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- Bethe Ansatz for integrable theories with Lie group symmetries

- Singular limit of the large rank
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Peierls’ theorem (first espoused in 1930, written in 1954):

One-dimensional equally spaced chain with one electron per ion is unstable!

Electronic crystals

T>T, EI

p(x) = p,
&

T<Te

p(x) = po + pycos(2kex+¢)

® 0O ® 2O @ s/



ELECTRONIC CRYSTAL

W. Little 1964
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RUDOLF PEIERLS: 1907-1995
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PEIERLS PROBLEM: DISCRETE VERSION

1) Schrédinger equation: CoWni1 +Ca Wy = €Y,
2) Find the spectrum as a functional of C = {c;,...}: e[C]

2
n

3) Compute the energy: sum over all eigenvalues below u: E[C]= Z e[C]+ Zc

e<u n

Peierls Problem: Find C which gives the minimum to the energy mcin E[C]
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PEIERLS PROBLEM: DISCRETE VERSION

1) Schrédinger equation:

3) Compute the energy: sum over all eigenvalues below u: E[C]= Z e[C]+ Zcz

Crz"‘/)n+1 +Cn—11/)n—1 = gll)n

2) Find the spectrum as a functional of C = {c;,...}: e[C]

n
e<u n

Peierls Problem:

Find C which gives the minimum to the energy mcin E[C]

Krichever Solution: The extrema are given by the finite-gap solutions of the Toda chain.

The minimum is given by the one-gap solution.
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PEIERLS PROBLEM AND THE LAX OPERATOR

1) The Schrodinger equation with a variable hopping:

Ly =c Y1 +C1Yuq = €Y, was identified with the Lax operator

2) Extrema of energy were identified with finite-gap periodic solutions
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PEIERLS PROBLEM: CONTINUOS VERSION

(1+1)-Dirac Hamiltonian: H ='7,(id, + 7,0 )y + 550>
27

—i(ax — (7()())1,[)+ =e_
~i(8+ oG- =exp,

Dirac equation: {
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PEIERLS PROBLEM: CONTINUOS VERSION

(14+1)-Dirac Hamiltonian: H =1 "7,(id, + 750 )y + 5502

—i(ax — O'(X))’l,b+ =e_
~i(8+ oG- =exp,

Dirac equation: {

1. Compute the energy as a functional of o:  E[o’] = Tr H = Dy €+ 3507
<u
2. Minimize with respect to o: minE[o]
(e

3. Compute the spectrum of H in the most favorable o
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(14+1)-Dirac Hamiltonian: H =1 "7,(id, + 750 )y + 5502

—i(ax — O'(X))’l,b+ =e_
~i(8+ oG- =exp,

Dirac equation: {

1. Compute the energy as a functional of o:  E[o’] = Tr H = Dy €+ 3507
<u
2. Minimize with respect to o: minE[o]
(e

3. Compute the spectrum of H in the most favorable o

The minimum of energy is achieved if o is a periodic solution of mKdV

0,—60%0,+0,, =0, o =function (x—-ct).
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CNOIDAL WAVE

mKdV:  o0,—60%0,+0,,=0
Miura: g=o0%+o0,
Kdv: q:—6qq, + gy =0.
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CNOIDAL WAVE

mKdV: 0, — 6020, + 0 =0 Cnoidal wave: o(x) = ogk'/? sn(x|k)
Miura: q=o02+o0, # Particles=Period: ~ N/N, = 2k/2K(k)

Kdv: q:— 644Gy + qe =0. Gap: 0y = Ae™™/*
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CNOIDAL WAVE

mKdV: 0, — 6020, + 0 =0 Cnoidal wave: o(x) = ogk'/? sn(x|k)
Miura: q=o02+o0, # Particles=Period: ~ N/N, = 2k/?K(k)
Kdv: q:— 644Gy + qe =0. Gap: 0y = Ae™™/*

US Army bombers flying over near-periodic =
swell in shallow water, close to the Panama
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SPECTRAL CURVE

—i(8 F o)) = @)+
dN(g)/Ny =dp

3\\ . / 2 __
B _le=Sl,,

. f i dp
3 e 1/}_3
l\ ‘ R(e) = (e —E2)(e* —E?)

2, % [ iz" E4
i ‘ rﬂ 2§ =—02 +E2 +E>

: /~ #{*\ Edges of the spectrum : E, = 22 (k"2 £k'/?)
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QUANTIZATION OF THE SPECTRAL CURVE

Valdemar Melin, Yuta Sekiguchi, P W,, and Konstantin Zarembo

How to obtain periodic solutions of classical integrable equations from quantum
integrable models?
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QUANTIZATION OF THE SPECTRAL CURVE

Valdemar Melin, Yuta Sekiguchi, P W,, and Konstantin Zarembo

How to obtain periodic solutions of classical integrable equations from quantum

integrable models?

Quantum version of Peierls problem and the spectral curves
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QUANTUM VERSION: GROSS-NEVEU MODEL

H=1'7,(id, + 730)1,0 + 507

Adiabatic approximation: ¢ is determined by the extremum of TrH
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QUANTUM VERSION: GROSS-NEVEU MODEL

H=1'7,(id, + 730)1,0 + 507

Adiabatic approximation: ¢ is determined by the extremum of TrH

Quantum version: o itself is a quantum field.
In this case we have Gross-Neveu model

H=1"7,i0 + 3 1)

Large N as a semiclassical parameter: ¢ — (Y,...¢y)

H= Y lmidap+3( D) i)

1<k<N 1<k<N

We recover the Peierls model in the limit of a large N
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LIE GROUP

H= Y plnidap+3( D) i)

1<k<N 1<k<N

Integrable model controlled by its global symmetry O(2N)
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MASS SPECTRUM

Particle content: All fundamental representations.

Scattering matrices, the mass spectrum, the Bethe Ansatz are known for all simple Lie

Mass spectrum Dy:

sin
2N—2
n-thtensor: m,=m-—=—
sin 53—
. m
spinors: my;=m; = ——
2sin 55—

groups: E. Ogievetski, N. Reshetikhin, P W.
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QUANTUM INTEGRABLE SYSTEMS: SCATTERING MATRICES AND TBA

The scattering matrix is factorized into a product of two-particle scattering

Sp(0), 6=06,—0, p(0— 0c0)~m,sinhO

17/21



QUANTUM INTEGRABLE SYSTEMS: SCATTERING MATRICES AND TBA

The scattering matrix is factorized into a product of two-particle scattering

Sp(0), 6=06,—0, p(0— 0c0)~m,sinhO

Thermodynamic Bethe-Ansatz equations for the "spectral curve" K, = ﬁ % log S,

J K, (6, — 6,)dp, = m,sinh 6,, J K4(6, —6,)e, = u, —mgcosh 6,

0

Sum over particle content (along the Dynkin diagram

17/21



QUANTUM INTEGRABLE SYSTEMS: SCATTERING MATRICES AND TBA

The scattering matrix is factorized into a product of two-particle scattering

Sp(0), 6=06,—0, p(0— 0c0)~m,sinhO

Thermodynamic Bethe-Ansatz equations for the "spectral curve" K, = ﬁ % log S,
J K, (6, — 6,)dp, = m,sinh 6,, J K4(6, —6,)e, = u, —mgcosh 6,

Sum over particle content (along the Dynkin diagram

Spectral curve E = multivalued function (P) — spectral curve

P= ZJ sinh Odp,, E—uN= ZJ cosh(60)e,do
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SCATTERING MATRIX Dy (IN MOMENTUM SPACE)

1 _ik_sinh (|a—l2)|1;N2+1) — sinh (a+127NN-2}—1)k
Ogh + —€2N-2 —
@9 sinh 5+*— cosh 5 ’
2N—2
1 _1kl sinh(llv_l_ﬁw sinh blk‘Q
Ogh + —€2N-2 —
al b
R 4 sinh =% cosh &
e 2N 2 2
ab = — .
1 _ix sinh ww — sinh 2‘;\}“2
Oab + —€2N-2 T —,
4 sinh 55— cosh §
. k atb L.
|| sinh 3 1(—1)tbeav—=
6ab - 162N72 A k k Z % B
smh SN—_32 COSh b) COSh 5N—3

a>N-2b<N-2

a<N-2b>N-2

Karowski and Thun, 1981
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GROUND STATE

The vacuum is filled by spinors: o—0— - %
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GROUND STATE

The vacuum is filled by spinors: O—O0— - %

The TBA are reduced to:

B B B
J (K +K5)(6—6")dp; = msinh 6, ZJ K, (6—6")dp, = m, cosh 6, %:J dp,

_B _B o 5
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SINGULAR LARGE N LIMIT

tanh & N 9 K
2 ——logcotha K,=— e 1

K ,+Ki=—2 — e 2
T 2(1—(%) N—ooo 2 * 2cosh”7k N—oo  2mcoshd
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SINGULAR LARGE N LIMIT

Kss + Ks§ =

tanh §
2(1-e 1) no

N 0
——zlogcoth— K,=—
T

m|k|
e 2N-2 1

=, =
2cosh”7k N—oo  2mcosh6

[-B.B]

Incoth

/

0 -6’ dp,

— =mecosh0,
T

Integral equations degenerate to the Riemann-Hilbert problem

Incoth

_ 0 /
0=0 072 — mcosho— 4
2 T 2

[-B.B]

KdV spectral curve
e?+02—F2 —F?

)
(e2—E%)(e2—E%)

N
— =2k'?K(k), E.= Rk V*+£k?)
0
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COMMENTS

Relation between Lie algebras and integrable equations
Ay = NLS

Dy = KdV

By, Cy ?
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COMMENTS

Relation between Lie algebras and integrable equations
Ay = NLS

Dy = KdV

By, Cy ?

Quantum version of Krichever-Novikov algebro-geometric construct of periodic
solution of soliton equation
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