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Spectral graph theory wants to understand how the spectra of

various operators defined on (functions on) the graph are related

to the geometry of the graph.

A graph Γ = (V ,E ) → the adjacency matrix A,

the Markov operator M = transition matrix of the simple

random walk on the graph = the normalized adjacency matrix,

the discrete laplacian ∆ = Deg − A or ∆ = I −M.

Important classes of examples:

- Cayley graphs of finitely generated groups, Cay(G , S),

- Schreier graphs Sch(G ,H,S) with respect to a subgroup

H < G ,

- lattices, self-similar graphs...

We will understand M as an operator acting on the space l2(V (Γ)).
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The Markov operator on G with respect to S can be understood as

an element of the group algebra

M(= MS) =
1

|S |
∑
s∈S

s ∈ C[G ]

and we can consider its images in different representations. The

most classical one is the left regular representation π : G → l2(G )

so M : l2(G ) ↶

But also quasi-resular representations of type πH : G → l2(G/H)

where H < G .

The operator M becomes respectively the Markov operator of the

simple random walk on the graph Cay(G , S) or on Sch(G ,H, S).

Mf (g) =
1

|S |
∑
s∈S

f (gs), for f ∈ l2(Vert(Γ)), g ∈ Vert(Γ).

spec(M) ⊆ [−1, 1] 2



Q.1: Can one hear the shape of a (Cayley) graph? No.

For example, the spectrum of Zd with standard generators is

[−1, 1] for all d ≥ 1. The same is true for any bipartite Cayey graph of a torsion

free amenable group.

On the spectrum of M, we have the projection-valued spectral

measure µ and the associated measures µv , v ∈ V (Γ), with

µv (λ) =< µ(λ)δv , δv >, whose n-th moments are the probabilities

of return to v after n steps of the simple random walk on Γ.

Spectral Theorem: Spectrum + spectral measure µ determine the operator up to

unitary equivalence. Among finite graphs, there are examples of non-isomorphic

strongly-regular graphs with parameters (n, k,m, l) that are Cayley graphs.

Q.1’: Find isospectral families of graphs with equivalent

spectral measures.

3



Spectrum of Zd with standard generators is [−1, 1] for all d ≥ 1.

The same is true for any bipartite Cayey graph of a torsion free amenable group.

- The spectrum is symmetric iff G is bipartitie.

- Kesten’s Criterion: G is amenable if and only if

1 ∈ spec(M(G ,S)) for some (equivalently, for every) finite

symmetric generating set S .

- The absence of non-trivial idempotents in C ∗
r (G ) of a torsion free

group G (Kadison-Kaplansky Conjecture, true for amenable

groups) implies that the spectrum is connected.
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Q.2: What compact subsets of [−1, 1] can be realized as the 
spectrum of M? What can the spectral measure type be on 
a Cayley or Schreier graph?

In general, the spectral measure has three components: pure-point, absolutely 

continuous w.r.t. the Lebsgue measure and continuous singular w.r.t. the Lebesgue 

measure.

In Cayley graphs: there are examples with the absolutely 
continuous spectrum on an interval plus maybe finitely or infinitely 
many isolated points (free products of finite groups, Kuhn; Cartwright-Soardi; 

lamplighter, Grigorchuk-Simanek).

The only known examples of Cayley graphs without a.c. part in the 
spectral measure are Cayley graphs of the lamplighter groups which 
are Diestel-Leader graphs DL(k, k) = Cay(Lk , Sk ). This was first shown 

by Grigorchuk-Zuk (see also Lehner, Neuhauser, Woess): the spectrum is [−1, 1] 
but the spectral measure is pure point.
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More generally, in regular graphs:

there are examples of absolutely continuous spectrum on a union

of infinitely many intervals (Aizenmann-Schenker: lines with

decorations);

of the pure point spectrum on a countable set of points

accumulating on a Cantor set of Lebesgue measure 0

(Malozemov-Teplyaev: Sierpinski triangle),

of spectra with a non-trivial singular continuous component

(Simon, Breuer: trees with growing degrees)

Q. 2’: Can one get such exotic spectra in Schreier graphs?

Q. 3: How does spectral type depend on the generating set?

Bartholdi-Grigorchuk (2000): Schreier graphs of some self-similar

groups with the spectrum a union of two intervals, a Cantor set.

Valette-Beguin-Zuk (1997): the spectrum of Heisenberg group. 7



Our Results: Grigorchuk-N-Perez IMRN’22 + in progress;

Grigorchuk-Lenz-N Math.Ann.’18, Adv.Math.’22 (+ Sell)

Uncountable families of pairwise non quasi-isometric isospectral

Cayley graphs;

Uncountable families of pairwise non-isomorphic Schreier graphs

with unitary equivalent laplacians (and hence isospectral in a

strong sense, i.e., such that the spectral measures also coincide);

Cayley graphs with spectrum a union of two intervals;

Schreier graphs with pure point spectral measure, spectral measure

with non-trivial singular continuous component.

Examples of group actions such that the corresponding Schreier

graphs have the spectral measure absolutely continuous w.r.t.

Lebesgue for one generating set and singular continuous on a

Cantor set of Lebesgue measure 0 for another generating set.
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Spinal groups. (A variation of a construction of Bartholdi and

Sunic, ’00)

Let d ≥ 2 be an integer, and let Td be the d-regular infinite

rooted tree.

If X = {0, 1, . . . , d − 1}, then Td can be identified with X ∗.

G ≤ Aut(Td), transitive on each level of the tree. By continuity,

the action naturally extends to an action of G on ∂Td by

homeomorphisms. The boundary ∂Td can be identified with XN.

∅

0 1 2

00 01 02 10 11 12 20 21 22
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Let d ≥ 2, m ≥ 1.

Consider A = Z/dZ = ⟨a⟩ and B = (Z/dZ)m. Define an alphabet

Ωd ,m = Epi(B,A).

For each ω = ω0ω1 · · · ∈ ΩN
d ,m define a group

Gω = ⟨A,B⟩ ≤ Aut(Td) with the generating set S = A ∪ B \ {1}.

a

b ∈ B

ω0(b) 1

ω1(b) 1

ω2(b) 1

Examples. d = 2, m = 1: the infinite dihedral group;

d = 2, m = 2: the uncountable family of Grigorchuk’s groups;

d = 3: m = 1: An uncountable family of groups including the

Fabrykowski-Gupta group corresponding to the constant sequence
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Schreier graphs of the Grigorchuk’s group for the action on the

levels of the tree. Γn = Sch(G ,H,S) with H = StabG (x1...xn)

where x1...xn is any binary word of length n.

c

b

d

a
c

b

d

1 0
Γ1

c

b

d

a b

c

d d

a
c

b

d

11 01 00 10
Γ2

c

b

d

a b

c

d d

a b

d

c c

a b

c

d d

a
c

b

d

111 011 001 101 100 000 010 110
Γ3
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The choice of a generating set in G defines a map from the

boundary of the tree to the space G∗,S of rooted, oriented,

S-labeled graphs equipped with local convergence.

F : ∂Td → G∗,S ξ 7→ (Γξ, ξ)

To each point ξ of the boundary it associates its Schreier graph

(Γξ, ξ) where Γξ = Sch(G , StabG (ξ),S).

Proposition

• If ξ = ξ0ξ1 . . . , the sequence (Γξ0...ξn , ξn) converges to (Γξ, ξ).

• For all Gω except d = 2, m = 1, F is injective.

• For all Gω, F is continuous on R = ∂Td \ Gω · (d − 1)N.

Schreier dynamical system: G ↷ (F (∂Td ) \ {isolated points},F∗ν), where ν is the

uniform measure on ∂Td .

Remark. Spectrum of Γξ doesn’t depend on ξ. But the spectral

measure in general depends on ξ.
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Infinite Schreier graphs of Grigorchuk’s group for the action on

the boundary of the tree:
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Schreier graphs of the Fabrykowski-Gupta group for the action on

the levels of the tree:
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Scaling limit of finite Schreier graphs Γn

The limit space of the Fabrykowski-Gupta group is the Julia set

J(z3(−3
2 + i

√
3
2 ) + 1).
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Infinite Schreier graphs of the Gupta-Fabrykowski group

(d = 3, m = 1, ω = πN, Gω = ⟨a, a2, b, b2⟩) for the action on the boundary

of the tree:

16



Theorem 1. d = 2. Spectra of Schreier and Cayley graphs

(Grigorchuk - Dudko, Grigorchuk - N. - Perez) For all m ≥ 2 and

ω ∈ ΩN
d ,m, we have for Gω:

specCay (M) = specSch(M) =

[
− 1

2m−1
, 0

]
∪
[
1− 1

2m−1
, 1

]
.

Hence we obtain here a continuum of non quasi-isometric

isospectral Cayley graphs.

Moreover, the spectrum is a union of two intervals.

Proposition. The spectral measure on the Schreier graph is a.c.

w.r.t. the Lebesgue measure with the density

g(x) =
1
2 − 1

2m − x

π
2m

√
1−

(
2m(12 − 1

2m − x)2 − 4m−1+1
2m

)2
.

What is the spectral measure on the Cayley graphs of Gω?
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Theorem 2: d ≥ 3. Spectra of infinite Schreier graphs

(Grigorchuk-N.-Perez) Let Γ = Γξ be any infinite Schreier graph of

any Gω with S = (A ∪ B) \ {1} acting on ∂Td . Then,

spec(Γ) = spec0(Γ) ∪ spec∞(Γ),

where spec∞(Γ) is the Julia set of x2 − d(d − 1) which is (for

d ≥ 3) a Cantor set of Lebesgue measure zero and

spec0(Γ) is a countable set of points accumulating on spec∞.

The spectral measure is pure point on the set spec0(Γ).
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Theorem 3: d ≥ 3: spectral measures There exists an

(explicitly described) measure one subset Y of ∂Td , such that for

every group Gω and for every ξ ∈ Y the operator M(Γξ) possesses

a complete set of finitely supported eigenfunctions in l2(Vert(Γξ)).

In particular, the spectral measure µv of M(Γξ) is discrete and

concentrated on the set spec0(Γ).

The empirical spectral measure (the integrated density of states)

can be explicitly computed.

For example, on the Fabrykowski-Gupta group Schreier graph:

−1 −1
2

0 1
2

1
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Theorem 3: d ≥ 3: spectral measures There exists an

(explicitly described) measure one subset Y of ∂Td , such that for

every group Gω and for every ξ ∈ Y the operator M(Γξ) admits a

complete set of finitely supported eigenfunctions in l2(Vert(Γξ)).

In particular, the spectral measure µv of M(Γξ) is discrete and

concentrated on the set spec0(Γ).

Theorem 4: d ≥ 3,m = 1: spectral measures for limit graphs.

The spectrum of M on the graphs Γ̃ in F (∂Td) \ F (∂Td) coincides

with the spectrum found in Theorem 3. The spectral measure µv

for Γ̃ has additionally a non-trivial singular continuous component.

Methods: Approximation of infinite graphs by finite graphs +

Schur complement for computing the joint spectra of infinite

families finite graphs;

renormalization methods for dealing with the spectral measure

(earlier work by Quint ’09, Higuchi and Shirai ’04)
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Q. 3. Changing the generating set

We already know that for d = 2, spinal groups with spinal

generating sets give rise to Schreier graphs with absolutely

continuous spectrum on a union of two disjoint intervals.

Proposition. (Follows from Grigorchuk, Lenz, N., ’17; Grigorchuk,

Lenz, N., Sell ’19) For d = 2, m ≥ 2 and any Gω there exists a

(minimal) generating set with the spectrum of any infinite Schreier

graph Γ a Cantor set of Lebesgue measure zero. The spectral

measure is purely singular continuous for almost every ω.

Q.: What spectrum can occur on Cayley graphs of groups Gω

for minimal generating sets?
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Theorem. (GLN,’17; GLN + Sell,’19). d = 2. Let

Mξ =
∑

s∈S pss,
∑

s∈S ps = 1, be a Markov operator on a Schreier

graph Γξ, ξ ∈ ∂T2 of a spinal group. There exists a minimal

subshift (S,Σω) over a finite alphabet such that for almost every

ξ ∈ ∂T2 there exists σ ∈ Σω such that Mξ is unitary equivalent to

the Schroedinger operator Hσ acting on l2(Z) with α, β : Σω → R
and, for every u ∈ l2(Z),

(Hσu)(n) = α(Snσ)u(n − 1) + α(Sn+1σ)u(n + 1) + β(Snσ)u(n)

The proof shows that the isotropic Markov operator, i.e., ps = 1/|S| for all s ∈ Sω ,

corresponds exactly to the Schroedinger operator with periodic functions α, β.

It is known that for subshifts of low complexity, the spectrum of

such Schroedinger operators is an interval or a union of finitely

many intervals with a.c. measure if α, β are periodic and, if not, it

is a Cantor set of Lebesgue measure 0; ω - a.s. singular continuous.
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Known sufficient conditions for this type of result, ”Cantor

spectrum of Lebesgue measure 0”:

- linear repetitivity (ω - negligeble). A subshift (S,Σ) is called
linearly repetitive (LR), if there exists a constantC > 0 such that

any word v ∈ Sub(Σ) occurs in any word w ∈ Sub(Σ) of length at

least C |v |. (Damanik - Lenz)

- Boshernitzan condition (ω a.s. condition). A subshift satisfies the

Boshernitsan condition (B) if the same condition is satisfied for all

v of length ln, for a certain increasing sequence {ln}. (Beckus,
Pogorzelski)

In a joint work Grigorchuk - Lenz - N. - Sell we generalize these

results and prove the Cantor spectrum of Lebesgue measure 0

theorem for simple Toeplitz subshifts. Together with the reduction

theorem above this proves Cantor spectrum of Lebesgue measure 0

theorem for all groups Gω.
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Thank you!




