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OUTLINE

- Peierls Phenomenon

- Peierls Phenomenon and periodic solutions of solitons equations (say, KdV)

- Peierls Phenomenon and Gross-Neveu model with large rank Lie group

- Bethe Ansatz for integrable theories with Lie group symmetries

- Singular limit of the large rank
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PEIERLS PHENOMENON
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PEIERLS PHENOMENON

Peierls’ theorem (first espoused in 1930, written in 1954):

One-dimensional equally spaced chain with one electron per ion is unstable!

Electronic crystals
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ELECTRONIC CRYSTAL

W. Little 1964
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RUDOLF PEIERLS: 1907-1995

7 / 21



PEIERLS PROBLEM: DISCRETE VERSION

1) Schrödinger equation: cnψn+1 + cn−1ψn−1 = εψn

2) Find the spectrum as a functional of C = {c1, . . . }: ε[C]

3) Compute the energy: sum over all eigenvalues below µ: E [C] =
∑

ε<µ

ε[C] +
∑

n

c2
n

Peierls Problem: Find C which gives the minimum to the energy min
C

E [C]

Krichever Solution: The extrema are given by the finite-gap solutions of the Toda chain.

The minimum is given by the one-gap solution.
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PEIERLS PROBLEM AND THE LAX OPERATOR

1) The Schrödinger equation with a variable hopping:

Lψ= cnψn+1 + cn−1ψn−1 = εψn was identified with the Lax operator

2) Extrema of energy were identified with finite-gap periodic solutions
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PEIERLS PROBLEM: CONTINUOS VERSION

(1+1)-Dirac Hamiltonian: H =ψ†τ1

�

i∂x +τ3σ
�

ψ+ 1
2λσ

2

Dirac equation:

¨

−i
�

∂x −σ(x)
�

ψ+ = εψ−
−i
�

∂x +σ(x)
�

ψ− = εψ+

1. Compute the energy as a functional of σ: E[σ] = Tr
H<µ

H =
∑

ε<µ ε+
1

2λσ
2

2. Minimize with respect to σ: min
σ

E [σ]

3. Compute the spectrum of H in the most favorable σ

The minimum of energy is achieved if σ is a periodic solution of mKdV

σt − 6σ2σx +σxxx = 0, σ = function (x− ct) .
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CNOIDAL WAVE

mKdV: σt − 6σ2σx +σxxx = 0

Miura: q= σ2 +σx

KdV: qt − 6qqx + qxxx = 0 .

Cnoidal wave: σ(x) = σ0k1/2 sn(x|k)

# Particles=Period: N/N0 = 2k1/2K(k)

Gap: σ0 = Λe−π/λ
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SPECTRAL CURVE

−i
�

∂x ∓σ(x)
�

ψ± = ε(p)ψ∓

dN(ε)/N0 = dp

dp=
|ε2 − S|
p

R
dε

R(ε) = (ε2 − E2
+)(ε

2 − E2
−)

2S= −σ2 + E2
+ + E2

−

Edges of the spectrum : E± =
σ0
2 (k

−1/2 ± k1/2)
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QUANTIZATION OF THE SPECTRAL CURVE

Valdemar Melin, Yuta Sekiguchi, P. W., and Konstantin Zarembo

How to obtain periodic solutions of classical integrable equations from quantum
integrable models?

Quantum version of Peierls problem and the spectral curves
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QUANTUM VERSION: GROSS-NEVEU MODEL

H =ψ†τ2

�

i∂x +τ3σ
�

ψ+ 1
2λσ

2

Adiabatic approximation: σ is determined by the extremum of Tr H

Quantum version: σ itself is a quantum field.
In this case we have Gross-Neveu model

H =ψ†τ2i∂xψ+
λ
2 (ψ

†ψ)2

Large N as a semiclassical parameter: ψ→ (ψ1, . . .ψN)

H =
∑

1≤k≤N

ψ†
kτ2i∂xψk +

λ
2

�

∑

1≤k≤N

ψ†
kψk

�2

We recover the Peierls model in the limit of a large N
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LIE GROUP

H =
∑

1≤k≤N

ψ†
kτ2i∂xψk +

λ
2

�

∑

1≤k≤N

ψ†
kψk

�2

Integrable model controlled by its global symmetry O(2N)
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MASS SPECTRUM

Particle content: All fundamental representations.

Mass spectrum DN:

n-th tensor : mn =m
sin πn

2N−2

sin π
2N−2

spinors: ms =ms̄ =
m

2sin π
2N−2

,

Scattering matrices, the mass spectrum, the Bethe Ansatz are known for all simple Lie
groups: E. Ogievetski, N. Reshetikhin, P. W.
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QUANTUM INTEGRABLE SYSTEMS: SCATTERING MATRICES AND TBA

The scattering matrix is factorized into a product of two-particle scattering

Sab(θ ), θ = θa − θb, pa(θ →∞)∼ma sinhθ

Thermodynamic Bethe-Ansatz equations for the "spectral curve" Kab =
1

2πi
d

dθ log Sab

∫

Kab(θa − θb)dpb =ma sinhθa,

∫

Kab(θa − θb)εb = µa −ma coshθa

Sum over particle content (along the Dynkin diagram

Spectral curve E =multivalued function (P)− spectral curve

P=
∑

a

∫

sinhθdpa, E−µN =
∑

a

∫

cosh(θ )εbdθ
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SCATTERING MATRIX DN (IN MOMENTUM SPACE)

Karowski and Thun, 1981
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GROUND STATE

The vacuum is filled by spinors:

The TBA are reduced to:

∫ B

−B

(Kss+Ks̄s)(θ−θ ′)dps =ms sinhθ , 2

∫ B

−B

Kas(θ−θ ′)dps =ma coshθ ,
N
N0
=

∫ B

−B

dps

Kss +Ks̄s =
tanh |k|2

2
�

1− e−
|k|

N−1

� , Kas = −
e

π|k|
2N−2

2cosh πk
2
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SINGULAR LARGE N LIMIT

Kss +Ks̄s =
tanh k

2

2
�

1− e−
|k|

N−1

� →
N→∞

−
N
π2

log coth
θ

2
Kas = −

e
π|k|

2N−2

2cosh πk
2

→
N→∞

−
1

2π coshθ

Integral equations degenerate to the Riemann-Hilbert problem
∫

[−B,B]

ln coth
θ − θ ′

2
dps

π
=m coshθ ,

∫

[−B,B]

ln coth
θ − θ ′

2
ε(θ ′)

dθ ′

π
=m coshθ −

µ

2

KdV spectral curve

dp=
ε2 +σ2 − E2

+ − E2
−

Æ

(ε2 − E2
+)(ε2 − E2

−)
dε

N
N0
= 2k1/2K(k), E± =

σ0
2 (k

−1/2 ± k1/2)
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COMMENTS

Relation between Lie algebras and integrable equations

AN ⇒ NLS

DN ⇒ KdV

BN, CN ?

Quantum version of Krichever-Novikov algebro-geometric construct of periodic
solution of soliton equation
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