB]
)

, I = 0, 1, . . . , 9

where Y I are N × N hermitian matrices, and ΨA are the SO(1, 9) matrix-valued
Majorana-Weyl spinors. The action is invariant under δY I = U−1Y IU with U being an
arbitrary unitary matrix.

• Obtained by dimensional reduction of 10-dim SYM theory to a point
• Spacetime along with physical fields emerge from matrix dof. by considering the

fluctuations of the background Ȳ as Y I = Ȳ I + AI

• Naturally induces a HS gauge theory (HS-IKKT) on fuzzy (quantized) twistor
space (Steinacker et. al.) to mitigate the effect of Lorentz violation.

• HS-IKKT can be defined to be Lorentzian real but there is a price to pay
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HS-IKKT – Semi-classical limit

� In the large N limit, matrices become effectively commutative and we have the
dequantization rules (Review: 1911.03162)

Quantum/fuzzy geometry 7→ Semi-classical/dequantized geometry
(matrix) Y I 7→ y I = 〈y|Y I|y〉 (function)

[ , ] 7→ i{ , } (Poisson bracket)

Tr 7→
∫

℧ (symplectic volume form)

� y I = {y a, y I} can be used to define certain variety (S 4
N, H 4

N) embedded in R1,9.

� To construct a higher-spin gauge theory in 4d spacetime with Lorentzian signature,
we let y a ∈ R1,4 where yay a = −R 2 = −

ℓ2
pN2

4 . The Poisson bracket between ya is

{y a, y b} = θ ab = −ℓ2
p m ab , a, b = 0, 1, 2, 3, 4

where m ab are generators of so(1, 4)
{mab, mcd} = (madηbc − macηbd − mbdηac + mbcηad)

{mab, yc} = yaηbc − ybηac

The above relations form an so(2, 4) algebra and describe a fuzzy 4-hyperboloid H 4
N.
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HS-IKKT – Algebra of functions on H 4
N

• The algebra of functions on H 4
N consists of polynomials in terms of (y a, m ab)

subjects to the self-duality relation ϵabcdemabyc = −4N/ℓp mde . Note that

The presence of ϵabcde breaks parity invariance of HS-IKKT

which has been already realized at linearized level [upon integrating out θab]
(Sperling-Steinacker)

• The space of functions on H 4
N reads

C (ya, mab) =
∑
n,s

fa(n)c(s),b(n)θ
ab . . . θabyc . . . yc =

⊕
n,s

n
n + s

Truncated higher-spin algebra as subspace of C

ths(so(1, 4)) =
N∑

ga(n),b(n)θ
ab . . . θab =

⊕
n

n
n
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HS-IKKT – Algebra of functions on P1,2

� It is useful to view H 4
N as P1,2 since it is a 6 real dimensional coadjoint orbit of

SO(2, 4) ' SU(2, 2).

• Let ZA (which are su(2, 2) vectors) be homogeneous coordinates on P1,2 with
A = 1, 2, 3, 4. The Dirac conjugate Z̄ A = Z†

B(γ0)BA of ZA which obeys the Poisson
algebra

{ZA, Z̄ B} = δA
B

can be used to defined the number operator N := Z̄ AZA = N = 2R/ℓp, which gives
the gradation

{N , ZA} = −ZA , {N , Z̄ A} = +Z̄ A

Then, the algebra of functions of P1,2

C (P1,2) = End(HN) = (N, 0, 0) ⊗ (0, 0, N) =
∑

n

fA(n)
B(n)Z A(n)Z̄ B(n)

where HN = (0, 0, N) = (0, 0, 1)�N is N-particle Fock space, consists of polynomials
with equal number of Z and Z̄ .
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HS-IKKT – Hopf maps

� There are two Hopf maps we consider for the case of H 4
N:

H 4 : ZA 7→ ya :=
ℓp
2

Z̄ A(γa)A
BZB , a = 0, 1, 2, 3, 4

H 2,2 : ZA 7→ tâ :=
ℓp
2

Z̄ A(Σâ4)A
BZB , â = 0, 1, 2, 3, 5

where tâ transform as vectors under SO(2, 3) and

{tâ, tb̂} =
1

R2 mâb̂ ,

tâtâ = −t2
0 + titi − t2

5 = 1/ℓ2
p , i = 1, 2, 3 ,

yâtâ = 0 = yµtµ , µ = 0, 1, 2, 3

Due to the last relation, tµ are understood as generators of the internal space-like S2

which underlies the higher-spin structure of HS-IKKT in Lorentzian signature.

• To get a Lorentzian SO(1, 3)-covariant spacetime M1,3, there are two projections
one can consider

πy : m ab 7→ yµ = ℓpmµ5 , ηµνyµyν = −R2 − y2
4 = −R2 cosh2(τ)

πt : m âb̂ 7→ tµ =
1
R

mµ4 , ηµνtµtν =
1
ℓ2p

+
y2

4
ℓ2pR2 = +ℓ−2

p cosh2(τ)

14



HS-IKKT - Spinorial description

• Decompose ZA = (λα, µα̇) for α = 0, 1 and α̇ = 0̇, 1̇ where the spinors (λ, µ)
transform in the fundamental rep of the compact subgroup SU(2) × SU(2) ⊂ SU(2, 2).
(λ, µ) are not Weyl spinors.

In spinor notation, the number operator reduces to

N = Z̄ AZA = 〈λ λ̄〉 − [µ µ̄] = N

Here, 〈a b〉 = −aαbβϵαβ = aαbα , [a b] = −aα̇bβ̇ϵα̇β̇ = aα̇bα̇ where ϵ01 = 1 = ϵ01.

• The correspondence between P1,2 and H 4 is expressed via the incidence relations:

µα̇ = xαα̇λα ⇔ xαα̇ =
λαµ̄α̇ − λ̄αµα̇

〈λ λ̄〉

Substitute this to the Hopf maps, we obtain

y0 = R + ℓp[µ µ̄] , yi = −
1

4R
(

λ†σiµ + µ†σiλ
)

, (global)

t0 =
1

4R
(

µ†λ + λ†µ
)

, ti = +
1

4R
(

λ†σiλ + µ†σiµ
)

, (local) .
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HS-IKKT – local spinor description of SO(1, 3)-covariant spacetime M1,3

In contrast to yµ = (y0, yi), tµ = (t0, ti) are not defined globally. Using the SO(1, 3)
isometry of M1,3, we can choose a reference point p = (p0, 0, 0, 0) ∈ M1,3 where
tµ

∣∣
p

= (0, ti). This spans the local P1 which can be described by (λ, λ̄).

• It can be shown that at the reference point p, ti ∼ λ†σiλ.
• Any function supported by an open subset Up ⊂ M1,3 can be effectively written as

φ(y|t) =
∞∑
s=0

φi(s)ti(s) '
∞∑
s=0

φβ(2s)λ
β(s)λ̄β(s)

The ‘derivative’ wrt. to momenta background tµ is defined by{
tµ, φ(y|λ, λ̄)

}∣∣
Up

=
(

{tµ, yν}∂ν + {tµ, λα}∂α + {tµ, λ̄α}∂̄α

)
φ(y|λ, λ̄)

∣∣
Up

The effective metric can be computed by considering the kinetic term
{tµ, φ(y)}{tµ, φ(y)} (Steinacker)

γµν = ηµν sinh2(τ)
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HS-IKKT – Gauge fixing and propagating dof. in Lorentzian HS-IKKT

� Unlike the standard massless, massive or conformal HS theories, the number of
propagating dof. in HS-IKKT fall between the ones of massive and conformal theories.

• Starting with

aµ =
∑

s

Aν(s)|µtν(s)

which has a total 4(2s + 1) off-shell dof., we can remove (2s + 1) degrees of freedom
by removing the pure gauge modes with the gauge transformation

δaµ = {tµ, ξ}

and removing an extra (2s + 1) dof. by choosing the gauge fixing condition to be
{tµ, aµ} = 0

This leaves us with a total of
∑

s 2(2s + 1) physical dof. Thus,

A spin-s field has 2(2s − 1) dof. in HS-IKKT

• Remarks:

• All higher-spin fields are not divergence-less a priori.
• If we can impose divergence-free condition, we get down to the standard massless

higher-spin fields.
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HS-IKKT – In progress

• On-going work with Lorentzian HS-IKKT:

• Spinorial description for (HS-)IKKT model with Lorentzian signature is not
evident as spinors are space-like and transform under SU(2) × SU(2)
rather than SL(2,C) [local Lorentz invariance is not manifest].

• Understand more about these space-like spinors.
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HS-IKKT – Euclidean case

� In Euclidean signature, things seem to be a bit better. In particular, we can obtain
the full action of HS-IKKT in spinorial description

S =
∫

1
2

fααfαα +
1
2

{pαα̇, ϕ̂}{pαα̇, ϕ̂} +
1
2

{pαα̇, ϕIJ}{pαα̇, ϕIJ}

−
i
2

χ̄α
I{pαβ̇ , χ̃β̇I} +

i
2

χα
I{pαβ̇ , ¯̃χβ̇

I} +
i
2

¯̃χα̇I{y0, χ̃α̇I} −
i
2

χ̄αI{y0, χαI}

+
1
2

{y0, pαα̇}{y0, pαα̇} +
1
2

{y0, ϕ̂}{y0, ϕ̂} +
1
4

{y0, ϕIJ}{y0, ϕIJ}

+
i
2

¯̃χα̇I{ϕ̂, χ̃α̇I} −
i
2

χ̄αI{ϕ̂, χαI} −
i
2

χ̄α
I{ϕIJ , χαJ } +

i
2

¯̃χα̇
I{ϕIJ , χ̃α̇J }

+
1
2

{ϕ̂, ϕ̂}{ϕ̂, ϕ̂} +
1
2

{ϕ̂, ϕIJ}{ϕ̂, ϕIJ} +
1
2

{ϕIJ, ϕMN}{ϕIJ, ϕMN}

where fαα = {pα
α̇, pαα̇} = {yα

α̇ + aα
α̇, yαα̇ + aαα̇}. Our results are:

• Higher-spin modes can be shown to be completely disentangled in the YM sector
(f2 term) using spinorial formalism.

• We attempted to compute scattering amplitudes of the massless sector in f2 term
by imposing the divergence-less condition ∂αα̇aαα̇ = 0 to reduce the dof. to 2.
We found that Mn = 0 in this sector.
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Conclusion – Remarks

• Take-home message.

• Unitary higher-spin theories are non-local.
• Local higher-spin theories are either non-unitary or non parity-invariant.
• Weinberg’s soft theorem is related to derivatives rather than spins.
• Local higher-spin theories constructed from chiral reps with

higher-derivative interactions tend to have simple S-matrices.
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Conclusion – Outlook

Some future directions:

• Explore the landscape of consistent local higher-spin theories by probing for
quasi-chiral higher-spin theories.

• Search for a world-sheet description.
• Compute some observables of (HS)-IKKT theory.

And many more to come :)
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Keep calm and work on higher-spin theories
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