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In the last few decades, spacetime and geometry have emerged in many 
contexts as dual descriptions to matrix valued field theories. 

It is expected that a smooth continuum results if one takes a suitable 
large N limit where N = dimension of the matrix.

In this talk, we will revisit this issue in some examples. We will explore 
some subtleties of the large N limit and discuss a way to deal with 
them.



Examples:

AdS/CFT: Here gauge invariant operators of SU(N) Yang-Mills fields are supposed to 
describe bulk fields in the large N limit. To bring out possible subtleties of this limit 
we will describe a simpler example.

C=1 matrix model/2D string theory:

𝑀!" t → 𝜆! 𝑡 , 𝑖 = 1,2, … ,𝑁	 S = ∫ 𝑑𝑡	𝑇𝑟 	𝑀̇# − 𝑉 𝑀 ,𝑉 𝑀 = − 𝑀#

This is equivalent to N free fermions with coordinates 𝜆! 𝑡  in a potential ∑!𝑉 𝜆!

∑! 𝛿 𝜆 − 𝜆! 𝑡 = 𝜌 𝜆, 𝑡 , 	 𝛿𝜌(𝜆, 𝑡) → 𝑇 𝑥, 𝑡 , 𝜆 = 2𝜇 cosh 𝑥   (Das-Jevicki)
        matrix.      2D string

Here on the RHS, T(x,t) describes a massless scalar field called the  Tachyon, which is 
the only dynamical field of the 2D string theory. There are many quantities which 
agree on both sides as 𝑁 → ∞. (see reviews by Ginsparg, Klebanov; 
S-matrix=> Polchinski, GM-Sengupta-Wadia, Moore,.. Yin et al, Sen)



However, there are several reasons why such a duality cannot be exact for any finite 
value of N, however large. In the following many of our statements will be valid for 
matrix QM in general and not necessarily only  the c=1 matrix model. 

Problem 1: (trace identities)

𝜌 𝜆, 𝑡 	has to have some strange properties as a function of 𝜆	.	

This follows from the Cayley Hamilton identities which, at any given t, relate 
𝑇𝑟	𝑀$%&, 𝑝 ≥ 1 to lower traces 𝑇𝑟	𝑀$'&, 𝑝 ≥ 0. Since 𝑇𝑟	𝑀& =	∫ 𝑑𝜆	𝜌 𝜆 	𝜆&, this 
implies constraints between moments of 𝜌 𝜆 .

(These follow from the fact that it is enough to determine all N eigenvalues from the 
first N traces, hence higher traces cannot be independent. )



Thus, e.g. for N=2

𝑇𝑟	𝑀( =
3
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In terms of 𝜌 𝜆, 𝑡 	 it means a constraint

∫ 𝑑𝜆	𝜌 𝜆, 𝑡 𝜆( =
3
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	(∫ 𝑑𝜆	𝜌 𝜆, 𝑡 𝜆#)(∫ 𝑑𝜆)𝜌 𝜆), 𝑡 𝜆)) −
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(∫ 𝑑𝜆	𝜌 𝜆, 𝑡 𝜆)(

If we wish to write the matrix path integral in terms of a density path integral, and 
eventually, for c=1, the tachyon path integral, we must include these constraints and 
hope they go away in the 𝑁 → ∞ limit. 
(work in progress in a c=0 context with R. Suroshe; for earlier work based on phase space 
path integrals and Moyal product constraint, see Dhar-GM-Wadia, discussed below)



Problem 2: (not bosons!)
𝜌 𝜆, 𝑡 	and its conjugate field, do not have the bosonic Heisenberg  algebra, again 
related to finite N. Note that  𝜌 𝜆, 𝑡 = 𝜓% 𝜆, 𝑡 𝜓 𝜆, 𝑡

Recall the standard bosonization of relativistic fermions in 1D:

For finite N number of fermions, say in a box, the two species of fermions corresponds 
to particles and holes; the latter have a finite number of modes, namely N. Hence, the 
Heisenberg algebra does not hold. In fact, the an do not have a closed algebra!
This is the Tomonaga problem.





For finite N number of fermions, a closed operator algebra of fermion bilinears is the 
W-infinity algebra: 

Alternative bases of the algebra are 

Bosonization can be done in terms of phase space density operator. This operator is 
constrained, however, following from  

<-- Wigner distribution
(phase space density operator) 

Dhar-GM-Wadia, Das-Dhar-GM-Wadia,…. Kulkarni-GM-Morita (1992-2019)



Problem 3: (problem with particle interpretation)

Correlators of single trace operators 𝑇𝑟	𝑀* ≡ 𝑂*	do not have a good large N limit even 

when 
*
$
→ 0  in the large N limit:

For li = O(1), there is a good large N limit, namely =0, which, in fact shows the 
orthogonality of “1-particle” states (single trace) to “2-particle” states (double traces), 
leading to a Fock space interpretation of single-trace states.
For li > O(N2/3), the correlator diverges, ruling out a particle interpretation of single 
trace states.

𝑂$!𝑂$"𝑂$#
𝑂$! 𝑂$" 𝑂$#

	 ∝
𝑙!𝑙#	𝑙"	
𝑁

, 	 𝑂$ ≡ 𝑂$𝑂$



Problem 4: (entanglement entropy)

Entanglement entropy of the matrix model 
(equivalently, of the fermion field theory 

By using standard methods (see Das-Hampton-Liu), the entanglement entropy of a 
subregion                      with respect to the complement set, in the fermi ground state 
(filled Fermi sea) is given by

This agrees with the Calabrese-Cardy formula for a boson with uv cut-off Λ = $
+   

It appears that the fermion number N is transformed to a UV cut-off for the 
“bosons” !    What bosons are these?

For fermions in a box of length L, 

𝑆, =
-
( ln

.!'."
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Problem 4a

C=1: the above formula becomes 𝑆, =
-
( ln

0!'0"
1# 2$ 	

,  Das 1995, Hartnoll-Mazenc 2015

where 𝑔4 𝑥 = -
5	$

-
46! 0

 ,              𝑥 = 𝑐𝑜𝑠ℎ'-( .
#	5$

	) 

𝜇𝑁 =  fixed in  𝑁 → ∞ limit  (together with 𝜇 → 0 ) = 
-
7%
	

Reinstating   l8	

(for fixed µ) 

This is surprising from 2D string viewpoint, one expects 𝜖 ∼ 𝑙4 (we will
come back to this)

𝑺𝑨 =
𝟏
𝟑
	𝒍𝒏

𝒙𝟐 − 𝒙𝟏
	𝒈𝒔	𝒍𝒔

	𝒔𝒉𝟐 𝒙𝟎 	 =
𝟏
𝟑
	𝒍𝒏

𝒙𝟐 − 𝒙𝟏
𝒍𝒔
𝑵

𝝁	𝒔𝒉𝟐 𝒙𝟎 	



S2

𝜃, 𝜙

Giant gravitons

½ BPS geometry has S3 x (𝜌, 𝑡) x S3 x (𝜃, 𝜙) 

         AdS5         S5

Giant gravitons are D3 branes, wrapping the second S3, and 
moving in the other coordinates. 

SUSY demands that 𝜌 = 0, 𝜃= 𝜃9, 𝜙 = 𝑡	
The size of the giant graviton is given by                L=1,2,…, N. There are gravitons 
with the same quantum numbers, but with increasing l (> √(𝑔4𝑁)	),	 the graviton 
shrinks below string length. Hence the correct representation is in terms of giant 
gravitons. (Susskind-Toumbas)

Solution 

We will first tackle problems 1-4 and address 4a subsequently.
The hint of the solution comes from a situation similar to problem 3 which appears 
in the physics of giant gravitons.  



Boundary theory= ½ BPS sector of N=4 SYM on S3 x time. 
The half BPS sector is defined in terms of the charges
 
(E,S1,S2; R1,R2,R3) = (E,0,0; 0,0, J), with E=J, 

The action, projected from the original SYM action to this sector, is
∫ 𝑑𝑡	Tr 	|𝐷:Z # − Z #	) = ∑	∫ 𝑑𝑡 	|𝜕:z; # − z; #	),           Z = Φ< + 𝑖Φ=

in the last expression we have gone from Z to the eigenvalues zi by a gauge choice.

Just like in the bulk, the description in terms of gravitons is replaced by D branes 
(giant gravitons), in the boundary theory, the description in terms of single trace 
operators like Tr Zl   are replaced by Schur polynomials. The reason for this 
replacement was precisely problem 3. In particular, for l ~ N, the single trace and 
double trace operators were not orthogonal, they went as

	𝑂*	𝑂*" 	𝑂*! 	 ∼ 	 𝑙	𝑙-𝑙#/𝑁	 ∼ √𝑁  which blows up in the large N limit!



Schur polynomials: 

Nomura, Jevicki, Balasubramaniam et al, Corley-Javicki-Ramgoolam 





Problem (1) is also solved.

The Schur operators cl exist only for l=1,2,…,N; they involve only Tr Zl for 
l=1,2,..,N and are all independent. In particular, they are not constrained by 
any trace identities.

We will realize the independence of the cl by constructing their action in 
terms of independent Heisenberg oscillators a1, a2, …, aN .

We will find below that they also solve problems (2) and (4)!



More generally, a composite giant graviton operator c(r1, r2, r3, …, rN) applied to 
the fermi sea changes it to a new state with the filling (f1, f2, …, fN)  



The N bosonic oscillators 
𝑎>, 𝑎>% 
as explicit operators in the 
Fermion Hilbert space.  

The bosonic oscillators 𝑎>, 𝑎>% 
written in terms of Fermion 
bilinears.  
Here,



The Fermion bilinears 
written in terms of the 
bosonic oscillators 𝑎>, 𝑎>% 



Exact bosonization of N non-relativistic fermions in 1D

𝑓J, 𝑓K, … , 𝑓L ↔ 𝑟J, 𝑟K, … , 𝑟L  with

𝐹9  ↔ 0 , 	 f?%f?'- 𝐹9  ↔ 𝑎-% 0

Note: only N 
bosonic  
Oscillators!!

A.Dhar, GM, N.Suryanarayana, M. Smedback



Geometry of these oscillators:

Entanglement entropy (Holzhey-Wilczek, Calabrese-Cardy, Casini-Huterta, Herzog,… 
The ground state:

determined by demanding:

Solves problem (4) for fermions in a box:

Note that a finite number N of oscillators modes force us to have a finite number (N) 
of lattice points.

“Construct” real space= circle of length L :



Alternatively, a finite number of oscillators can be represented by a 
finite number of energy levels of a single particle problem. 
Semiclassically, these correspond to phase space orbits. E.g. wm ~ 
m, m=1,2,…, N  implies a fuzzy phase space torus. In fact, in the 
giant graviton problem, the two-dimensional plane of the fermion 
is non-commutative, in the AdS geometry it maps to a fuzzy 
sphere.

Dynamics: 
By exploiting the maps (*), (*) one can map the problem of N free 
fermions in a single particle Hamiltonian spectrum E(m), to the 
bosonic Hamiltonian H=∑MNJL E(∑ONJM 𝑎OP𝑎O )



Zero potential: N free fermions in a box have a single particle Hamiltonian 

spectrum E(m) = 4𝜋# @
!

+! .	This maps to a quartic  bosonic Hamiltonian 

H=∑!A-$ BC!

+!
(∑>A-! 𝑎>%𝑎>)2. For small excitations, 𝑎>%𝑎> are non-zero only for 

small k, hence the Hamiltonian becomes effectively quadratic.

This solves the Tomonaga problem.  (A. Dhar, GM, Nemani S)

This Hamiltonian can be expressed in terms of the lattice variables fx, py 

introduced above. (complicated).



Non-zero potential: How does one find a bosonic theory which reproduces the 
fermionic entanglement entropy 

This can be achieved by putting the bosonic theory in a circle with a metric   

In terms of the coordinate, the entanglement entropy iof the bosionic 
theory, as we found earlier, is

Choosing g(x)=PF(x)  , we find the correct bosonic theory 
à this gives a complete solution of problem 4. 

Using the relation between   and    , we find 



Back to Problem 4a:

In terms of the above bosonization, using matric g(x)= sh2 x, and 
e=ls/µN = gs ls, we reproduce the c=1 EE

𝑺𝑨 =
𝟏
𝟑
	𝒍𝒏

𝒙𝟐 − 𝒙𝟏
	𝒈𝒔	𝒍𝒔

	𝒔𝒉𝟐 𝒙𝟎 	 =
𝟏
𝟑
	𝒍𝒏

𝒙𝟐 − 𝒙𝟏
𝒍𝒔
𝑵

𝝁	𝒔𝒉𝟐 𝒙𝟎 	

The boson in question is not the tachyon (the 2D string field), presumably 
it’s a D0 brane, which has the characteristic length scale gs ls (more 
confirmation needed)

Note 𝜖 ∼ 𝑔4	𝑙4	(double scaling)

𝒍𝒏
𝟏
	𝒈𝒔	

𝒔𝒉 𝒙𝟏 	𝒔𝒉(𝒙𝟐) =
𝟏
𝟐	(𝚽 𝐱𝟏 +𝚽 𝐱𝟐 )	Note also  that where Φ 𝑥 = 2	𝑥	is the value of  

* Discussion with Juan Maldacena

the Dilaton at large 𝑥(weak coupling region). While this is suggestive, the correct 
classical contributions to hol. EE (RT) would involve Exp[-2 Φ 𝑥 ], (=area of a 
point). * 



Conclusion:

We showed problems with the standard bosonization of matrix models, or of 
non-relativistic fermions for any N, however large. These follow from (i) trace 
identity constraints, (ii) failure to satisfy Heisenberg commutation relations, 
(iii) failure of particle interpretation of the bosonic theory, and (iv) N-
dependent entanglement entropy.

We show that all these problems can be solved by using an exact bosonization 
of N non-interacting non-relativistic fermions. The real space bosons are 
constructed on a lattice circle; alternatively they can be understood in terms of 
fuzzy phase spaces.

The EE of c=1 matrix model can be explained in terms of such a bosonic 
theory, which has apparent differences from the 2D string. 

It is important to study how these observations apply to more general instances 
of holography.


