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• The geometric theory of local gauge PDEs, to be mentioned
in Lecture II, was proposed by M. Grigoriev and A.K. in 2019.
It is based upon the Q-bundle technique (A.K., T.Strobl),
explained previously in Lecture I

• The part about the geometry of PDEs is based upon the
research of Alexander Vinogradov’s school (J. Krasilschik, V.
Lychagin, V. Rubtsov, ...)

• The BV-BRST formalism for local field theories is due to G.
Barnich, F. Brandt, M. Henneaux (Marc Henneaux school)

• The presymplectic AKSZ type approach to local field theory
actions was earlier proposed by K. Alkalaev and M. Grigoriev
(2013) and later developed by M. Grigoriev (2016)

• The coordinate version of the parent formalism was proposed
by G. Barnich and M. Grigoriev (partially motivated by
unfolded approach to higher spin gauge theory of M. Vasiliev)
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Jet bundles and the geometry of PDEs

Let π : E → X be a fibered bundle over X . We call local
coordinates on X independent variables and local fiber coordinates
dependent variables.

Consider Jk(π) and J∞(π), the spaces of k−jets and infinite jets
of local sections of π, respectively.

Given any local section σ of π, denote by σ(k) the corresponding
k−jet prolongation, where k = 0, . . . ,∞.

For any vector field v on X , denote by Dv the total derivation
along v , which maps functions on Jk(π) to functions on Jk+1(π):
given a function f one has

Lvσ
∗
(k)f = σ∗(k)Dv f
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Jet bundles and the geometry of PDEs

By construction, the space of functions on J∞(π) is closed under
the action of Dv .

Let xα be local coordinates on the base and ua be local fiber
coordinates. Then the associated coordinate system on Jk(π) is
(xα, uaI ), where I is a (super) symmetric multi-index (in one of
possible conventions) corresponding to partial derivatives along
base coordinates.

Now the total derivation with respect to xα reads as

Dα =
∂

∂xα
+ uaα

∂

∂ua
+ uaαβ

∂

∂uaβ
+ . . .
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Jet bundles and the geometry of PDEs

The total lifting of derivations on X is

1. linear with respect to multiplication on functions on X

2. respects the (super) Lie bracket of vector fields on X , i.e.

[Dv1 ,Dv2 ] = D[v1,v2]

Provided the first property is holding, it is sufficient to require
that, in local coordinates, [Dα,Dβ] = 0.

All properties together imply that the space of infinite jets is
canonically supplied with a horizontal involutive distribution, called
the Cartan distribution and denoted by C.
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Jet bundles and the geometry of PDEs

In local coordinates, a partial differential equation (PDE) on
sections of π is determined by a system of equations

Hk(x , uI ) = 0

where k runs from 1 to some natural number.

If a local section is a solution to Hk = 0, it is also a solution to
DαHk = 0. Therefore, in addition to the original system equations,
one should consider all prolongations of the form DαDβ . . .Hk = 0
for all (super) symmetric finite sequences of indices α, β, . . ..

In this way, we obtain an infinitely prolonged PDE . By
construction, the corresponding subspace of J∞(π) contains the
Cartan distribution.
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Jet bundles and the geometry of PDEs

This leads to a geometrical formulation of PDEs.

A PDE is a pair (EX , C), where EX is a manifold and C(EX )
(denoted by just C in what follows if it doesn’t lead to confusions)
is an involutive distribution C(EX ) ⊂ TEX called Cartan
distribution. It is typically assumed (as it’s done later) that

- EX is a locally trivial bundle πX : EX → X over the manifold
X of independent variables.

- Canonical projection πX induces an isomorphism
Cp(EX )→ TπX (p)X for all p ∈ EX . In particular C is of
constant rank, which is equal to dim(X ).

- (EX , C) can be embedded into some jet bundle as an infinitely
prolonged equation, at least locally.

Solutions of the PDE are sections of πX , which are tangent to C,
i.e. integral submanifolds of the Cartan distribution, tangent to the
Cartan distribution.
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Jet bundles and the geometry of PDEs

Every vector field on X admits a canonical lift to the total space

v 7→ Dv

which is linear under multiplication on functions on X and which
respects the Lie (super) bracket of vector fields.

We obtain a differential dh on horizontal forms - differential forms
on the total space annihilated by vertical vector fields, called the
horizontal differential.

In local base coordinates it reads as follows

dh = dxαDα
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Jet bundles and the geometry of PDEs

The super geometric interpretation of the Cartan structure and the
horizontal differential is the following: the Cartan distribution on
the total space, viewed as a vector bundle with the shifted degree
by 1, is a Q−manifold such that the canonical projection

(C[1], dh)→ (T [1]X , d)

is a Q−bundle.

In general, it is not locally trivial as a Q−bundle, i.e. one can not
represent it locally as a product of two Q−manifolds.

For example, it is not locally trivial in the case of ordinary jet
spaces, regarded as ”empty” differential equations.
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Reparametrization invariant PDEs

If the Q−bundle (C[1], dh)→ (T [1]X , d) is locally trivial, the
corresponding PDE is called reparametrization invariant.

All PDEs of finite type are reparametrization invariant.

In particular, all ODEs are reparametrization invariant.



Reparametrization invariant PDEs

If the Q−bundle (C[1], dh)→ (T [1]X , d) is locally trivial, the
corresponding PDE is called reparametrization invariant.

All PDEs of finite type are reparametrization invariant.

In particular, all ODEs are reparametrization invariant.



Reparametrization invariant PDEs

If the Q−bundle (C[1], dh)→ (T [1]X , d) is locally trivial, the
corresponding PDE is called reparametrization invariant.

All PDEs of finite type are reparametrization invariant.

In particular, all ODEs are reparametrization invariant.



Evolutionary vector fields as symmetries of
PDEs

Let (EX , C) be a PDE over X , πX : EX → X be the corresponding
projection. A vertical vector field on the total space, preserving C,
is a called an evolutionary vector field.

- An evolutionary vector field commutes with Dv for all vector
fields v on X ;

- If an evolutionary vector field can be exponentiated, i.e. it is
an infinitesimal flow of some diffeomorphism of the total
space EX , then:
• this diffeomorphism is a bundle isomorphism
• it preserves the Cartan distribution
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Evolutionary vector fields as symmetries of
PDEs

- Taking into account that functions on the infinite jet space
J∞(π) are generated by functions on E and their total
derivatives, one concludes that evolutionary vector fields are
uniquely fixed by its action on F(E ).

In local coordinates:

v(uaI ) = D I
xv(ua)

where D I
x = D i1

x1
. . .D in

xn for I = (i1, . . . , in)
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Evolutionary vector fields as symmetries of
PDEs

- Evolutionary vector fields are viewed as infinitesimal
symmetries of the corresponding PDE

- In particular, gauge symmetries of local field theories are
evolutionary vector fields

- Given that differential graded (Koszul) resolution of a PDE,
which is embedded into a jet space, must commute with jet
prolongations, it is determined by a degree 1 evolutionary
super vector field

- Finally, a Q−manifold in the context of PDEs is a PDE
together with a degree 1 evolutionary self-commuting vector
field
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k-jet prolongation of a vector field

• Given a vector field v on the total space of π : E → X , there
exists a canonical k−jet prolongation v (k) on Jk(π) for all k ,
which preserves the Cartan distribution on Jk(π) (the span of
tangent spaces to all k−jets of local sections of π)

• This prolongation is compatible with the projections
Jk(π)→ J l(π) for all k > l . In other words, there is a
canonical infinite jet prolongation of v to a vector field on
J∞(π), preserving the Cartan structure, such that v (k)

coincides with its restriction to F(Jk(π)) ⊂ F(J∞(π)).

• The latter statement is equivalent to the existence of a
canonical prolongation to C[1], commuting with dh.
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k-jet prolongation of a vector field

In local coordinates (xa, ua), let

v =
∑
α

f α(x , u) ∂xα +
∑
a

ga(x , u) ∂ua

Then v (∞) is the sum of horizontal and vertical evolutionary parts

v (∞) = v
(∞)
h + v

(∞)
e

where

v
(∞)
h =

∑
α

f α(x , u)Dxα

and

v
(∞)
e (ua) = ga(x , u)− f α(x , u) uaα, uaα = Dxαu

a



Gauge PDEs

Consider a graded PDE together with a homological evolutionary
vector field s.

As it was previously mentioned, we canonically extend s to C[1] in
such a way that it will (super-)commute with all total derivations,
and thus with the horizontal differential dh.

Therefore we obtain two super commuting differentials on EX , dh
and s. Their sum dh + s is again a differential.

Notice that C[1] is naturally bi-graded: the first grading comes
from the degree of horizontal differential forms, while the second
one, called the ghost number, corresponds to the degree of fiber
coordinates.

The differentials dh and s have the bi-degrees (1, 0) and (0, 1),
respectively. The total differential dh + s has the total degree 1.
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Gauge PDEs

Gauge pre-PDE is a Z-graded Q-bundle (ET [1]X ,Q) over
(T [1]X , dX ), where (T [1]X , dX ) is considered as a graded
Q-manifold with the canonical degree (form degree) and the
canonical Q-structure (de Rham differential).

Gauge pre-PDE (ET [1]X ,Q) is called contractible if as a bundle
over T [1]X it is locally trivial, admits a global Q-section, and its
fiber is a contractible Q-manifold.

Gauge pre-PDE (ET [1]X ,Q) is an equivalent reduction of
(E ′T [1]X ,Q

′) if (E ′T [1]X ,Q
′) is a locally-trivial Q-bundle over

(ET [1]X ,Q) (in the category of Q-bundles over T [1]X ) whose fiber
is contractible and which admits a global Q-section
i : ET [1]X → E ′T [1]X .
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Gauge PDEs

The equivalence relation generated by the equivalence reduction is
called the equivalence of gauge pre-PDEs.

Two gauge pre-PDEs are equivalent if and only if there exists a
third one such that the two are its equivalent reductions.

A pre-PDE, where ET [1]X is C[1] for a (super) jet space and
Q = dh + s for an evolutionary degree 1 vector field s, is called a
standard gauge pre-PDE. Equivalence of standard gauge pre-PDEs
are those which respect the natural bi-grading.

Gauge pre-PDE (ET [1[X ],Q) is a gauge PDE if:

1. it is equivalent to a nonnegatively graded gauge pre-PDE

2. it is equivalent to a standard gauge pre-PDE
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Maxwell equations as a gauge theory:
”classical” part

- Independent variables: x i , i = 1, . . . , n

- Dependent variables: Ai , i = 1, . . . , n, ghAi = 0

- The action functional:

S [A] =

∫
L[A]

where

L[A] = −1

2

∑
i ,j

FijFij , Fij = DiAj − DjAi

and Di = Dx i . We will denote Ai ,j = DjAi .
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Maxwell equations as a gauge theory:
”classical” part

- The equations of motion (Euler-Lagrange equations):

δL

δAi
=

∂L

∂Ai
−
∑
j

Dj

(
∂L

∂Ai ,j

)
= 0

will give us

δL

δAi
= −

∑
j

DjFij = 0

for all i = 1, . . . , n.



Maxwell equations as a gauge theory: the
Koszul-Tate resolution

- New dependent variables: Ai
∗, i = 1, . . . , n, ghAi

∗ = −1, C ∗,
ghC ∗ = −2

- The Koszul-Tate differential δ:

δAi = 0

δAi
∗ =

∑
j

DjFij

δC ∗ =
∑
i

DiA
i
∗

- δ is an evolutionary vector field, that is

δ
(
D I
xA

i
∗

)
= D I

x

∑
j

DjFij

 , δ
(
D I
xC
∗
)

= D I
x

(∑
i

DiA
i
∗

)
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Maxwell equations as a gauge theory: the
Koszul resolution

- δ is acyclic except the degree 0; the 0-degree cohomology
gives functions on the equation manifold:

Hk
δ =

{
0, k < 0

F (ΣMaxwell) , k = 0

Here

ΣMaxwell =

{
DI

(
δL

δAi

)
= 0, ∀I , i

}



Maxwell equations as a gauge theory: the
gauge symmetries generator

- New dependent variable: C , ghC = 1

- The differential γ:

γAi = DiC

γC = 0

generates gauge symmetries

δεAi = Diε
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Maxwell equations as a gauge theory: the
BRST differential

- Independent variables: x i , i = 1, . . . , n

- Dependent variables: Ai , ghAi = 0 and Ai
∗, i = 1, . . . , n,

ghAi
∗ = −1; C ∗, ghC ∗ = −2, and C , ghC = 1

- The differential s:

sAi = DiC = Ci , sC = 0

sAi
∗ =

∑
j

DjFij =
∑
j

Fij ,j

sC ∗ =
∑
i

DiA
i
∗

- Q = dh + s, such that Qx i = θi , QAi =
∑

k θ
kAi ,k + Ci , etc.



Maxwell equations as a gauge theory: the
minimal model

Now we introduce another set of jet coordinates, which is
decomposed into the following two subsets:

Subset 1{
Ai
∗,j1...jm ,QA

i
∗,j1...jm ,C

∗
j1...jm

,QC ∗j1...jm ,A(j1,j2...jm),QA(j1,j2...jm)

}
where

A(j1,j2...jm) = Aj1,j2...jm + Aj2,j3...jmj1 + . . .+ Ajm,j1...jm−1
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Maxwell equations as a gauge theory: the
minimal model

Subset 2{
x i , θi ,Cmin,Pi ,j1...jm

}
where Cmin = C +

∑
k θ

kAk and Pi ,j1...jm = F ′i(j1,j2...jm) for

F ′ij1,j2...jm = Fij1,j2...jm −
1

n

∑
j

Fij ,j ,j3...jm)

 δj1j2

F ′ij1,j2...jm is the traceless part of Fi(j1,j2...jm).

One has

Qx i = θi , QCmin =
1

2

∑
i ,j

θiθjPi ,j

QPi ,j1,j2...,jm =
∑
k

θk
(
m + 1

m + 2
Pi ,kj1...jm +

1

m + 2
Pk,ij1,...jm

)



Maxwell equations as a gauge theory: the
minimal model

Subset 2{
x i , θi ,Cmin,Pi ,j1...jm

}
where Cmin = C +

∑
k θ

kAk and Pi ,j1...jm = F ′i(j1,j2...jm) for

F ′ij1,j2...jm = Fij1,j2...jm −
1

n

∑
j

Fij ,j ,j3...jm)

 δj1j2

F ′ij1,j2...jm is the traceless part of Fi(j1,j2...jm). One has

Qx i = θi , QCmin =
1

2

∑
i ,j

θiθjPi ,j

QPi ,j1,j2...,jm =
∑
k

θk
(
m + 1

m + 2
Pi ,kj1...jm +

1

m + 2
Pk,ij1,...jm

)



Maxwell equations as a gauge theory: the
minimal model

- Independent variables: {x i , θi}, i = 1, . . . , n

- Dependent variables: Pi ,j1j2,...,jm , ghP... = 0; Cmin, ghCmin = 1,
where Pi ,j1j2,...,jm is symmetric w.r.t. j1, j2, . . . , jm and satisfies

P(i ,j1...jm) = Pi ,j1j2...jm + Pj1,j2,...,jmi + . . .+ Pjm,ij1j2...jm−1 = 0

and
∑

j Pi ,jj ,j2,...,jm = 0

- The differential Q:

Qx i = θi , QCmin =
1

2

∑
ij

θiθjPi ,j

QPi ,j1j2...jm =
∑
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Parent formalism

• We have two categories:

• The first one consists of standard gauge PDEs together with
morphisms and equivalences preserving Z× Z bi-grading,
while the second one consists of gauge PDEs, which are only
Z−graded.

• There is a forgetful functor from the first category to the
second one which replaces the bi-grading with the total
grading.

• There is also a canonical functor in the opposite direction
which associates to a gauge PDE (ET [1[X ],Q) the differential
equation whose solutions are Q−sections of ET [1[X ] → T [1]X .
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Parent formalism

This pair of functors gives us an equivalence of two categories
obtained by the localization of the categories of standard gauge
PDEs and gauge PDEs over the corresponding equivalences.

More precisely, let EX → X be the jet space of local sections for a
(super) bundle over X together with a degree 1 homological
evolutionary vector field s, whose negative cohomology are
vanishing.

This describes a PDE with gauge symmetries in the usual sense:
normally s is obtained by the homological perturbation of a couple
of homological degree 1 evolutionary vector fields, the first of which
is the Koszul resolution for a PDE embedded into the jet space (in
other words the Koszul resolution determines such an embedding).
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Parent formalism

The second evolutionary differential can be the Chevalley-Eilenberg
operator (like in the toy model considered in Part I) or be of a
more complicated nature.

Now we take the corresponding Cartan distribution C on the
(super) jet space, the Q−bundle C[1]→ T [1]X with the total
Q = dh + s and ”forget” about the bi-grading of the total space.
We obtain a gauge PDE, which ”remembers” only the total
Z−grading.

From now we are allowed to work with this new object as if it was
a gauge PDE from the very beginning, replacing it with an
equivalent gauge PDE (which inherits the same important
properties, eg. all associated natural cohomologies are the same).
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Parent formalism

At first glance, it looks like we lost important original information,
since it is no more a standard gauge PDE, i.e. it may not come
from a PDE with gauge symmetries by use of the procedure
described earlier.

However, the parent formalism gives us the way how to restore the
original standard gauge PDE up an equivalence of standard gauge
PDEs. As mentioned before, we take differential equation for
Q−sections of the gauge PDE regarded as a Q−bundle over
T [1]X . This gives us a standard gauge PDE which is equivalent to
the original one.

If the gauge PDE is reparametrization invariant (by the definition,
the underlined Q−bundle is locally trivial), we obtain (at least
locally) an AKSZ-type differential equation.
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Parent formalism: an explicit global
construction

The parent formula admits a simple explicit construction.

Let π : (ET [1]X ,Q)→ (T [1]X ,dX ) be a gauge PDE.

Consider the super jet bundle of local super sections of π. The
homological vector field Q admits a canonical jet prolongation
Q(∞) to the super jet space, which is again homological.

Q(∞) splits into the horizontal and vertical (evolutionary) parts,

Q(∞) = Q
(∞)
h + Q

(∞)
e

as well as the Euler vector field ε(∞) (which determines the
corresponding Z−grading on the total space of ET [1]X )

ε(∞) = ε
(∞)
h + ε

(∞)
e
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Parent formalism: an explicit global
construction

The only non-trivial commutation relations between the four
obtained components are

[ε
(∞)
h ,Q

(∞)
h ] = Q

(∞)
h

and

[ε
(∞)
e ,Q

(∞)
e ] = Q

(∞)
e

Therefore we have a bi-complex with the two commuting

Z−gradings, given by ε
(∞)
h and ε

(∞)
e , respectively.

One can show that Q
(∞)
h and Q

(∞)
e can be canonically identified

with dh and s for the standard gauge PDE for Q−sections of π,
respectively.



Parent formalism: an explicit global
construction

The only non-trivial commutation relations between the four
obtained components are

[ε
(∞)
h ,Q

(∞)
h ] = Q

(∞)
h

and

[ε
(∞)
e ,Q

(∞)
e ] = Q

(∞)
e

Therefore we have a bi-complex with the two commuting

Z−gradings, given by ε
(∞)
h and ε

(∞)
e , respectively.

One can show that Q
(∞)
h and Q

(∞)
e can be canonically identified

with dh and s for the standard gauge PDE for Q−sections of π,
respectively.



Parent formalism: an explicit global
construction

The only non-trivial commutation relations between the four
obtained components are

[ε
(∞)
h ,Q

(∞)
h ] = Q

(∞)
h

and

[ε
(∞)
e ,Q

(∞)
e ] = Q

(∞)
e

Therefore we have a bi-complex with the two commuting

Z−gradings, given by ε
(∞)
h and ε

(∞)
e , respectively.

One can show that Q
(∞)
h and Q

(∞)
e can be canonically identified

with dh and s for the standard gauge PDE for Q−sections of π,
respectively.



Presymplectic gauge PDEs

Let (ET [1]X ,Q) be a gauge (pre-)PDE regarded as a Q-bundle over
T [1]X , where dimX = n.

A compatible presymplectic structure is a degree n − 1 vertical
2-form ω on the total space satisfying

dvω = 0 , LQω = 0 . (1)

AKSZ model as a presymplectic gauge PDE

In this case E = ET [1]X = M × T [1]X , where (M,QM , ω) is a
symplectic Q-manifold. The Q-structure on the total space is
Q = dX + QM , while the vertical presymplectic form is given by ω.
Notice that here dv is just dM .
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The transgression formula for AKSZ

One can reformulate the transgression formula (A.K., T. Strobl)
from the previous lecture as follows: for a symplectic Q−manifold
(M,QM , ω) with the symplectic form ω of degree p > 0 one has

• dω = 0

• LQM
ω = 0 and

• Lεω = pω

where ε is the Euler vector field on M, which determines the
grading.

This implies that

ω = (d + LQM
)(χ+ l)

where χ = 1
p ιεω and l = 1

p+1 ιQM
χ.
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The transgression formula for AKSZ

In particular, one has

• ω = dχ and

• ιQM
ω = dh, where h = p

p+1 ιQM
χ.

Let X an n-dimensional manifold (n > 1), (M,QM , ω) be a
symplectic Q-manifold of degree p = n − 1, and φ be a
(degree-preserving) map from T [1]X to M. Then the (classical
part of the) AKSZ sigma model action for the source space T [1]X
and the target M is

SAKSZ [φ] =

∫
T [1]X

φ̃∗(χ+ l)
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Now let us remark that, whenever (ET [1]X ,Q, ω) is a presymplectic
gauge (pre-)PDE, such that

ω = (dv + LQ)(χ+ l)

where χ and l are vertical 1−form and 0−form, respectively, and σ
is a (degree preserving) section of ET [1]X , one can construct an
action in a similar way to the AKSZ case:

S [φ] =

∫
T [1]X

σ̃∗(χ+ l)

Here we use the generalized Cartan map induced by σ by taking
into account that the corresponding field strength is a vertical
vector field, which allows us to apply the generalized Cartan map
to vertical forms on the total space.
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- If ω is vertically non-degenerate that the solutions to the
EOM are in one-to-one correspondence with Q−sections of
E → T [1]X

- In general it is not true (all interesting non-topological
examples, such as Maxwell, Yang-Mills and Einstein gravity
models, correspond to degenerate horizontal 2-forms)

- Then one should be able to quotient out the kernel of ω,
viewed in a reasonable way
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Standard gauge presymplectic PDEs

In this case ET [1]X corresponds to the jet bundle for a bundle over
X and Q = dh + s, where s is an extension of a vertical
evolutionary homological vector field.

The transgression formula ω = (dv + LQ)(χ+ l) is true if and only
if the following properties are holding:

1. ω = dvχ;

2. ιsω = dvh − dhχ

where h = ιsχ− l .
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Indeed, the transgression formula is equivalent to

1. ω = dvχ;

2. dhχ+ Lsχ+ dv l = 0

3. (Ls + dh)l = 0

While the first properties are the same, the equation

dhχ+ Lsχ+ dv l = 0

can be represented as

dhχ+ ιsdvχ− dv ιsχ+ dv l = dhχ+ ιsω − dvh = 0

therefore the first two properties are equivalent.



Now the last condition (Ls + dh)l = 0 is fulfilled automatically
thanks to the degree reason: one can verify that

dv (Ls + dh)l = −(Ls + dh)dv (l) = (Ls + dh)2χ = 0

therefore (Ls + dh)(l) is coming from the base T [1]X , so it is
actually a differential form on X . But the degree of this expression
is n + 1, thus it must be zero.



Example: descend process

(A. Sharapov) One has

• ωn = dvχn and

• ιsωn = dvhn − dhχn−1,

where ωn and χn are vertical 2-form and 1-form of the top
horizontal degree, respectively.

The second condition means that s is a Hamiltonian vector field up
to the divergence.

Now we notice that Lsωn = −dhωn−1, where ωn−1 = dvχn−1 is a
vertical 2-form of the horizontal degree n − 1.

Moreover,

dhdv (ιsωn−1) = −dhLsωn−1 = Lsdhωn−1 = −L2sωn = 0
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Example: descend process

Therefore, under certain topological conditions, dv (ιsωn−1)
vanishes up to the divergence, which implies that there exist hn−1
and χn−2, such that

ιsωn−1 = dvhn−1 − dhχn−2

and so on: we iterate this process (by the degree reason it will
eventually stop) and get ω = ωn +ωn−1 + . . ., χ = χn +χn−1 + . . .,
and h = hn + hn−1 + . . ., and finally we obtain that

1. ω = dvχ;

2. ιsω = dvh − dhχ

is holding and hence the transgression formula
ω = (dv + LQ)(χ+ l) for l = ιsχ− h is true.



Let us assume that the transgression formula holds:

ω = (dv + dh + Ls)(χ+ l)

Let σ be induced by a jet prolongation of some section of
EX → X . The one has

dXσ
∗ = σ∗dh

The latter implies that

σ̃∗(χ+ l) = σ∗(−ιsχ+ l) = −σ∗h

So the AKSZ type action is the ”original” classical Lagrangian∫
T [1]X

σ∗(−h)
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The general idea

• We start with a standard symplectic gauge PDE,
corresponding to a BV-extension of a classical theory;

• By mixing the degrees, we find an equivalent presymplectic
gauge PDE (maybe a minimal model);

• Using the AKSZ-type action function determined by the
transgression of the compatible presymplectic 2-form we can
come back to the standard case
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