(Quasi-)chiral higher-spin theories from twistor space

Tung Tran (UMONS)

Large-N Matrix Models and Emergent Geometry, Vienna (2023)

• Some of the most promising approaches toward a quantum theory of gravity involve higher-spin fields (string theory, bulk reconstruction ...)

• Higher-spin gravities (HSGRA) are theories where the massless spin-2 graviton becomes part of the unique higher spin multiplet of massless gauge fields with spin- $s = 0, 1, 2, \ldots, \infty$.

• <u>The main idea:</u> the more massless fields, the more gauge symmetries. The more gauge symmetries, the fewer counter terms.

Higher-spin symmetry
$$\xrightarrow{?}$$
 quantum gravity

• In the context of the AdS/CFT correspondence: HSGRAs in AdS should be the dual theories of (large N) free or weakly coupled Vector Model (Ising) and Chern-Simons matter theories.

HSGRAs may help us to make CFT predictions

• There are two notable no-go theorems that forbid the existence of *interacting* massless higher-spin theories in flat space

1- Weinberg's soft theorem: ruled out the existence of low energy massless higher-spin fields in any local Lorentz-invariant theory by studying conservation laws from a simple but stringent relation

$$\sum_i g_{s,i} p_i^{\mu_1} \dots p_i^{\mu_{s-1}} = 0$$

2- **Coleman-Mandula theorem**: There is no higher-spin charge if the S-matrix of a finite number of particles is non-trivial and analytic.

 $\mathbb{R}^{1,3} \rtimes \mathit{SO}(1,3) imes$ (internal symmetry group)

> The above theorems imply that

Higher-spin scattering amplitudes of massless fields in flat space should be trivial

- Higher-spin problem can be resolved with certain prices.
 - Light-cone approach. Dealing directly with physical degrees of freedom and can be used to construct local higher-spin theories (Bengtsson, Bengtsson, Brink; Metsaev; Ponomarev-Skvortsov, ...).
 - Not covariance.
 - 2- Go to 3d. Typically topological and can be written in Chern-Simons form (Blencowe+(Berhshoeff-Stelle); Pope-Townsend; Fradkin-Linetsky; Kuzenko; Henneaux-Rey; Campoleoni-Fredenhagen-Pfenninger-Theisen; ...)
 - No propagating degree of freedom.
 - 3- Higher-spinization of Weyl gravity. One can write down covariant local action for conformal HSGRA (Tseylin-Segal; Grigoriev-Tseylin; Bakaert-Joung-Mourad;...)
 - Non-unitary due to higher derivatives in the kinetic action

- 4- **Twistor theory.** Locality is controllable from the beginning by working with chiral representations. All vertices match with the ones of the light-cone approach.
 - Self-dual conformal HSGRA (Adamo-Hahnel-Mcloughlin)
 - Self-dual HS Yang-Mills and gravity (Adamo-T; Herfray, Krasnov, Skvortsov)
 - Parity invariance is violated by construction.
- 5- Matrix model type HS. Work with IKKT matrix model on quantized twistor space where higher-spin fields are introduced to mitigate the effect of Lorentz violation by the non-commutativity of matrices (Steinacker et. al.)
 - Parity invariance is violated by construction.
- \triangleright In constructing higher-spin theories, there is no free lunch.
 - Unitary higher-spin theories are non-local. (Boulanger, Kessel, Skvortsov, Taronna ; Bakaert, Erdmenger, Ponomarev, Sleight ; Das, de Mello Koch, Jevicki-Rodrigues, Yoon)
 - Local higher-spin theories are either non-unitary or non parity-invariant.

• Part I.

 \diamond Review of no-go theorems/results and some approaches that seem to work.

• Part II.

♦ Discuss Fronsdal and chiral representations.

◊ Revisit Weinberg's soft theorem.

 \diamond Some examples of local higher-spin theories obtained from twistor space.

• Part III.

 \diamond IKKT matrix model type higher-spin gauge theory.

• Part IV.

◊ Conclusion.

 \diamond Any massless higher-spin field in 4*d* can be represented as $T^{\alpha(m)\dot{\alpha}(n)} \in S(m, n)$.

• Fronsdal rep (m=n):

- Fields are Lorentzian \underline{real} . They can propagate on flat and (A)dS.

- Theories constructed from Fronsdal representation are unitary, parity-invariant but suffer from non-locality issues.

- Subject to Weinberg's soft theorem in flat space.

- Flat limit of interacting (A)dS theories are hard to achieved.

• Chiral rep $(m \ge n \ge 0, n = 0, 1)$:

- Fields are <u>not</u> Lorentzian real. They can propagate on any self-dual background.

- Theories constructed from chiral rep are instrinsically <u>chiral</u> and local (vertices have bounded number of derivatives).

- Do not have problem with Weinberg's soft theorem (**parity violation**).

- Flat limit of interacting (A)dS theories can be taken smoothly.

Back to Weinberg's soft theorem

□ Setup. Let \mathcal{M}_n be an *n*-point scattering amplitude between scalar fields ϕ_i with momentum $p_i^{\mu} \sim p_i^{\alpha \dot{\alpha}}$ and consider a soft emitting higher-spin field A_s with momentum $k_{\mu} \sim k_{\alpha \dot{\alpha}}$. Gauge invariance of the *S*-matrix implies the following constraints.

 \diamond Fronsdal rep. We have $\sum_i g_{s,i} p_i^{\mu_1} \dots p_i^{\mu_{s-1}} = 0$. In particular,

- s = 1 we have $\sum_{i} g_i = 0$ [charge conservation]
- s = 2 we have $\sum_{i} g_{i} p_{i}^{\mu} = 0$ which can be satisfied if $g_{i} = \text{const}$ and $\sum_{i} p_{i}^{\mu} = 0$ [low-energy equivalence principle]

• s > 2 we have $g_i = 0 \implies$ No local parity-invariant higher-spin theory

♦ Chiral rep. All constraints of Weinberg are accompanied by the soft momentum $k_{\alpha\dot{\alpha}}$. In particular, $\sum_{m} \left(\sum_{i}^{n} g_{s,m,i} \underbrace{p_{i\alpha\dot{\gamma}} \dots p_{i\alpha\dot{\gamma}}}_{m \text{ times}} \right) \underbrace{k_{\alpha}^{\dot{\gamma}} \dots k_{\alpha}^{\dot{\gamma}}}_{m \text{ times}} = 0.$

- *m* is the number of derivatives in cubic vertices.
- Weinberg's soft theorem is related to derivatives rather than spins.
- As $k \rightarrow 0$, there is no restriction on higher-spin interactions, which implies

It is possible to have local non-parity-invariant higher-spin theories

There are a few examples of (quasi-)chiral HSGRAs:

- Chiral HSGRA and its contractions. They are chiral theory with complex actions and trivial S-matrix. (Metsaev; ["Ponomarev"-({Skvortsov}]-T-Tsulaia)|| (Sharapov-Skvortsov)-Sukhanov-van Dongen ...)
- HS-YM. A quasi-chiral theory with non-trivial scattering amplitudes (Adamo-T)
- HS-IKKT. It is closely related to HS-YM and is also a quasi-chiral theory ((Sperling-[Steinacker)-T])

PART III - HS-IKKT model

- (HS-)IKKT in general
- Semi-classical limit
- Algebra of functions on H^4_N and $\mathbb{P}^{1,2}$
- Hopf maps

• **Our result:** Local spinorial descriptions of HS-IKKT in Lorentzian and Euclidean signature.

 \diamond **IKKT matrix model** (Ishibashi, Kawai, Kitazawa, Tsuchiya-96') is an alternative and constructive description of type IIB superstring theory with SO(1,9)-invariant action

$$S = \mathsf{Tr}\left([Y^{I}, Y^{J}][Y_{I}, Y_{J}] + \Psi_{\mathcal{A}}(\tilde{\gamma}^{I})^{\mathcal{AB}}[Y_{I}, \Psi_{\mathcal{B}}]\right), \quad I = 0, 1, \dots, 9$$

where Y' are $N \times N$ hermitian matrices, and $\Psi^{\mathcal{A}}$ are the SO(1,9) matrix-valued Majorana-Weyl spinors. The action is invariant under $\delta Y' = U^{-1}Y'U$ with U being an arbitrary unitary matrix.

- Obtained by dimensional reduction of 10-dim SYM theory to a point
- Spacetime along with physical fields emerge from matrix dof. by considering the fluctuations of the background \bar{Y} as $Y' = \bar{Y}' + A'$
- Naturally induces a HS gauge theory (HS-IKKT) on fuzzy (quantized) twistor space (Steinacker et. al.) to mitigate the effect of Lorentz violation.
- HS-IKKT can be defined to be Lorentzian real but there is a price to pay

 \diamond In the large *N* limit, matrices become effectively commutative and we have the dequantization rules (Review: 1911.03162)

Quantum/fuzzy geometry	\mapsto	Semi-classical/dequantized geometry
(matrix) Y ^I	\mapsto	$y' = \langle y Y' y \rangle$ (function)
[,]	\mapsto	<i>i</i> { , } (Poisson bracket)
Tr	\mapsto	$\int \mho$ (symplectic volume form)

 $\diamond \ y^{I} = \{y^{a}, y^{\mathcal{I}}\} \text{ can be used to define certain variety } (S^{4}_{N}, H^{4}_{N}) \text{ embedded in } \mathbb{R}^{1,9}.$

♦ To construct a higher-spin gauge theory in 4*d* spacetime with Lorentzian signature, we let $y^a \in \mathbb{R}^{1,4}$ where $y_a y^a = -R^2 = -\frac{\ell_p^2 N^2}{4}$. The Poisson bracket between y^a is

$$\{y^{a}, y^{b}\} = \theta^{ab} = -\ell_{p}^{2} m^{ab}, \quad a, b = 0, 1, 2, 3, 4$$

where m^{ab} are generators of $\mathfrak{so}(1,4)$

$$\{m_{ab}, m_{cd}\} = (m_{ad}\eta_{bc} - m_{ac}\eta_{bd} - m_{bd}\eta_{ac} + m_{bc}\eta_{ad})$$
$$\{m_{ab}, y_c\} = y_a\eta_{bc} - y_b\eta_{ac}$$

The above relations form an $\mathfrak{so}(2,4)$ algebra and describe a fuzzy 4-hyperboloid H_N^4

• The algebra of functions on H^4_N consists of polynomials in terms of (y^a,m^{ab}) subjects to the self-duality relation $\boxed{\epsilon_{abcde}m^{ab}y^c=-4N/\ell_p\,m_{de}}$. Note that

The presence of ϵ_{abcde} breaks parity invariance of HS-IKKT

which has been already realized at linearized level [upon integrating out θ^{ab}] (Sperling-Steinacker)

• The space of functions on H_N^4 reads

$$\mathscr{C}(y^{a}, m^{ab}) = \sum_{n,s} f_{a(n)c(s),b(n)} \theta^{ab} \dots \theta^{ab} y^{c} \dots y^{c} = \bigoplus_{n,s} \boxed{\frac{n+s}{n}}$$

Truncated higher-spin algebra as subspace of ${\mathscr C}$

$$\mathfrak{ths}(\mathfrak{so}(1,4)) = \sum_{n=1}^{N} g_{\mathfrak{a}(n),\mathfrak{b}(n)} \theta^{\mathfrak{a}\mathfrak{b}} \dots \theta^{\mathfrak{a}\mathfrak{b}} = \bigoplus_{n=1}^{N} \boxed{\frac{n}{n}}$$

 \diamond It is useful to view H^4_N as $\mathbb{P}^{1,2}$ since it is a 6 real dimensional coadjoint orbit of $SO(2,4)\simeq SU(2,2).$

• Let Z^A (which are $\mathfrak{su}(2,2)$ vectors) be homogeneous coordinates on $\mathbb{P}^{1,2}$ with A = 1, 2, 3, 4. The **Dirac conjugate** $\overline{Z}_A = Z_B^{\dagger}(\gamma^0)^B{}_A$ of Z^A which obeys the Poisson algebra

$$\{Z^A, \bar{Z}_B\} = \delta^A{}_B$$

can be used to defined the number operator $\mathcal{N}:=\bar{Z}_AZ^A=N=2R/\ell_p$, which gives the gradation

$$\{\mathcal{N}, Z^A\} = -Z^A, \qquad \{\mathcal{N}, \bar{Z}_A\} = +\bar{Z}_A$$

Then, the algebra of functions of $\mathbb{P}^{1,2}$

$$\mathscr{C}(\mathbb{P}^{1,2}) = End(\mathcal{H}_N) = (N, 0, 0) \otimes (0, 0, N) = \sum_n f_{A(n)} Z^{A(n)} \bar{Z}_{B(n)}$$

where $\mathcal{H}_N = (0, 0, N) = (0, 0, 1)^{\odot N}$ is *N*-particle Fock space, consists of polynomials with equal number of *Z* and \overline{Z} .

HS-IKKT – Hopf maps

 \diamond There are two Hopf maps we consider for the case of H_N^4 :

$$\begin{split} H^{4}: & Z^{A} \mapsto y^{\mathfrak{g}} := \frac{\ell_{p}}{2} \bar{Z}_{A} (\gamma^{\mathfrak{g}})^{A}{}_{B} Z^{B}, \qquad \mathfrak{g} = 0, 1, 2, 3, 4 \\ H^{2,2}: & Z^{A} \mapsto t_{\mathfrak{g}} := \frac{\ell_{p}}{2} \bar{Z}_{A} (\Sigma_{\mathfrak{g}4})^{A}{}_{B} Z^{B}, \quad \mathfrak{g} = 0, 1, 2, 3, 5 \end{split}$$

where $t_{\hat{a}}$ transform as vectors under SO(2,3) and

$$\begin{split} \{t^{\hat{a}},t^{\hat{b}}\} &= \frac{1}{R^2} m^{\hat{a}\hat{b}}, \\ t_{\hat{a}}t^{\hat{a}} &= -t_0^2 + t_i t^i - t_5^2 = 1/\ell_p^2, \qquad i = 1,2,3, \\ y_{\hat{a}}t^{\hat{a}} &= 0 = y_\mu t^\mu, \qquad \qquad \mu = 0,1,2,3 \end{split}$$

Due to the last relation, t^{μ} are understood as generators of the internal space-like S^2 which underlies the higher-spin structure of HS-IKKT in Lorentzian signature.

 \bullet To get a Lorentzian $SO(1,3)\text{-}covariant}$ spacetime $\mathcal{M}^{1,3},$ there are two projections one can consider

$$\begin{aligned} \pi_{y} &: m^{ab} \mapsto y^{\mu} = \ell_{p} m^{\mu 5} , \qquad \eta_{\mu\nu} y^{\mu} y^{\nu} = -R^{2} - y_{4}^{2} = -R^{2} \cosh^{2}(\tau) \\ \pi_{t} &: m^{\hat{a}\hat{b}} \mapsto t^{\mu} = \frac{1}{R} m^{\mu 4} , \qquad \eta_{\mu\nu} t^{\mu} t^{\nu} = \frac{1}{\ell_{p}^{2}} + \frac{y_{4}^{2}}{\ell_{p}^{2} R^{2}} = +\ell_{p}^{-2} \cosh^{2}(\tau) \end{aligned}$$

• Decompose $Z^A = (\lambda^{\alpha}, \mu^{\dot{\alpha}})$ for $\alpha = 0, 1$ and $\dot{\alpha} = \dot{0}, \dot{1}$ where the spinors (λ, μ) transform in the fundamental rep of the compact subgroup $SU(2) \times SU(2) \subset SU(2,2)$. (λ, μ) are not Weyl spinors.

In spinor notation, the number operator reduces to

$$\mathcal{N} = \bar{Z}_A Z^A = \langle \lambda \, \bar{\lambda} \rangle - [\mu \, \bar{\mu}] = N$$

Here, $\langle a \, b \rangle = -a^{\alpha} b^{\beta} \epsilon_{\alpha\beta} = a^{\alpha} b_{\alpha}$, $[a \, b] = -a^{\dot{\alpha}} b^{\dot{\beta}} \epsilon_{\dot{\alpha}\dot{\beta}} = a^{\dot{\alpha}} b_{\dot{\alpha}}$ where $\epsilon^{01} = 1 = \epsilon_{01}$.

• The correspondence between $\mathbb{P}^{1,2}$ and H^4 is expressed via the incidence relations:

$$\mu^{\dot{\alpha}} = \mathbf{x}^{\alpha \dot{\alpha}} \lambda_{\alpha} \qquad \Leftrightarrow \qquad \mathbf{x}^{\alpha \dot{\alpha}} = \frac{\lambda^{\alpha} \bar{\mu}^{\dot{\alpha}} - \bar{\lambda}^{\alpha} \mu^{\dot{\alpha}}}{\langle \lambda \, \bar{\lambda} \rangle}$$

Substitute this to the Hopf maps, we obtain

$$\begin{split} y^{0} &= R + \ell_{\rho}[\mu \,\bar{\mu}] \,, \qquad y^{i} = -\frac{1}{4R} \left(\lambda^{\dagger} \sigma^{i} \mu + \mu^{\dagger} \sigma^{i} \lambda \right) \,, \qquad \text{(global)} \\ t^{0} &= \frac{1}{4R} \left(\mu^{\dagger} \lambda + \lambda^{\dagger} \mu \right) \,, \qquad t^{i} = +\frac{1}{4R} \left(\lambda^{\dagger} \sigma^{i} \lambda + \mu^{\dagger} \sigma^{i} \mu \right) \,, \qquad \text{(local)} \,. \end{split}$$

In contrast to $y^{\mu} = (y^0, y^i)$, $t^{\mu} = (t^0, t^i)$ are not defined globally. Using the SO(1, 3) isometry of $\mathcal{M}^{1,3}$, we can choose a reference point $p = (p^0, 0, 0, 0) \in \mathcal{M}^{1,3}$ where $t^{\mu}|_p = (0, t^i)$. This spans the local \mathbb{P}^1 which can be described by $(\lambda, \overline{\lambda})$.

- It can be shown that at the reference point p, $t^i \sim \lambda^{\dagger} \sigma^i \lambda$.
- Any function supported by an open subset $U_p \subset \mathcal{M}^{1,3}$ can be effectively written as

$$\varphi(y|t) = \sum_{s=0}^{\infty} \varphi_{i(s)} t^{i(s)} \simeq \sum_{s=0}^{\infty} \varphi_{\beta(2s)} \lambda^{\beta(s)} \bar{\lambda}^{\beta(s)}$$

The 'derivative' wrt. to momenta background t^{μ} is defined by

$$\left\{t^{\mu},\varphi(y|\lambda,\bar{\lambda})\right\}\Big|_{U_{p}} = \left(\left\{t^{\mu},y^{\nu}\right\}\partial_{\nu} + \left\{t^{\mu},\lambda^{\alpha}\right\}\partial_{\alpha} + \left\{t^{\mu},\bar{\lambda}^{\alpha}\right\}\bar{\partial}_{\alpha}\right)\varphi(y|\lambda,\bar{\lambda})\Big|_{U_{p}}\right\}$$

The effective metric can be computed by considering the kinetic term $\{t^{\mu},\varphi(y)\}\{t_{\mu},\varphi(y)\}$ (Steinacker)

$$\gamma^{\mu\nu} = \eta^{\mu\nu} \sinh^2(\tau)$$

HS-IKKT – Gauge fixing and propagating dof. in Lorentzian HS-IKKT

 \diamond Unlike the standard massless, massive or conformal HS theories, the number of propagating dof. in HS-IKKT fall between the ones of massive and conformal theories.

• Starting with

$$\mathsf{a}_{\mu} = \sum_{s} \mathcal{A}_{
u(s)|\mu} t^{
u(s)}$$

which has a total 4(2s+1) off-shell dof., we can remove (2s+1) degrees of freedom by removing the pure gauge modes with the gauge transformation

$$\delta \mathsf{a}_{\mu} = \{t_{\mu}, \xi\}$$

and removing an extra (2s+1) dof. by choosing the gauge fixing condition to be

$$\{t_{\mu},a^{\mu}\}=0$$

This leaves us with a total of $\sum_{s} 2(2s+1)$ physical dof. Thus,

A spin-s field has 2(2s-1) dof. in HS-IKKT

• Remarks:

- All higher-spin fields are not divergence-less a priori.
- If we can impose divergence-free condition, we get down to the standard massless higher-spin fields.

- On-going work with Lorentzian HS-IKKT:
 - Spinorial description for (HS-)IKKT model with Lorentzian signature is not evident as spinors are space-like and transform under SU(2) × SU(2) rather than SL(2, C) [local Lorentz invariance is not manifest].
 - Understand more about these space-like spinors.

 \diamond In Euclidean signature, things seem to be a bit better. In particular, we can obtain the full action of HS-IKKT in spinorial description

$$\begin{split} S &= \int \frac{1}{2} \mathbf{f}_{\alpha\alpha} \mathbf{f}^{\alpha\alpha} + \frac{1}{2} \{ p^{\alpha\dot{\alpha}}, \hat{\phi} \} \{ p_{\alpha\dot{\alpha}}, \hat{\phi} \} + \frac{1}{2} \{ p^{\alpha\dot{\alpha}}, \phi^{IJ} \} \{ p_{\alpha\dot{\alpha}}, \phi_{IJ} \} \\ &- \frac{i}{2} \bar{\chi}^{\alpha}{}_{\mathcal{I}} \{ p_{\alpha\dot{\beta}}, \tilde{\chi}^{\dot{\beta}\mathcal{I}} \} + \frac{i}{2} \chi^{\alpha}{}_{\mathcal{I}} \{ p_{\alpha\dot{\beta}}, \bar{\tilde{\chi}}^{\dot{\beta}\mathcal{I}} \} + \frac{i}{2} \bar{\tilde{\chi}}^{\dot{\alpha}\mathcal{I}} \{ y_0, \tilde{\chi}^{\dot{\alpha}\mathcal{I}} \} - \frac{i}{2} \bar{\chi}_{\alpha\mathcal{I}} \{ y_0, \chi^{\alpha\mathcal{I}} \} \\ &+ \frac{1}{2} \{ y_0, p^{\alpha\dot{\alpha}} \} \{ y_0, p_{\alpha\dot{\alpha}} \} + \frac{1}{2} \{ y_0, \hat{\phi} \} \{ y_0, \hat{\phi} \} + \frac{1}{4} \{ y_0, \phi^{IJ} \} \{ y_0, \phi_{IJ} \} \\ &+ \frac{i}{2} \bar{\tilde{\chi}}^{\dot{\alpha}\mathcal{I}} \{ \hat{\phi}, \tilde{\chi}^{\dot{\alpha}\mathcal{I}} \} - \frac{i}{2} \bar{\chi}_{\alpha\mathcal{I}} \{ \hat{\phi}, \chi^{\alpha\mathcal{I}} \} - \frac{i}{2} \bar{\chi}^{\alpha}^{\mathcal{I}} \{ \phi_{\mathcal{I}\mathcal{J}}, \chi^{\alpha\mathcal{J}} \} + \frac{i}{2} \bar{\tilde{\chi}}^{\dot{\alpha}\mathcal{I}} \{ \phi_{\mathcal{I}\mathcal{J}}, \tilde{\chi}^{\dot{\alpha}\mathcal{J}} \} \\ &+ \frac{1}{2} \{ \hat{\phi}, \hat{\phi} \} \{ \hat{\phi}, \hat{\phi} \} + \frac{1}{2} \{ \hat{\phi}, \phi^{IJ} \} \{ \hat{\phi}, \phi_{IJ} \} + \frac{1}{2} \{ \phi^{IJ}, \phi^{MN} \} \{ \phi_{IJ}, \phi_{MN} \} \end{split}$$

where $f^{\alpha\alpha} = \{p^{\alpha}{}_{\dot{\alpha}}, p^{\alpha\dot{\alpha}}\} = \{y^{\alpha}{}_{\dot{\alpha}} + a^{\alpha}{}_{\dot{\alpha}}, y^{\alpha\dot{\alpha}} + a^{\alpha\dot{\alpha}}\}.$ Our results are:

- Higher-spin modes can be shown to be completely disentangled in the YM sector (f² term) using spinorial formalism.
- We attempted to compute scattering amplitudes of the massless sector in f² term by imposing the divergence-less condition $\partial^{\alpha\dot{\alpha}}a_{\alpha\dot{\alpha}} = 0$ to reduce the dof. to 2. We found that $\mathcal{M}_n = 0$ in this sector.

• Take-home message.

- Unitary higher-spin theories are non-local.
- Local higher-spin theories are either non-unitary or non parity-invariant.
- Weinberg's soft theorem is related to derivatives rather than spins.
- Local higher-spin theories constructed from chiral reps with higher-derivative interactions tend to have simple *S*-matrices.

Some future directions:

- Explore the landscape of consistent local higher-spin theories by probing for quasi-chiral higher-spin theories.
- Search for a world-sheet description.
- Compute some observables of (HS)-IKKT theory.

And many more to come :)

Keep calm and work on higher-spin theories