### Conformally invariant differential operators on Heisenberg groups and minimal representations

Jan Frahm (Aarhus University)

Minimal Representations and Theta Correspondence – ESI Vienna April 12, 2022



1 Motivation:  $L^2$ -realizations for minimal representations

- 2 Minimal representations á la Kazhdan–Savin
- Minimal representations from Siegel parabolic subgroups
- Minimal representations from Heisenberg parabolic subgroups



#### 1 Motivation: $L^2$ -realizations for minimal representations

2 Minimal representations á la Kazhdan–Savin

Minimal representations from Siegel parabolic subgroups

Minimal representations from Heisenberg parabolic subgroups



# Motivation: $L^2$ -realizations for minimal representations

G: real reductive Lie group  $\rightsquigarrow$  construct a convenient realization of the minimal representation

#### Definition ( $L^2$ -realization)

We call a unitary representation  $\pi$  of G on a Hilbert space  $\mathcal H$  an  $L^2$ -realization if

- \$\mathcal{H} = L^2(M, d\mu)\$ for some manifold \$M\$ with measure \$d\mu\$ (more general: \$L^2\$-sections of a vector bundle)
- the underlying Lie algebra representation  $d\pi$  is given by differential operators on M

#### Examples

- The metaplectic representation of G = Mp(n, ℝ) has an L<sup>2</sup>-realization on L<sup>2</sup>(ℝ<sup>n</sup>).
   → dπ by differential operators of order ≤ 2
- (S. Gelfand '80) The minimal representation of  $G = G_{2(2)}$  on  $L^2(\mathbb{R}^3)$
- (P. Torasso '83) A small representation of  $G = \widetilde{SL}(3, \mathbb{R})$  on  $L^2(\mathbb{R}^2)$
- (Kobayashi–Ørsted '03) The minimal representation of G = O(p, q),  $p + q \ge 6$  even, has an  $L^2$ -realization on  $L^2(C, d\mu)$ , where  $C \subseteq \mathbb{R}^{p-1, q-1}$  isotropic cone



# Motivation: $L^2$ -realizations for minimal representations

#### Why $L^2$ -realizations?

- Particularly suitable for studying branching problems:
  - Dual pair correspondences in minimal representations
  - L<sup>2</sup>-spectral theory for differential operators available
  - Mackey theory applicable for subgroups acting "geometrically"
- Applications to number theory/automorphic representations:
  - Theta series for exceptional groups
  - Fourier coefficients of global automorphic forms
- Relations to special functions and classical analysis:
  - Hermite and Laguerre functions (metaplectic representation)
  - Bessel functions and Fourier transforms (minimal representation of O(p, q))



#### D Motivation: L<sup>2</sup>-realizations for minimal representations

#### 2 Minimal representations á la Kazhdan-Savin

3 Minimal representations from Siegel parabolic subgroups

Minimal representations from Heisenberg parabolic subgroups



### A construction by Kazhdan-Savin

- G connected split real reductive group of type D or E
- P = MAN parabolic subgroup of G with  $N \simeq V \ltimes \mathbb{R}$  a Heisenberg group (use  $A \simeq \mathbb{R}^{\times}$ )
- $\rho$  irreducible unitary representation of N with non-trivial central character  $\rightsquigarrow$  can be realized on  $L^2(\Lambda)$ ,  $\Lambda \subseteq V$  Lagrangian (Schrödinger model)
- Claim:  $\rho$  extends to  $MN = M \ltimes N$  (by the metaplectic representation)
- $\pi = \operatorname{Ind}_{MN}^{MAN} \rho$  irreducible unitary representation of P on  $L^2(\mathbb{R}^{\times} \times \Lambda)$
- Note: G is generated by P and some non-trivial Weyl group element  $w_0$

#### Theorem (Kazhdan–Savin '90)

The representation  $\pi$  of P extends uniquely to an irreducible unitary representation  $\pi_{\min}$  of G, the minimal representation, by

$$\pi_{\min}(w_0)f(\lambda, x_0, x') = \exp\left(i\frac{n(x')}{\lambda x_0}\right)f(x_0, \lambda, x').$$

Here:  $x = (x_0, x') \in \Lambda = \mathbb{R} \times \mathcal{J}$  and  $n : \mathcal{J} \to \mathbb{R}$  is a cubic polynomial (the Jordan determinant) on the cubic Jordan algebra  $\mathcal{J}$ .



## A construction by Kazhdan–Savin – generalizations

#### Remarks

- This construction actually works in the more general context of simply laced split groups over local fields of characteristic  $\neq 2$  (Kazhdan–Savin '90). It was later generalized to  $G_2$  over a local field by G. Savin '93 and to all exceptional p-adic groups by K. Rumelhart '97.
- The realization obtained in this way coincides with the representation constructed previously by S. Gelfand '80 for G = G<sub>2(2)</sub>, and it bears a striking resemblance with the realization of P. Torasso '83 for G = S̃L(3, ℝ) and by H. Sabourin '96 for G = Spin(4, 3) using different methods.

#### Questions

- Is there an explanation for the formula for π(w<sub>0</sub>)?
   Is there an "intrinsic" construction of the representation π?
- Can the L<sup>2</sup>-realization be generalized to other real groups?



## A construction by Kazhdan–Savin – alternative approach

#### Observation

There is an explicit *P*-equivariant functional  $L^2(\mathbb{R}^{\times} \times \Lambda)^{\infty} \to \mathbb{C}_{\chi}$ , so by Frobenius reciprocity:

$$\{0\} 
eq \mathsf{Hom}_P(\pi^\infty|_P,\chi) = \mathsf{Hom}_G(\pi^\infty,\mathsf{Ind}_P^G(\chi))$$

 $\rightsquigarrow \pi^\infty$  is a subrepresentation of a degenerate principal series representation induced from P

**Idea:** Construct  $\pi$  as subrepresentation of a degenerate principal series  $\rightsquigarrow \pi(w_0)$  "automatic" and the construction might generalize to other real groups

#### Difficulties

- How to describe the subrepresentation?
   \dots image/kernel of an intertwining operator (difficult to write down a single function)
- What is the invariant inner product?
  - $\rightsquigarrow$  invariant Hermitian form induced by the intertwining operator (singular integral kernel)

 $\rightsquigarrow$  compare with other constructions of minimal representations inside degenerate principal series



1 Motivation: L<sup>2</sup>-realizations for minimal representations

2 Minimal representations á la Kazhdan–Savin

3 Minimal representations from Siegel parabolic subgroups

Minimal representations from Heisenberg parabolic subgroups



## Degenerate principal series for Siegel parabolic subgroups

- *G* simply-connected real reductive group
- P = MAN maximal parabolic subgroup of G with N abelian (Siegel parabolic subgroup)
- $\pi_{\varepsilon,\lambda} = \operatorname{Ind}_P^G(\varepsilon \otimes e^\lambda \otimes \mathbf{1})$  degenerate principal series representation associated with the characters  $\varepsilon \in \widehat{M}$ ,  $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$
- Reducibility, composition series and unitarity of  $\pi_{\varepsilon,\lambda}$  was studied in detail by Johnson '91, Sahi '92, '93, Ørsted–Zhang '95, Zhang '95, M.–Schwarz '14 by algebraic methods (*K*-types, Lie algebra action and standard intertwining operators)  $\rightarrow$  the/a minimal representation  $\pi_{\min}$  occurs as subrepresentation of  $\pi_{\varepsilon,\lambda}$  for some  $\varepsilon$  and  $\lambda$

#### Problem

Describe the subrepresentation  $\pi_{\min} \subseteq \pi_{\varepsilon,\lambda}$  and its invariant inner product.



# Conformally invariant differential operators

- Restriction to  $\overline{N} \subseteq G/P$  realizes  $\pi_{\varepsilon,\lambda}$  on a subspace  $\mathcal{S}(\overline{N}) \subseteq I_{\varepsilon,\lambda} \subseteq C^{\infty}(\overline{N})$
- Structure theory of N
   <sup>−</sup> π (Jordan algebra/triple) gives rise to a system of second order constant coefficient differential operators P<sub>j</sub>(∂) which is *conformally invariant* for λ = λ<sub>min</sub>:

$$[d\pi_{\lambda,\varepsilon}(X), P_j(\partial)] = \sum_k C_{jk}(X)P_k(\partial).$$

#### Examples

- $G = \operatorname{Sp}(2n, \mathbb{R}), \ \overline{\mathfrak{n}} = \operatorname{Sym}(n, \mathbb{R}), \ P_j(\partial) = (2 \times 2 \ \operatorname{minor})(\partial).$
- $G = O(p+1, q+1), \ \overline{\mathfrak{n}} = \mathbb{R}^{p+q}, \ P(\partial) = \partial_1^2 + \cdots + \partial_p^2 \partial_{p+1}^2 \cdots \partial_{p+q}^2$

#### Observation

The joint kernel  $I_{\min} = \{ u \in I_{\varepsilon,\lambda} : P_j(\partial)u = 0 \forall j \}$  is a subrepresentation  $\pi_{\min}$  of  $\pi_{\varepsilon,\lambda}$  with invariant Hermitian form given by (a regularization of) the convolution expression

$$\langle u, v \rangle = \int_{\overline{\mathfrak{n}} \times \overline{\mathfrak{n}}} |\Delta(x-y)|^{\lambda-\rho,\varepsilon} u(x) \overline{v(y)} \, dx \, dy \qquad (\Delta \text{ some } M \text{-inv. polynomial on } \overline{\mathfrak{n}})$$

 $\rightsquigarrow$  apply the Euclidean Fourier transform on  $\overline{\mathfrak{n}}!$ 



MINIMAL REPRESENTATIONS AND THETA CORRESPONDENCE JAN FRAHM ESI VIENNA APRIL 12, 2022

## The Euclidean Fourier transform

The Euclidean Fourier transform  $I_{\min} \subseteq S'(\overline{\mathfrak{n}}) \to S'(\mathfrak{n}), u \mapsto \widehat{u}$  provides a new realization  $(\widehat{\pi}_{\min}, \widehat{I}_{\min})$  of the minimal representation  $(\pi_{\min}, I_{\min})$ .Note that

•  $P_j(\partial)u = 0 \quad \Leftrightarrow \quad P_j(\xi)\widehat{u} = 0 \quad \Leftrightarrow \quad \operatorname{supp} \widehat{u} \subseteq \{P_j = 0\}$ 

• 
$$\int_{\overline{n}\times\overline{n}} |\Delta(x-y)|^{\lambda-\rho,\varepsilon} u(x)\overline{u(y)} \, dx \, dy = \int_{\overline{n}} (|\widehat{\Delta|^{\lambda-\rho,\varepsilon}})(\xi) \cdot |\widehat{u}(\xi)|^2 \, d\xi$$

#### Theorem (Rossi-Vergne, Sahi, Sahi-Dvorsky, Kobayashi-Ørsted, M.-Schwarz)

- (Excluding some cases) The representation  $\widehat{\pi}_{\min}$  is unitary and irreducible on  $L^2(\mathcal{O}, d\mu)$ , where  $\mathcal{O} = \{\xi : P_j(\xi) = 0 \forall j\}$  and  $d\mu$  is a certain Ad(*MA*)-equivariant measure on  $\mathcal{O}$ .
- The Lie algebra action  $d\pi_{\min}$  is given by polynomial differential operators up to order 2.

**Idea:** Generalize the above steps (conformally invariant differential operators, Fourier transform) to degenerate principal series induced from Heisenberg parabolic subgroups.



Motivation: L<sup>2</sup>-realizations for minimal representations

- 2 Minimal representations á la Kazhdan–Savin
- 3 Minimal representations from Siegel parabolic subgroups
- 4 Minimal representations from Heisenberg parabolic subgroups



## Degenerate principal series for Heisenberg parabolics

- G simple real Lie group
- P = MAN (maximal) parabolic subgroup with N a Heisenberg group
- $\pi_{\varepsilon,\lambda} = \operatorname{Ind}_P^G(\varepsilon \otimes e^\lambda \otimes \mathbf{1})$  degenerate principal series representation  $(\varepsilon \in \widehat{M}, \lambda \in \mathfrak{a}^*_{\mathbb{C}})$

For many groups G it is known that  $\pi_{\min} \subseteq \pi_{\varepsilon,\lambda}$  for some specific  $\varepsilon \in \widehat{M}$ ,  $\lambda \in \mathfrak{a}^*$ .

#### Goal

- Identify  $\pi_{\min}$  as a subrepresentation of  $\pi_{\varepsilon,\lambda}$
- Obtain an  $L^2$ -realization by taking a Fourier transform.
- Restriction to  $\overline{N} \subseteq G/P$  realizes  $\pi_{\varepsilon,\lambda}$  on a subspace  $\mathcal{S}(\overline{N}) \subseteq I_{\varepsilon,\lambda} \subseteq C^{\infty}(\overline{N})$

 $\rightsquigarrow$  use the structure of  $\overline{N} \simeq \overline{\mathfrak{n}} = V \ltimes \mathbb{R}$  to describe:

- conformally invariant differential operators on  $\overline{N} \rightsquigarrow$  subrepresentation
- standard intertwining operators  $\rightsquigarrow$  invariant inner product
- Fourier transform  $\rightsquigarrow L^2$ -realization



## 5-graded Lie algebras and symplectic invariants

The fact that N is a Heisenberg group is equivalent to the Lie algebra  $\mathfrak{g}$  admitting a 5-grading:

$$\mathfrak{g} = \underbrace{\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}}_{\overline{\mathfrak{n}}} \oplus \underbrace{\mathfrak{g}_{0}}_{\mathfrak{m} \oplus \mathfrak{a}} \oplus \underbrace{\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}}_{\mathfrak{n}}$$

with dim  $\mathfrak{g}_{\pm 2} = 1$ .

- $\operatorname{ad}(\mathfrak{m})|_{\mathfrak{g}_{\pm 2}} = 0$  and  $\mathfrak{a} = \mathbb{R}H$  with  $\operatorname{ad}(H)|_{\mathfrak{g}_j} = j \cdot \operatorname{id}_{\mathfrak{g}_j}$
- *H* can be completed to an  $\mathfrak{sl}(2)$ -triple by  $E \in \mathfrak{g}_2$  and  $F \in \mathfrak{g}_{-2}$ .
- $V = \mathfrak{g}_{-1}$  is a symplectic vector space with symplectic form  $\omega$  given by  $[X, Y] = \omega(X, Y)F$ .
- $\mathfrak{m}$  acts sympletically on V by the adjoint representation, i.e.  $\mathfrak{m} \subseteq \mathfrak{sp}(V, \omega)$ .

There are three symplectic invariants associated with  $(V, \omega)$ :

| $\mu:V ightarrow\mathfrak{m}\subseteq\mathfrak{g}_{0}$ , | $\mu(X) = ad(X)^2 E$  | (moment map) |
|----------------------------------------------------------|-----------------------|--------------|
| $\Psi:V ightarrow V$ ,                                   | $\Psi(X) = ad(X)^3 E$ | (cubic map)  |
| $Q:V ightarrow\mathbb{R}$ ,                              | $Q(X)F=ad(X)^4E$      | (quartic)    |

#### Remark (Faulkner, Slupinski–Stanton)

 $\mathfrak{g}$  can be reconstructed from the tuple (V,  $\omega$ ,  $\mathfrak{m}$ ,  $\mu$ ).



# Conformally invariant differential operators

Barchini–Kable–Zierau use the invariants  $\mu$ ,  $\Psi$  and Q to construct systems of differential operators on the Heisenberg group  $\overline{N}$  by quantization:

 $\Omega_{\mu}(\mathcal{T}) \quad (\mathcal{T} \in \mathfrak{m}), \qquad \qquad \Omega_{\Psi}(v) \quad (v \in V), \qquad \qquad \Omega_{Q}.$ 

#### Theorem (Barchini-Kable-Zierau '08)

The system  $\Omega_{\mu}(T)$   $(T \in \mathfrak{m})$  of differential operators is conformally invariant for  $\pi_{\varepsilon,\lambda}$  if and only if  $\lambda = \lambda_{\min}$ . (+ similar statements for  $\Omega_{\Psi}$  and  $\Omega_Q$ )

 $\rightsquigarrow \ker \Omega_{\mu}(\mathfrak{m}) \subseteq I_{\varepsilon,\lambda}$  is a subrepresentation (possibly  $\{0\}$ )

In some special cases it was shown that the joint kernel ker  $\Omega_{\mu}(\mathfrak{m}) \subseteq I_{\varepsilon,\lambda}$  is the minimal representation of *G*, but mostly algebraically and without providing the explicit Hilbert space (Gross–Wallach '96, Kable '12, Kubo–Ørsted '18).  $\rightsquigarrow$  Fourier transform!

#### Remark

To be precise, one has to modify the above theorem slightly: For every simple/abelian ideal  $\mathfrak{m}' \subseteq \mathfrak{m}$  the system  $\Omega_{\mu}(\mathfrak{m}')$  is conformally invariant for some  $\lambda = \lambda(\mathfrak{m}')$ .



## Which Fourier transform?

#### Observations

- The differential operators  $\Omega_{\mu}(T)$  on  $\overline{\mathfrak{n}} \simeq V \times \mathbb{R}$  do not have constant coefficients (invariant under translation), but are left-invariant (invariant under Heisenberg translation).
- **②** The G-invariant Hermitian form for  $\lambda \in \mathbb{R}$  is given by the convolution expression

$$(u, v) \mapsto \int_{\overline{N} \times \overline{N}} |\Delta(x^{-1} \cdot y)|^{\lambda - \rho, \varepsilon} u(x) \overline{v(y)} \, dx \, dy,$$

where  $\Delta(z, t) = t^2 - Q(z)$  for  $(z, t) \in V \ltimes \mathbb{R} = \overline{\mathfrak{n}} \simeq \overline{N}$ .

 $\rightsquigarrow$  use the Heisenberg group Fourier transform!



# The Heisenberg group Fourier transform

The infinite-dimensional irreducible unitary representations  $\sigma_{\lambda}$  of the Heisenberg group  $\overline{N}$  can be realized on  $L^{2}(\Lambda)$ ,  $\Lambda \subseteq V$  Lagrangian, and are parameterized by  $\lambda \in \mathbb{R}^{\times} = \mathfrak{z}(\overline{\mathfrak{n}})^{*} \setminus \{0\}$ .

#### Heisenberg group Fourier transform

The Heisenberg group Fourier transform  $\widehat{u}$  of  $u \in L^1(\overline{N})$  is the operator-valued map

$$\widehat{u}: \mathbb{R}^{\times} \to \operatorname{End}(L^2(\Lambda)), \quad \widehat{u}(\lambda) = \int_N u(n)\sigma_{\lambda}(n) \, dn.$$

**Note:** The non-commutativity of  $\overline{N}$  is reflected by the non-commutativity of  $End(L^2(\Lambda))$ .

#### Properties of the Heisenberg group Fourier transform

•  $\widehat{Xu}(\lambda) = d\sigma_{\lambda}(X) \circ \widehat{u}(\lambda)$  for every left-invariant vector field  $X \in \mathfrak{n}$ 

• 
$$\widehat{u * v}(\lambda) = \widehat{u}(\lambda) \circ \widehat{v}(\lambda)$$

- $u \mapsto \widehat{u}$  extends to an isometric isomorphism  $L^2(N) \simeq L^2(\mathbb{R}^{\times}, \mathsf{HS}(L^2(\Lambda)); |\lambda|^{\dim \Lambda} d\lambda)$ .
- (F. '20)  $u \mapsto \widehat{u}$  extends to an embedding  $I_{\varepsilon,\lambda} \hookrightarrow \mathcal{D}'(\mathbb{R}^{\times}) \widehat{\otimes} \operatorname{Hom}(\mathcal{S}(\Lambda), \mathcal{S}'(\Lambda))$  for  $\lambda > -\rho$ .



### Fourier transform of the subrepresentation

**Question 1:** What is the Fourier transform of the equation  $\Omega_{\mu}(T)u = 0$ ?

Theorem (F. '20)

**①** For every  $T \in \mathfrak{m}$  we have

$$\widehat{\Omega_{\mu}(T)}u(\lambda) = d\omega_{\mathrm{met}}(T) \circ \widehat{u}(\lambda),$$

where  $d\omega_{met}$  is the metaplectic representation of  $\mathfrak{m} \subseteq \mathfrak{sp}(V, \omega)$  on  $L^2(\Lambda)$ .

② If G is non-Hermitian, then the joint kernel of all  $d\omega_{met}(T)$ ,  $T \in \mathfrak{m}$ , is essentially one-dimensional, spanned by  $\xi$ . (*M*-distinguished vector in  $\omega_{met}$ )

(For  $G = SL(n, \mathbb{R})$  and O(p, q): need vector-valued principal series and generalization of  $\Omega_{\mu}(\mathcal{T})$ )

If now  $\Omega_{\mu}(T)u = 0$  for all  $T \in \mathfrak{m}$ , then  $\widehat{u}(\lambda) : \mathcal{S}(\Lambda) \to \mathbb{C}\xi$ , so

 $\widehat{u}(\lambda) \varphi = \langle u_0(\lambda), \varphi \rangle \cdot \xi$  for some  $u_0 \in \mathcal{D}'(\mathbb{R}^{\times}) \,\widehat{\otimes} \, \mathcal{S}'(\Lambda).$ 

 $\stackrel{\sim}{\longrightarrow} \text{We obtain a map } u \mapsto u_0 \text{ from } \ker \Omega_{\mu}(\mathfrak{m}) \subseteq I_{\varepsilon,\lambda} \text{ into } \mathcal{D}'(\mathbb{R}^{\times}) \widehat{\otimes} \mathcal{S}'(\Lambda).$  $\stackrel{\sim}{\longrightarrow} \text{We obtain a representation } \pi_{\min} \text{ of } G \text{ on } I_{\min} \subseteq \mathcal{D}'(\mathbb{R}^{\times}) \widehat{\otimes} \mathcal{S}'(\Lambda) \text{ (possibly = {0}).}$ 



# The $L^2$ -realization

Question 2: When is  $I_{\min} \neq \{0\}$ ? What is the G-invariant inner product on  $I_{\min}$ ?

Theorem (F. '20)

- Assume G is non-Hermitian. Then the map  $u \mapsto u_0$  defines a representation  $\pi_{\min}$  of G on  $\mathcal{D}'(\mathbb{R}^{\times}) \widehat{\otimes} \mathcal{S}'(\Lambda)$  whose Lie algebra action is given by polynomial differential operators up to order 3 (w/ explicit formulas in terms of  $\mu$ ,  $\Psi$ , Q; not case-by-case).
- ② Assume in addition that G ≠ F<sub>4(4)</sub> and G ≠ O(p, q), p, q ≥ 4, p + q odd. Then the representation π<sub>min</sub> is unitary and irreducible on L<sup>2</sup>(ℝ<sup>×</sup> × Λ; |λ|<sup>s</sup> dλ dx) and is the minimal representation of G (if it exists).
- + explicit description of the lowest K-type (key ingredient of the proof; case-by-case)

#### Relation to previous work

- The obtained model of the minimal representation on  $L^2(\mathbb{R}^{\times} \times \Lambda; |\lambda|^s d\lambda dx) \simeq L^2(\mathbb{R}^{\times} \times \Lambda)$ agrees with the ones by Gelfand, Torasso and Kazhdan–Savin  $\rightarrow$  uniform construction/formulas, recover the formula for  $\pi(w_0)$
- New for quaternionic groups  $E_{6(2)}$ ,  $E_{7(-5)}$ ,  $E_{8(-24)}$  and for SO(p, q)



### Outlook

#### Questions/Problems

- Some groups possess both a Siegel parabolic subgroup and a Heisenberg parabolic subgroup (e.g.  $G = SO(p, q), E_{6(6)}, E_{7(7)}$ ). In those cases where both constructions yield an  $L^2$ -realization of the minimal representation, how are they related?
- Brylinski–Kostant construct the minimal representation on holomorphic functions/sections on the minimal nilpotent  $K_{\mathbb{C}}$ -orbit in  $\mathfrak{p}_{\mathbb{C}}$ . How is this realization related to the  $L^2$ -realization?
- Use the explicit formulas for the Lie algebra action in the  $L^2$ -realization to obtain branching laws for the restriction of the minimal representation to non-compact reductive subgroups, for instance:
  - $H = M \times SL(2, \mathbb{R})$
  - $H = M' \times SL(3, \mathbb{R})$
  - $H = M'' \times G_{2(2)}$
  - $SU(2) \subseteq H \subseteq G$  for G of quaternionic type



