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Tensor theories

Generalization of random matrices (r = 2) to rank r > 2 tensors
@ random surfaces — random geometry from r > 2 dim. triangulations
o large-N expansion of Tensor models: Gurau degree w® generalizes genus
@ "branched polymers” (continuous random tree) at LO

@ subleading regimes: "planar phase” (Brownian map), multi-criticality...

Field theory with tensor-invariant interactions:
@ genus/degree expansion related to renormalization group flow!
e tractable (solvable, integrable?) at LO (in the“UV" regime)
@ richer (non-convergent?) structure beyond LO

@ interpretation as quantum geometry (quantum gravity) for specific models
(“group field theory”)
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From perturbative to non-perturbative

Ultimate goal: random/quantum geometry at criticality!

— non-perturbative techniques necessary!

@ hints from functional RG: Wilson-Fisher type fixed point, further new
fixed points, relation to vector theories [Pithis, JT 2020, 2021]

e functional methods for Dyson-Schwinger eq. (— Grosse-Wulkenhaar model)
@ combinatorial (Hopf-algebraic) Dyson-Schwinger equations (cDSE)

@ LO diagrammatics have tree structure — tractable cDSE

Steps to get there

© Hopf algebra of local QFT generalizes to Tensorial field theory
(even more general: any non-local interactions)

@ Map from diagrams to (renormalized) amplitudes for actual computations
(here BPHZ momentum scheme)

© cDSE defined by Hochschild 1-cocycles of the theory
@ use relation to known cDSEs and methods to solve
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Perturbative field theory

Fields ¢ : RP — R with covariance/propagator P(z,z’') = [ du[¢] #(z)¢(z'):

G (zy,...,x,) = / dp[g] e¥n19) ﬁgf)(zi)
k
SIA[d)]:/]R dz \po(x quz Z H

*

Point-like interactions, e.g. quartic k =4 :

Perturbative exp. e!*nl¢l = (IS‘*) = formal power series over graphs v:

G (py,....py) = Z |Aut’y| H /dqe (a.) IT i 5(Zq,>
UEV eQu

N’
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Combinatorially non-local field theory (cNLFT)

Combinatorially non-local interactions for fields ¢ : (R%)" — R:

k
Sialg] = A /quz IT st =) ] @)

=1 (ia,jb) i=1

pairwise convolution of individual entries ¢* € R¢, a =

God

Combinatorics of interaction: vertex graph v =81 , not just k =V,
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Perturbation theory: 2-graphs

— Perturbative series over “ribbon graphs”, “stranded diagramms” ...
here general concept: 2-graphs T' € Go (or maybe better strand graphs)

G’Y(plw"apv'y) = Z |AU:.I-tF| H i)"Yv H /T."l d(]\/‘ H ﬁ(‘l/)

reGs, vEVr feFne U E {i,j}€€r
ol'=~

Feynman rules:
@ coupling i\,, for each vertex v € Vr with vertex graph 7,
@ propagator P(g;) for each internal edge e = {i,j} € &,
Q Lebesgue integral [, dgy for internal face f € 7' (¢; = ¢! identified)
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Renormalization

Integrals might not converge — renormalization needed
@ various prescriptions how to remove infinite part of the integral
@ always necessary: forest formula to subtract subdivergences
@ universally described by the Connes-Kreimer Hopf algebra
@ principle of locality needed for this

Main result:

Hopf algebra of Feynman graphs generalizes to 2-graphs in cNLFT
o locality captured by vertex graphs (generalizing “"Moyality”, “traciality”)
@ clear and concise algorithm to apply forest formula: ex. BPHZ momentum

@ opens up possibility for Hopf-algebra based methods, in particular cDSE
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Outline

© Motivation
@ Tensorial field theory
@ Combinatorial non-locality

e 2-graphs
@ From 1-graphs to 2-graphs
@ Contraction and boundary
o Algebra

© Renormalization
@ Renormalizable field theories
@ The BPHZ momentum scheme

@ Combinatorial DSE



Half-edge graphs + strands

A I-graphis a tuple g = (V, H,v,¢) with
@ a set of vertices V L
@ a set of half-edges H
@ an adjacency mapv:H —V

A 2-graph G = (V, H,v,1; S, p,01,02):

@ an involution ¢ : H — H pairing edges (fixed points are external edges)
@ a set of strand sections S

@ an adjacency map pu: S = H 5

o fixed-point free involution o1 : & — S

with Vs € S: vopooi(s) =vopu(s) :

@ an involution o5 : § — &S pairing strands at edges: Vs € S :
tou(s) = pooa(s) and s is fixed point of oy iff u(s) is fixed point of ¢.

m Q

Involutions ¢, o1, 09 are equivalent to edge sets £ C 27 and SV, S¢ € 2°
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Vertex-graph representation

Vertex graph g, = Vo, Ho, Vo, Ly) i= (y_l(v), (vo u)_l(v)7m7{v,01|7_¢v)

— gv =

Represent 2-graphs via vertex graphs

gt (W, 10,08, 1,01, 02) = ( |_| Gus L, 02)
veV
Not bijective! In general g, = uigl(,i), vertex belonging information lost...

/ng : (V7Ha VvL;‘S)/JaUhUQ) = ({gU}U€V7L702) iS bijeCtion
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Example: edge-coloured graphs

Feynman diagrams of rank-r tensor theories: regular edge-coloured graphs

(r + 1)-coloured graphs are 2-graphs with 7 strands per edge
@ colour ¢ = 0 edges — 2-graph edges
@ colour ¢ # 0 subgraph components — vertex graphs

@ stranding of edges o5 fixed by colour preservation

ANt c2 7 c1 c2

00 - 00

’ ~

Bijective only for connected vertex graphs

Topology of edge-coloured graphs

(r 4 1)-coloured graphs <= r-dimensional pseudo manifolds [Gurau '11]
(abstract simplicial complexes)
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Subgraphs

For a 2-graph G, a subgraph H is a 2-graph differing from G only

in &g CEg and 8% C S¢. Then one writes H C G.

2F¢ subgraphs per 2-graph G,
for example for

G:

lc 4

5¢co 8

H,y
H,

Hj
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Contraction

Contraction of H C G: shrinking all stranded edges of H:
° Vo = K the set of connected components of H

o Hoyuw =HY' Sayu = S§*, only external half-edges of H remain
o Cgm=Ec\Em, Sem =5a \ S5, (deleting stranded edges of H)

° SZ?/H = {{s1, 520 }|(51...52n) € F5r'}, external faces are shrunken to the
strands at the new contracted vertices

Example:
G/H for H =

.04

1.4 5.8 1.8 1.8

c1=cCy=cC: 1@8 2@7
2 3 6 7 sc7 3¥F0 2 7
lci 4 5¢ 8 c1 4 c2 c1 3 c2 1 8
aee | OO0 | L | | 00
2 3-6 7 2 7
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Labelled vs. Unlabelled

Unlabelled 2-graphs
Isomorphism j : G1 — G4 is a triple of bijections j = (jy, ju,Js) s-t.:
® vg, = jyovg, oju ' and g, = ju o pa, © js~
© La, = JH OLG, Ogu
® 01G, = js o001, 0js ' and o2, = js 0 02g, ©js ™
Then equivalence G1 = Ga, unlabelled 2-graph, T' = [G1]~ = [Ga2)]~.
Compatible with contractions.

HFM_M%HFM-M
(G H e — {I@sL: G/ Ha)s = [2®7L

2¢7

1

Example:
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Boundary and external structure

Residue and skeleton

2-graph has two characteristic 2-graphs without edges R* C Ga:
o res: Gy > R*T'— T/T" , the “external structure”
o skl: Go — R*,T'— Oy , the subgraph without edges

Boundary and vertex graphs
Can be used to define the boundary 1-graph of a 2-graph:
0 0:Gy = Gy, I'i—= O :=my(res(I))

For r-coloured 2-graphs: indeed (r — 1)-dimensional boundary ps. manifolds

External structure must be sensitive to con. comp. (e.g. U M

0 9:Gy—P(Gy), T =], T; a0 := {00}, = Byg(res(I))
0 ¢:Gyg— P(Gl) R == {%}vevp = ﬂvg(SkI(F))

14 /29



Outline

© Motivation

© 2-graphs

o Algebra

9 Renormalization



Coalgebra
Algebra
Let G := (Ga) be the Q-algebra generated by all 2-graphs T' € G2 with
m:GeG—=6G , I'ely—=T1uly

Unital commutative algebra with v : Q — G, ¢ — g1 (1 empty 2-graph)

Coalgebra

A:G5GeG, Tw ) esl/e
ecr

Associative counital coalgebra with counit e = xg~ : G — Q
In fact, also bialgebra (all proofs completely parallel to 1-graphs)

Example: AT = M M © MM
+ ) ® @ + .- ? M
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Subalgebras

Contraction closure

Let P,K C Go.
o P-contraction closure PK := {I =T"/0|6 Cc T' € K, 0O € P}
e contraction closure K := &2K

2-graph subbialgebra
@ 2-graphs of restricted vertex types V: Go(V) :={T' € G2 |<T € P(V)}

@ Prop: (G2(V)) is a subbialgebra of G.
o for field theory with interactions V € G;: “theory space” (G2(V))

Example: Matrix/Tensor field theory

@ 2-graphs characterized by fixed # of strands at edges = tensor rank r
o for rank-r interactions V,.: G3(V,.) = Go(V,.) contraction closed

@ r-coloured diagrams generate subbialgebra (G2(V,.))
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Hopf algebra of 2-graphs

interest: group structure on algebra homomorphisms ¢, : G — A wrt

convolution product: px:=myo(dRY)oAg

Hopf algebra of 2-graphs
@ The bialgebra of 2-graphs G is a Hopf algebra, i.e. there is a coinverse S:

Sxid=id*S =uoe.

® The set @?4 of algebra homomorpisms from G to a unital commutative
algebra A is a group with inverse S = ¢ o S for every ¢ € @i,

S?xp=¢xS?=uyo0eg.
o The subbialgebra (G5 (V)) for specific vertex graphs V C G is a Hopf
subalgebra of G.
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Renormalizability

cNLFT T = (E, V,w, d) given by dimension d € N, E;V C G, weights

w:EUV = Z

Feynman diagrams G1 := G(V) generate a Hopf algebra G := (G

Hopf algebra of divergent Feynman 2-graphs

o Superficial degree of divergence w*d(T) = > w(v,)— Y. w(ve)+d-Fr

@ T is renormalizable iff

vEVr

W) = w(dr) — ép

eefr

for all T with w*4(T") > 0;

psd = {r =| lieTi €GE IPI Vi€ I: T, ¢ R = o™ () > 0}

° ’H?g = (P54} is the Hopf algebra of divergent 2-graphs of T
@ Hopf subalgebra of Gy when contraction closed due to renormalizablity.
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Tensorial field theory

@l . tensorial field theory [BenGeloun'14]:

@ similar to d,, = d(r — 1) dimensional local field theory

@ interactions V are r-coloured graphs, w(vy,) = d, — d"';% |79

e Feynman diagrams I" are 2-graphs bijective to (r + 1)-coloured graphs

Divergence degree (for general propagator w(v.) = 2¢):

W) =d, —

d. — 2 .
5 CVar—d(é?ﬁ-Kar—l).

G__ o G
of = % Gurau degree w® = )" g (J generalized Heegaard surfaces)

2d,
-5

@ just-renormalizable qbfw theories: d, = 4(¢ (e.g. (= 1: ¢35, ¢13)

@ theories renormalizable for interactions up ton = |

@ coproduct preserves §¢ [Raasakka/Tanasa'13] = renormalizability for 6F > 0

o Kyp > 1 possible: e.g. QS?A theory [BenGeloun/Rivasseau’13] needs @){(o) eV
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Momemtum scheme in cNLFT

algebra homo. A : G — A to the alg. A of integrals with rational integrands

Ar = A) {ps}pezee = Arlpd) =TT M. 11 / dgs [[ P(a)

veVr  perim /R {ij}eer

Momentum subtraction operator: Taylor expansion

RA(ps)) = (Th,,40) (o) = S 4274 0) 11 oy

\k\Sde(F) H ap fej:ext

T

Renormalized amplitude for primitive divergent 2-graphs (no subdivergences):

Ax(D) := (A — Ro A)(D)
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Example: Tadpole diagrams in tensorial theories

(bd 2r2the0ryWIthP(p) W(Ie (JJ"YE —1 _O_N

- P

1
AR( )(pl)EAR(pl ):)\n(l—Tpll)/ dq27\p1|+|q2\+1

= 2magq( (Ipl + log (Ipa| + 1) = [pa )

¢§:1,r:3 theory with P(p )= W two tadpoles for each colour

= dg2dgs
A[ p1 =
{< @) o pl // |p1] + |g2] + lga| + 1

gy (<|p1|+1>log<|p1\+1> p11)

rq‘l\
AR( ) :/\ pz P3 / dar
P2, DP3 lg1] + [p2] + |ps| + 1
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Subdivergences

In a renormalizable local field theory T
@ BPHZ: VT" with w4 (T") > 0 there is a counter term s.t. Ay(T") converges
@ Zimmermann: forest formula for counter term of nested subdivergences

o Kreimer: counter term S2 : '8 — A from antipode S in Hopf alg. #:

Ay =852 % A
SAIT) = —R[(S)x Ao P)D) = — 3 R[SA A(L/0)
ecH'e
ocr

Renormalization in cNLFT
@ counter term S in the same way on the Hopf algebra of 2-graphs
o if cNLFT T is renormalizable, Ay = S * A on H?g gives ren. amplitudes

@ BPHZ momentum scheme: S} is algebra homomorphism since R is a
Rota-Baxter operator (R[AB] + R[A]R[B] = R[R[A]B + A R[B]]) as in local QFT
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Example: sunrise diagram in ¢§_2 theory

Sunrise 2-graph I' = —Q— % @
% -@ +SA

Ax(T)(p1,p2)

q1

(X

P2

q2

q1

¢q‘2\

)A(m

Last counter term calculated recursively:

<§ﬁﬁ§>

S(T)

,R{A(

q1

)]A(m

D2

p1

q2

q1

¢q‘2\

a1
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Example: sunrise diagram in ¢3, theory

1 1 1
=A\eo (1 -T2} /d /d (
13( pirz) we T o CP\ Ipal F laol + L] + gzl + 1 Jar] + [pa + 1
1 0 1 1
+— (-T
e 71 ) G el e el 1

P BRI 1 1 )
Ip1] + |q1| +1 PP g 4 2| + 1 [g| + [p2| 4+ 1

[|p1||p2|<2 + (ol + p2l + 1) > ((Ipil + 1) Tog(Ipi] + 1) = [pi])

i=1,2

:)\2 47'('2
8 pi| + [pa| + 1

— T (pil + D1ogtlpil + D) + 3 [pillpi +1>Liz<f\pi|>]

i=1,2 i=1,2

@ in agreement with [Hock2020]
e multiple polylogarithms as in local QFT, but ¢» = 72/6 is peculiar
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Example: sunrise diagram in ¢ 5 theory

o EYANCXEY, o ]
Sunrise diagram - , ex. of non-melonic divergent diagram:
q1
P2, P

e only logarithmic divergence w*¢(I') =3 -3 =0

P1
@ only one proper divergent 1P| subgraph M@MR m
a

@ = no overlapping divergence = factorizing Ay

d 1
qQ
lg1| + [p2| + |ps| + 1
1 1
x (1-Ty /d /d
( P1oa1) . 42 e q3|q1|+|qz|+\Q3\+1|P1\+|Q2|+|Q3|+1

Al{(p17p2:p3) = )‘23 (1 - Tl?lvp2»173) /]R

@ more restricted set of LO diagrams (“melonic”) in tensorial theories

@ what's the number theory (class of amplitude functions) of tensorial fields?
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Combinatorial Dyson-Schwinger equations

Comb. Green's fct. expanded in # faces I’ (=# loops for planar maps in MFT):

o0
X"=r, & L EY )
v Y 0 = e
ren? j
aF:'y

Comb. Dyson-Schwinger eq. hold with usual comb. factors in B£ [Kreimer '08]:

X =r et ¥ B 0Q)

k>1 T prim.
Fr=k
Ol=~

(so far shown for relevant examples, general argument for cNLFT w.i.p.)
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Example: cDSE in ¢‘1175 tensorial field theory

¢§=17r=5 is combinatorially the simplest just renormalizable theory
W) =4 — Vor — (68 + Kor — 1)

Only melonic diagrams (6 = 0, Ksr = 1) need renormaliz. (as 69 > r — 2 else)

Quartic melonic diagrams can be mapped to planar trees

(

intermediate field rep./loop-vertex expansion [Delepouve, Gurau, Rivasseau '14]):

1= renormalization Hopf algebra is one of coloured planar trees

@ but edges are coloured (not vertices like in Hopf algebra of decorated trees)

@ 2pt graphs are rooted trees, 4pt graphs are trees with 2 markings!
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Features of tensorial theory

@ only tadpole and fish diagram are primitive — nice cDSE
e only con. boundary (“unbroken”) 4pt function is in H&

@ sum over colours for 2pt function, but not for 4pt function

Consequences:
@ coproduct at order k does not factor in ¢;_; @ ¢; (overall 3 )
o different comb. factors (maxf(I")) for adjacent interactions b # c vs. b= ¢
@ can be smoothened including broken 4pt functions ([Tanasa et. al. '13,'15])
@ but this gives a different Hopf algebra (not renormalization of ¢‘{’5)

w.i.p.: improve and understand using Ward identities (Hopf ideals)
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Outlook

@ Result: algebraic structure of renormalization generalizes to cNLFT
@ gives concise algorithm to calculate amplitudes explicitly (classify!)

e Random geometry/quantum gravity occurs at criticality
— understand non-perturbative cNLFT, in particular tensorial!

@ use cDSE to identify algebraic structure underlying solvability of matrix
field theory (w.i.p. with A. Hock)

@ generalize to tensors of rank r > 2

Thanks for your attention!
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