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Tensor theories

Generalization of random matrices (r = 2) to rank r > 2 tensors

random surfaces → random geometry from r > 2 dim. triangulations

large-N expansion of Tensor models: Gurau degree ωg generalizes genus

”branched polymers” (continuous random tree) at LO

subleading regimes: ”planar phase” (Brownian map), multi-criticality...

Field theory with tensor-invariant interactions:

genus/degree expansion related to renormalization group flow!

tractable (solvable, integrable?) at LO (in the“UV” regime)

richer (non-convergent?) structure beyond LO

interpretation as quantum geometry (quantum gravity) for specific models
(“group field theory”)
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From perturbative to non-perturbative

Ultimate goal: random/quantum geometry at criticality!

→ non-perturbative techniques necessary!

hints from functional RG: Wilson-Fisher type fixed point, further new
fixed points, relation to vector theories [Pithis, JT 2020, 2021]

functional methods for Dyson-Schwinger eq. (→ Grosse-Wulkenhaar model)

combinatorial (Hopf-algebraic) Dyson-Schwinger equations (cDSE)

LO diagrammatics have tree structure → tractable cDSE

Steps to get there

1 Hopf algebra of local QFT generalizes to Tensorial field theory
(even more general: any non-local interactions)

2 Map from diagrams to (renormalized) amplitudes for actual computations
(here BPHZ momentum scheme)

3 cDSE defined by Hochschild 1-cocycles of the theory

4 use relation to known cDSEs and methods to solve
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Perturbative field theory

Fields φ : RD → R with covariance/propagator P (xxx,xxx′) =
∫

dµ[φ]φ(xxx)φ(xxx′):

G(n)(xxx1, ...,xxxn) =

∫
dµ[φ] eiSia[φ]

n∏
i=1

φ(xxxi)

Sia[φ] =

∫
RD

dxxxλkφ(xxx)k = λk

∫
RD

k∏
i=1

dqqqi δ

( k∑
i=1

qqqi

) k∏
i=1

φ̃(qqqi)

Point-like interactions, e.g. quartic k = 4 : ∼=

Perturbative exp. eiSia[φ] =
∑
l

(iSia)l

l! ⇒ formal power series over graphs γ:

G(n)(ppp1, ..., pppn) =
∑
γ∈G1,
Neγ=n

1

|Aut γ|
∏
e∈Eγ

∫
dqqqeP̃ (qqqe)

∏
v∈Vγ

iλvδ

(∑
e@v

qqqe

)
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Combinatorially non-local field theory (cNLFT)

Combinatorially non-local interactions for fields φ : (Rd)r → R:

Sia[φ] = λγ

∫ k∏
i=1

dqqqi
∏

(ia,jb)

δ(qai − qbj)
k∏
i=1

φ̃(qqqi)

pairwise convolution of individual entries qa ∈ Rd, a = 1, ..., r

∼=

Combinatorics of interaction: vertex graph γ = , not just k = Vγ
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Perturbation theory: 2-graphs

→ Perturbative series over “ribbon graphs”, “stranded diagramms” ...
here general concept: 2-graphs Γ ∈ G2 (or maybe better strand graphs)

1 2

3

4

7

6

5

Gγ(ppp1, ..., pppVγ ) =
∑

Γ∈G2,
∂Γ=γ

1

|Aut Γ|
∏
v∈VΓ

iλγv
∏

f∈F int
Γ

∫
Rd

dqf
∏

{i,j}∈EΓ

P̃ (qqqi)

Feynman rules:

1 coupling iλγv for each vertex v ∈ VΓ with vertex graph γv

2 propagator P̃ (qqqi) for each internal edge e = {i, j} ∈ EΓ,

3 Lebesgue integral
∫
Rd dqf for internal face f ∈ F int

Γ (qf = qai identified)
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Renormalization

Integrals might not converge → renormalization needed

various prescriptions how to remove infinite part of the integral

always necessary: forest formula to subtract subdivergences

universally described by the Connes-Kreimer Hopf algebra

principle of locality needed for this

Main result:

Hopf algebra of Feynman graphs generalizes to 2-graphs in cNLFT

locality captured by vertex graphs (generalizing “Moyality”, “traciality”)

clear and concise algorithm to apply forest formula: ex. BPHZ momentum

opens up possibility for Hopf-algebra based methods, in particular cDSE
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Half-edge graphs + strands

A 1-graph is a tuple g = (V,H, ν, ι) with

a set of vertices V
a set of half-edges H
an adjacency map ν : H → V

ι

an involution ι : H → H pairing edges (fixed points are external edges)

A 2-graph G = (V,H, ν, ι;S, µ, σ1, σ2):

a set of strand sections S
an adjacency map µ : S → H
fixed-point free involution σ1 : S → S
with ∀s ∈ S: ν ◦ µ ◦ σ1(s) = ν ◦ µ(s)

ι, σ2

an involution σ2 : S → S pairing strands at edges: ∀s ∈ S :
ι ◦ µ(s) = µ ◦ σ2(s) and s is fixed point of σ2 iff µ(s) is fixed point of ι.

Involutions ι, σ1, σ2 are equivalent to edge sets E ⊂ 2H and Sv,Se ∈ 2S
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Vertex-graph representation

Vertex graph gv = (Vv,Hv, νv, ιv) :=
(
ν−1(v), (ν ◦ µ)−1(v), µ|Hv , σ1|Hv

)

−→ gv =

Represent 2-graphs via vertex graphs

πvg : (V,H, ν, ι;S, µ, σ1, σ2) 7→
( ⊔
v∈V

gv, ι, σ2

)
Not bijective! In general gv = tig(i)

v , vertex belonging information lost...

βvg : (V,H, ν, ι;S, µ, σ1, σ2) 7→
(
{gv}v∈V , ι, σ2

)
is bijection
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Example: edge-coloured graphs

Feynman diagrams of rank-r tensor theories: regular edge-coloured graphs

(r + 1)-coloured graphs are 2-graphs with r strands per edge

colour c = 0 edges → 2-graph edges

colour c 6= 0 subgraph components → vertex graphs

stranding of edges σ2 fixed by colour preservation

∼=

c1 c2 c1 c2

Bijective only for connected vertex graphs

Topology of edge-coloured graphs

(r + 1)-coloured graphs ⇐⇒ r-dimensional pseudo manifolds [Gurau ’11]

(abstract simplicial complexes)
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Subgraphs

For a 2-graph G, a subgraph H is a 2-graph differing from G only
in EH ⊂ EG and SeH ⊂ SeG. Then one writes H ⊂ G.

2EG subgraphs per 2-graph G,
for example for

G =

1

2 3

4 5

6 7

8c1 c2

:

H0 =

H1 =

H2 =

H3 =
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Contraction

Contraction of H ⊂ G: shrinking all stranded edges of H:

VG/H = KH the set of connected components of H

HG/H = Hext
H , SG/H = Sext

H , only external half-edges of H remain

EG/H = EG \ EH , SeG/H = SeG \ SeH (deleting stranded edges of H)

SvG/H = {{s1, s2n}|(s1...s2n) ∈ Fext
H }, external faces are shrunken to the

strands at the new contracted vertices

Example:

G/H for H =

c1 = c2 = c :

1

2 3

4 5

6 7

8c c

1

2 7

8

54

c

1

2

3 6

7

8c 1

2 7

8c

c1 6= c2 :

1

2 3

4 5

6 7

8c1 c2
1

2

5

8

7

4c1 c2
1

2

6

8

7

3c1 c2 1

2 7

8

12 / 29



Labelled vs. Unlabelled

Unlabelled 2-graphs

Isomorphism j : G1 → G2 is a triple of bijections j = (jV , jH, jS) s.t.:

νG2
= jV ◦ νG1

◦ jH−1 and µG2
= jH ◦ µG1

◦ jS−1

ιG2
= jH ◦ ιG1

◦ jH−1

σ1G2
= jS ◦ σ1G1

◦ jS−1 and σ2G2
= jS ◦ σ2G1

◦ jS−1

Then equivalence G1
∼= G2, unlabelled 2-graph, Γ = [G1]∼= = [G2]∼=.

Compatible with contractions.

Example:

H1 = ∼= H2 =

⇒ [G/H1]∼= =

[
1

2 7

8

54

c

]
∼=

= [G/H2]∼= =

[ 1

2

3 6

7

8c ]
∼=
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Boundary and external structure

Residue and skeleton
2-graph has two characteristic 2-graphs without edges R∗ ⊂ G2:

res : G2 → R∗,Γ 7→ Γ/Γ , the “external structure”

skl : G2 → R∗,Γ 7→ Θ0 , the subgraph without edges

Boundary and vertex graphs

Can be used to define the boundary 1-graph of a 2-graph:

∂ : G2 → G1, Γ 7→ ∂Γ := πvg(res(Γ))

For r-coloured 2-graphs: indeed (r − 1)-dimensional boundary ps. manifolds

External structure must be sensitive to con. comp. (e.g. t ):

∂̃ : G2 → P(G1), Γ =
⊔
i Γi 7→ ∂̃Γ := {∂Γi}i = βvg(res(Γ))

ς̃ : G2 → P(G1) , Γ 7→ ς̃Γ := {γv}v∈VΓ = βvg(skl(Γ))
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Coalgebra

Algebra

Let G := 〈G2〉 be the Q-algebra generated by all 2-graphs Γ ∈ G2 with

m : G ⊗ G → G , Γ1 ⊗ Γ2 7→ Γ1 t Γ2

Unital commutative algebra with u : Q→ G, q 7→ q1 (1 empty 2-graph)

Coalgebra

∆ : G → G ⊗ G, Γ 7→
∑
Θ⊂Γ

Θ⊗ Γ/Θ

Associative counital coalgebra with counit ε = χR∗ : G → Q
In fact, also bialgebra (all proofs completely parallel to 1-graphs)

Example: ∆Γ = ⊗

+ ⊗ + ⊗
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Subalgebras

Contraction closure
Let P,K ⊂ G2.

P-contraction closure PK := {Γ = Γ′/Θ|Θ ⊂ Γ′ ∈ K,Θ ∈ P}
contraction closure K := G2K

2-graph subbialgebra

2-graphs of restricted vertex types V: G2(V) := {Γ ∈ G2 | ς̃Γ ∈ P(V)}
Prop: 〈G2(V)〉 is a subbialgebra of G.

for field theory with interactions V ∈ G1: “theory space” 〈G2(V)〉

Example: Matrix/Tensor field theory

2-graphs characterized by fixed # of strands at edges = tensor rank r

for rank-r interactions Vr: G2(Vr) = G2(Vr) contraction closed

r-coloured diagrams generate subbialgebra 〈G2(Vr)〉
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Hopf algebra of 2-graphs

interest: group structure on algebra homomorphisms φ, ψ : G → A wrt

convolution product: φ ∗ ψ := mA ◦ (φ⊗ ψ) ◦∆G

Hopf algebra of 2-graphs

The bialgebra of 2-graphs G is a Hopf algebra, i.e. there is a coinverse S:

S ∗ id = id ∗ S = u ◦ ε .

The set ΦGA of algebra homomorpisms from G to a unital commutative
algebra A is a group with inverse Sφ = φ ◦ S for every φ ∈ ΦGA,

Sφ ∗ φ = φ ∗ Sφ = uA ◦ εG .

The subbialgebra 〈G2(V)〉 for specific vertex graphs V ⊂ G1 is a Hopf
subalgebra of G.
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Renormalizability

cNLFT T = (E,V, ω, d) given by dimension d ∈ N, E,V ⊂ G1, weights

ω : E ∪V→ Z

Feynman diagrams GT
2 := G2(V) generate a Hopf algebra GT := 〈GT

2 〉

Hopf algebra of divergent Feynman 2-graphs

Superficial degree of divergence ωsd(Γ) =
∑
v∈VΓ

ω(γv)−
∑
e∈EΓ

ω(γe) + d ·FΓ

T is renormalizable iff ωsd(Γ) = ω(∂Γ)− δΓ for all Γ with ωsd(Γ) > 0;

Ps.d.
T :=

{
Γ =

⊔
i∈IΓi ∈ GT

2 1PI |∀i ∈ I : Γi 6∈ R⇒ ωsd(Γi) ≥ 0
}

Hf2g
T = 〈Ps.d.

T 〉 is the Hopf algebra of divergent 2-graphs of T

Hopf subalgebra of GT when contraction closed due to renormalizablity.
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Tensorial field theory

φnd,r tensorial field theory [BenGeloun’14]:

similar to dr = d(r − 1) dimensional local field theory

interactions V are r-coloured graphs, ω(γv) = dr − dr−2ζ
2 Vγv

Feynman diagrams Γ are 2-graphs bijective to (r + 1)-coloured graphs

Divergence degree (for general propagator ω(γe) = 2ζ):

ωsd(Γ) = dr −
dr − 2ζ

2
V∂Γ − d (δgΓ +K∂Γ − 1) .

δgΓ =
2ωg

Γ−2ωg
∂Γ

(r−1)! , Gurau degree ωg =
∑
J gJ (J generalized Heegaard surfaces)

theories renormalizable for interactions up to n = b 2dr
dr−2ζ c

just-renormalizable φ4
d,r theories: dr = 4ζ (e.g. ζ = 1

2
: φ4

2,2, φ4
1,3)

coproduct preserves δg [Raasakka/Tanasa’13] ⇒ renormalizability for δgΓ > 0

K∂Γ > 1 possible: e.g. φ6
1,4 theory [BenGeloun/Rivasseau’13] needs ∈ V
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Momemtum scheme in cNLFT

algebra homo. A : G → A to the alg. A of integrals with rational integrands

AΓ = A(Γ) : {pf}f∈F̃ext
Γ , 7→ AΓ({pf}) :=

∏
v∈VΓ

λγv
∏

f∈F int
Γ

∫
Rd

dqf
∏

{i,j}∈EΓ

P̃ (qqqi)

Momentum subtraction operator: Taylor expansion

R[AΓ]({pf}) :=
(
Tω{pf}AΓ

)
({pf}) =

∑
|~k|≤ωsd(Γ)

1
~k!

∂|
~k|AΛ

Γ∏
f ∂p

kf
f

(
0
) ∏
f∈F̃ext

Γ

p
kf
f

Renormalized amplitude for primitive divergent 2-graphs (no subdivergences):

Ar(Γ) := (A−R ◦A)(Γ)
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Example: Tadpole diagrams in tensorial theories

φ4
d=2,r=2 theory with P̃ (ppp) = 1

|p1|+|p2|+1 (i.e. ω(γe) = 1): ∼=

Ar

( )
(p1) ≡ Ar

(
p1

q2 )
= λ

(
1− T 1

p1

) ∫
R2

dq2
1

|p1|+ |q2|+ 1

= 2πλ
(

(|p1|+ 1) log (|p1|+ 1)− |p1|
)

φ4
d=1,r=3 theory with P̃ (ppp) = 1

|p1|+|p2|+|p3|+1 : two tadpoles for each colour

Ar

(
p1

)
= λ

(
1− T 1

p1

) ∫
R

∫
R

dq2dq3
|p1|+ |q2|+ |q3|+ 1

= 4λ
(

(|p1|+ 1) log (|p1|+ 1)− |p1|
)

Ar

( q1

p2, p3

)
= λ

(
1− T 0

p2,p3

) ∫
R

dq1
|q1|+ |p2|+ |p3|+ 1

= −2λ log(|p2|+ |p3|+ 1)
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Subdivergences

In a renormalizable local field theory T :

BPHZ: ∀Γ with ωsd(Γ) ≥ 0 there is a counter term s.t. Ar(Γ) converges

Zimmermann: forest formula for counter term of nested subdivergences

Kreimer: counter term Sa
r : Hfg → A from antipode S in Hopf alg. Hfg:

Ar = Sa
r ∗A

Sa
r(Γ) = −R [(Sa

r ∗A ◦ P )(Γ)] = −
∑

Θ∈Hfg

Θ(Γ

R
[
Sa
r(Θ)A(Γ/Θ)

]

Renormalization in cNLFT

counter term Sa
r in the same way on the Hopf algebra of 2-graphs

if cNLFT T is renormalizable, Ar = Sa
r ∗A on Hf2g

T gives ren. amplitudes

BPHZ momentum scheme: Sa
r is algebra homomorphism since R is a

Rota-Baxter operator (R[AB] +R[A]R[B] = R[R[A]B+AR[B]]) as in local QFT
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Example: sunrise diagram in φ4
2,2 theory

Sunrise 2-graph Γ = ∼=
c c

:

Ar(Γ)(p1, p2) =A

( p1

p2
q1

q2
)

+ Sa
r

( p1

q1

q2

)
A

(
p2

q1

)

+ Sa
r

( q2

p2

q1

)
A

(
p1

q2 )
+ Sa

r

( p1

p2
q1

q2
)

Last counter term calculated recursively:

Sa
r(Γ) = −R

[
A

( p1

p2
q1

q2
)
−R

[
A

( p1

q1

q2

)]
A

(
p2

q1

)

−R
[
A

( q2

p2

q1

)]
A

(
p1

q2 )]
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Example: sunrise diagram in φ4
2,2 theory

Ar

( p1

p2
q1

q2
)

= λ2 (
1− T 1

p1,p2

) ∫
R2

dq1

∫
R2

dq2

(
1

|p1|+ |q2|+ 1

1

|q1|+ |q2|+ 1

1

|q1|+ |p2|+ 1

+
1

|q1|+ |p2|+ 1

(
−T 0

p1,q1

) 1

|p1|+ |q2|+ 1

1

|q1|+ |q2|+ 1

+
1

|p1|+ |q1|+ 1

(
−T 0

q2,p2

) 1

|q1|+ |q2|+ 1

1

|q2|+ |p2|+ 1

)
= λ2 4π2

|p1|+ |p2|+ 1

[
|p1||p2|ζ2 + (|p1|+ |p2|+ 1)

∑
i=1,2

(
(|pi|+ 1) log(|pi|+ 1)− |pi|

)
−
∏

i=1,2

(|pi|+ 1) log(|pi|+ 1) +
∑
i=1,2

|pi|(|pi|+ 1)Li2(−|pi|)
]

in agreement with [Hock2020]

multiple polylogarithms as in local QFT, but ζ2 = π2/6 is peculiar
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Example: sunrise diagram in φ4
1,3 theory

Sunrise diagram
p1

p2, p3

q2, q3

q1
, ex. of non-melonic divergent diagram:

only logarithmic divergence ωsd(Γ) = 3− 3 = 0

only one proper divergent 1PI subgraph

p1

q2, q3

q1

⇒ no overlapping divergence ⇒ factorizing Ar

Ar(p1, p2, p3) = λ2 (
1− T 0

p1,p2,p3

) ∫
R

dq1
1

|q1|+ |p2|+ |p3|+ 1

×
(
1− T 0

p1,q1

) ∫
R

dq2

∫
R

dq3
1

|q1|+ |q2|+ |q3|+ 1

1

|p1|+ |q2|+ |q3|+ 1

more restricted set of LO diagrams (“melonic”) in tensorial theories

what’s the number theory (class of amplitude functions) of tensorial fields?
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Combinatorial Dyson-Schwinger equations

Comb. Green’s fct. expanded in # faces F (=# loops for planar maps in MFT):

Xγ = rγ ±
∑

Γ∈Hf2g
T

∂Γ=γ

αFΓ
Γ

|Aut Γ|
= rγ ±

∞∑
j=1

αjcγj

Comb. Dyson-Schwinger eq. hold with usual comb. factors in BΓ
+ [Kreimer ’08]:

Xγ = rγ ±
∑
k≥1

αk
[ ∑

Γ prim.
FΓ=k
∂Γ=γ

BΓ
+

]
(XγQγ)

(so far shown for relevant examples, general argument for cNLFT w.i.p.)
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Example: cDSE in φ4
1,5 tensorial field theory

φ4
d=1,r=5 is combinatorially the simplest just renormalizable theory

ωsd(Γ) = 4− V∂Γ − (δgΓ +K∂Γ − 1)

Only melonic diagrams (δg = 0,K∂Γ = 1) need renormaliz. (as δg ≥ r − 2 else)

Quartic melonic diagrams can be mapped to planar trees
(intermediate field rep./loop-vertex expansion [Delepouve, Gurau, Rivasseau ’14]):

φ4
1,5 renormalization Hopf algebra is one of coloured planar trees

but edges are coloured (not vertices like in Hopf algebra of decorated trees)

2pt graphs are rooted trees, 4pt graphs are trees with 2 markings!
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Features of tensorial theory

only tadpole and fish diagram are primitive → nice cDSE

only con. boundary (“unbroken”) 4pt function is in Hf2g

sum over colours for 2pt function, but not for 4pt function

Consequences:

coproduct at order k does not factor in ck−j ⊗ cj (overall
∑
c)

different comb. factors (maxf(Γ)) for adjacent interactions b 6= c vs. b = c

can be smoothened including broken 4pt functions ([Tanasa et. al. ’13,’15])

but this gives a different Hopf algebra (not renormalization of φ4
1,5)

w.i.p.: improve and understand using Ward identities (Hopf ideals)
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Outlook

Result: algebraic structure of renormalization generalizes to cNLFT

gives concise algorithm to calculate amplitudes explicitly (classify!)

Random geometry/quantum gravity occurs at criticality
→ understand non-perturbative cNLFT, in particular tensorial!

use cDSE to identify algebraic structure underlying solvability of matrix
field theory (w.i.p. with A. Hock)

generalize to tensors of rank r > 2

Thanks for your attention!
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