A fresh look at the large N limit of Matrix models and holography

Gautam Mandal,
TIFR, Mumbai
Large-N Matrix Models and Emergent Geometry ESI, Vienna september 4,2023
with Ajar Mohan (in progress)

In the last few decades, spacetime and geometry have emerged in many contexts as dual descriptions to matrix valued field theories.

It is expected that a smooth continuum results if one takes a suitable large N limit where $N=$ dimension of the matrix.

In this talk, we will revisit this issue in some examples. We will explore some subtleties of the large N limit and discuss a way to deal with them.

Examples:

AdS/CFT: Here gauge invariant operators of $\operatorname{su}(N)$ Yang-Mills fields are supposed to describe bulk fields in the large N limit. To bring out possible subtleties of this limit we will describe a simpler example.

$C=1$ matrix model/2D string theory:

$M_{i j}(\mathrm{t}) \rightarrow \lambda_{i}(t), i=1,2, \ldots, N \quad \mathrm{~S}=\int d t \operatorname{Tr}\left(\dot{M}^{2}-V(M)\right), V(M)=-M^{2}$
This is equivalent to N free fermions with coordinates $\lambda_{i}(t)$ in a potential $\sum_{i} V\left(\lambda_{i}\right)$

$$
\sum_{i} \delta\left(\lambda-\lambda_{i}(t)\right)=\rho(\lambda, t), \quad \underbrace{\delta \rho(\lambda, t)}_{\text {matrix. }} \rightarrow \underbrace{T(x, t),}_{2 D \operatorname{string}} \lambda=\sqrt{2 \mu} \cosh x \quad \text { (Das-jevicki) }
$$

Here on the RHS, T(x,t) describes a massless scalar field called the Tachyon, which is the only dynamical field of the 2D string theory. There are many quantities which agree on both sides as $N \rightarrow \infty$. (see reviews by Ginsparg, Klebanov;
s-matrix = > Polchinski, GM-sengupta-Wadia, Moore,.. Yin et al, sen)

However, there are several reasons why such a duality cannot be exact for any finite value of N, however large. In the following many of our statements will be valid for matrix QM in general and not necessarily only the $c=1$ matrix model.

Problem 1: (trace identities)

$\rho(\lambda, t)$ has to have some strange properties as a function of λ.
This follows from the cayley Hamilton identities which, at any given t, relate $\operatorname{Tr} M^{N+p}, p \geq 1$ to lower traces $\operatorname{Tr} M^{N-p}, p \geq 0$. since $\operatorname{Tr} M^{p}=\int d \lambda \rho(\lambda) \lambda^{p}$, this implies constraints between moments of $\rho(\lambda)$.
(These follow from the fact that it is enough to determine all N eigenvalues from the first N traces, hence higher traces cannot be independent.)

Thus, e.g. for $\mathrm{N}=2$

$$
\begin{gathered}
\operatorname{Tr} M^{3}=\frac{3}{2} \operatorname{Tr} M \operatorname{Tr} M^{2}-\frac{1}{2}(\operatorname{Tr} M)^{3} \\
\lambda_{1}^{3}+\lambda_{2}^{3}=\frac{3}{2}\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)^{3}
\end{gathered}
$$

In terms of $\rho(\lambda, t)$ it means a constraint

$$
\int d \lambda \rho(\lambda, t) \lambda^{3}=\frac{3}{2}\left(\int d \lambda \rho(\lambda, t) \lambda^{2}\right)\left(\int d \lambda^{\prime} \rho\left(\lambda^{\prime}, t\right) \lambda^{\prime}\right)-\frac{1}{2}\left(\int d \lambda \rho(\lambda, t) \lambda\right)^{3}
$$

If we wish to write the matrix path integral in terms of a density path integral, and eventually, for $c=1$, the tachyon path integral, we must include these constraints and hope they go away in the $N \rightarrow \infty$ limit. (work in progress in ac=o context with R. Suroshe; for earlier work based on phase space path integrals and Moyal product constraint, see Dhar-GM-wadía, discussed below)

Problem 2: (not bosons!)
$\rho(\lambda, t)$ and its conjugate field, do not have the bosonic Heisenberg algebra, again related to finite N. Note that $\rho(\lambda, t)=\psi^{+}(\lambda, t) \psi(\lambda, t)$

Recall the standard bosonization of relativistic fermions in 1D:

$$
\begin{aligned}
& \psi(z)=\left(\psi_{1}(z)+i \psi_{2}(z)\right) / \sqrt{2} \rightarrow \text { right } \\
& \Psi(\bar{z})=\left(\psi_{1}(\bar{z})+i \psi_{2}(\bar{z})\right) / \sqrt{2} \rightarrow \text { left } \\
& \partial_{z} \phi=\psi^{+}(z) \psi(z)=i \psi_{1}(z) \psi_{2}(z)
\end{aligned}
$$

modes: $a_{n}=\sum_{m} \psi_{m}^{\dagger} \psi_{n-m}$

$$
\left[a_{n}, a_{p}^{\dagger}\right]=n \delta_{n, p} \quad \rightarrow \text { requires infinite range of } \mathrm{m}
$$

For finite N number of fermions, say in a box, the two species of fermions corresponds to particles and holes; the latter have a finite number of modes, namely N. Hence, the Heisenberg algebra does not hold. In fact, the a_{n} do not have a closed algebra! This is the Tomonaga problem.

$$
\begin{array}{cc}
{\left[a_{m}, a_{-m}\right]=\sum-\left[\psi_{1, n} \psi_{2, p}, \psi_{1, n^{\prime}} \psi_{2, p^{\prime}}\right]} & n+p=m, n^{\prime}+p^{\prime}=-m \\
m=1 & \vdots \\
\psi_{2,-3 / 2} \psi_{2,3 / 2}-\psi_{1,-5 / 2} \psi_{1,5 / 2} & n=-n^{\prime}=5 / 2
\end{array}
$$

For finite N number of fermions, a closed operator algebra of fermion bilinears is the W-infinity algebra:

$$
W_{m n}=\psi_{m}^{+} \psi_{n},\left[W_{m n}, W_{p q}\right]=\delta_{n p} W_{m q}-\delta_{q m} W_{p n}
$$

Alternative bases of the algebra are

$$
\Phi_{x y}=\psi_{x} \psi_{y}^{+}
$$

$$
U(x, p)=\int d \eta \psi^{+}\left(x+\frac{\eta}{2}\right) \psi\left(x-\frac{\eta}{2}\right) e^{i p \eta} \quad \begin{aligned}
& \text { (phase space density opera }
\end{aligned}
$$

(phase space density operator)

Bosonization can be done in terms of phase space density operator. This operator is constrained, however, following from

$$
\int d y \Phi_{x y} \Phi_{y z}=\psi_{x} \int_{N}^{+}(y) \psi(y) \psi_{z}^{t}=N \Phi_{x z}
$$

Dhar-GM-Wadia, Das-Dhar-GM-Wadia,.... Kulkarni-GM-Morita (1992-2019)

Problem 3: (problem with particle interpretation)
correlators of single trace operators $\operatorname{Tr} M^{l} \equiv O_{l}$ do not have a good large N limit even when $\frac{l}{N} \rightarrow 0$ in the large N limit:

$$
\frac{\left\langle O_{l_{1}} O_{l_{2}} O_{l_{3}}\right\rangle}{\left|O_{l_{1}}\right|\left|O_{l_{2}}\right|\left|O_{l_{3}}\right|} \propto \frac{\sqrt{l_{1} l_{2} l_{3}}}{N}, \quad\left|O_{l}\right| \equiv \sqrt{O_{l} O_{l}}
$$

For $l_{i}=O(1)$, there is a good large N limit, namely $=0$, which, in fact shows the orthogonality of "1-particle" states (single trace) to "2-particle" states (double traces), leading to a Fock space interpretation of single-trace states.
For $l_{i}>O\left(N^{2 / 3}\right)$, the correlator diverges, ruling out a particle interpretation of single trace states.

Problem 4: (entanglement entropy)
Entanglement entropy of the matrix model (equivalently, of the fermion field theory $\psi(\lambda, t)$)

By using standard methods (see Das-Hampton-Liu), the entanglement entropy of a subregion $A \equiv\left[\lambda_{1}, \lambda_{2}\right]$ with respect to the complement set, in the fermi ground state (filled Fermi sea) is given by

$$
S_{A}=\frac{1}{3} \ln \left[\left(\lambda_{2}-\lambda_{1}\right) \mathrm{P}_{\mathrm{F}}\left(\lambda_{0}\right)\right]+\text { constant }, \text { where } \mathrm{P}_{\mathrm{F}}(\lambda)=\sqrt{ }\left(2\left(E_{F}-V(\lambda)\right), \quad \lambda_{0}=\frac{\lambda_{1}+\lambda_{2}}{2}\right.
$$

For fermions in a box of length $L, P_{F}(\lambda) \sim \frac{N}{L}$

$$
S_{A}=\frac{1}{3} \ln \left(\frac{\lambda_{2}-\lambda_{1}}{\epsilon}\right), \quad \text { where } \epsilon=\frac{L}{N}
$$

This agrees with the calabrese-cardy formula for a boson with uv cut-off $\Lambda=\frac{N}{L}$ \equiv^{N} It appears that the fermion number N is transformed to a uv cut-off for the $三_{1}^{2}$ "bosons"! What bosons are these?

Problem $4 a$
$c=1$: the above formula becomes $S_{A}=\frac{1}{3} \ln \left(\frac{x_{2}-x_{1}}{\mathrm{~g}_{s}\left(x_{0}\right)}\right)$, Das 1995, Hartnoll-Mazenc 2015 where $g_{s}(x)=\frac{1}{\mu N} \frac{1}{\operatorname{sh}^{2}(x)}, \quad x=\cosh ^{-1}\left(\frac{\lambda}{\sqrt{2 \mu N}}\right)$
$\mu N=$ fixed in $N \rightarrow \infty$ limit (together with $\mu \rightarrow 0$) $=\frac{1}{g_{s}}$

$$
\begin{array}{cc}
\text { Reinstating } 1_{s} S_{A}=\frac{1}{3} \ln \left(\frac{x_{2}-x_{1}}{g_{s} l_{s}} s h^{2}\left(x_{0}\right)\right) & =\frac{1}{3} \ln \left(\frac{x_{2}-x_{1}}{\frac{l_{s}}{N}} \mu s h^{2}\left(x_{0}\right)\right) \\
\varepsilon \sim g_{s} l_{s}, & \varepsilon \sim \frac{l_{s}}{N} \quad(\text { for fixed } \mu)
\end{array}
$$

This is surprising from 2D string viewpoint, one expects $\epsilon \sim l_{s}$ (we will come back to this)

Solution
We will first tackle problems 1-4 and address 4 a subsequently.
The hint of the solution comes from a situation similar to problem 3 which appears in the physics of giant gravitons.

θ, ϕ

Giant gravitons
$1 / 2$ BPS geometry has $\underbrace{S 3 \times(\rho, t)}_{A d S_{5}} \times \underbrace{S 3 \times(\theta, \phi)}_{S^{5}}$
Giant gravitons are D3 branes, wrapping the second S3, and moving in the other coordinates.

SUSY demands that $\rho=0, \theta=\theta_{0}, \phi=t$
The size of the giant graviton is given by $\frac{r^{2}}{R^{2}}=\frac{l}{N} L=1,2, \ldots, N$. There are gravitons with the same quantum numbers, but with increasing $l\left(>\sqrt{ }\left(g_{S} N\right)\right)$, the graviton shrinks below string length. Hence the correct representation is in terms of giant gravitons. (susskind-Toumbas)

Boundary theory $=1 / 2$ BPS sector of $N=4 S Y M$ on $S^{3} x$ time.
The half BPS sector is defined in terms of the charges
$\left(E, S_{1}, S_{2} ; R_{1}, R_{2}, R_{3}\right)=(E, 0,0 ; 0,0, J)$, with $E=J$,

$$
A_{p}(t, \Omega), \psi_{\alpha}(t, \Omega), \Phi, \Phi / \Phi_{2}, \Phi / 3, \Phi_{4}, \Phi_{5}, \frac{\Phi}{6}
$$

The action, projected from the original SYM action to this sector, is $\int d t \operatorname{Tr}\left(\left|D_{t} \mathrm{Z}\right|^{2}-|\mathrm{Z}|^{2}\right)=\sum \int d t\left(\left|\partial_{t} \mathrm{Z}_{\mathrm{i}}\right|^{2}-\left|\mathrm{z}_{\mathrm{i}}\right|^{2}\right), \quad \mathrm{Z}=\Phi_{5}+i \Phi_{6}$
in the last expression we have gone from z to the eigenvalues z_{i} by a gauge choice.
Just like in the bulk, the description in terms of gravitons is replaced by D brazes (giant gravitons), in the boundary theory, the description in terms of single trace operators like $\operatorname{Tr} Z^{i}$ are replaced by schur polynomials. The reason for this replacement was precisely problem 3. In particular, for $l \sim N$, the single trace and double trace operators were not orthogonal, they went as
$\left\langle O_{l}^{\dagger} O_{l_{1}} O_{l_{2}}\right\rangle \sim \sqrt{l l_{1} l_{2}} / N \sim \sqrt{N}$ which blows up in the large N limit!
r_{1} giant $g r$. at $l=1$
schur polynomials:

$$
\begin{array}{lllll}
r_{2} & 11 & " 1 & l=2 \\
r_{3} & 11 & n & l=3
\end{array}
$$

For a representation
E.g. $\quad R=\square \quad X_{R}(z)=\operatorname{Tr}_{R}(z \otimes z)=\sum_{i<j} z_{i} z_{j}=\frac{1}{2}\left(\left(\sum_{i} z_{i}\right)^{2}-\sum z_{i}^{2}\right)=\frac{(\operatorname{Tr} z)^{2}-\operatorname{Tr} z^{2}}{2}$

$$
R=\frac{1}{1} \quad X_{R}(z)=\operatorname{Tr}_{R}(z \otimes z)=\sum_{i<j} z_{i} z_{j}+\sum_{i} z_{i}^{2}=\frac{(\operatorname{Tr} z)^{2}+\operatorname{Tr} z^{2}}{2}
$$

\therefore Schur polynomials are polynomials of single trace op eroliss. How do they act on the fermi sea?

$$
\begin{aligned}
& \text { (hole at }
\end{aligned}
$$

Nomura, Jevicki, Balasubramaniam et al, corley-Javicki-Ramgoolam
$X_{E\{ \} A}(Z)=$ single giant graviton of ang. mom. l
E

$$
\frac{\left\langle F_{0}\right| x_{l}^{\dagger} x_{l_{1}} x_{l_{2}}\left|F_{0}\right\rangle}{\left\|x_{l}\right\|\left\|x_{l_{1}}\right\| \| x_{l_{2} \|}^{\|}}=\sqrt{\frac{N!}{(N-\lambda)!} \frac{\left(N-l_{1}\right)!}{N!} \cdot \frac{\left(N-l_{2}\right)!}{N!}} \quad l=l_{1}+l_{2}
$$

e.g. $l=N, \quad l_{1}=\frac{N}{2}+L, \quad l_{2}=\frac{N}{2}-L$

$$
=\sqrt{\frac{\left(\frac{N}{2}+L\right)!\left(\frac{N}{2}-L\right)!}{N!}} \quad \text { decreases } \begin{aligned}
\sim e^{-N} & \text { for } L=0,1, \cdots \\
\sim \frac{1}{\sqrt{N}} & \text { for } L=\frac{N}{2}-1
\end{aligned}
$$

$\longrightarrow 0$ in inu entive range $L=0,1, \cdots, \frac{N}{2}-1$
More genurally,
$X_{l}\left|F_{0}\right\rangle \perp X_{\lambda_{1}} X_{l_{2}}\left|F_{0}\right\rangle$ in the 皿的 N limit
Comistent with iwir interpretation as 1 "particle", 2"particle" stats. \rightarrow (I) Solus poblem 3
In the abore, the resuth contivne to be valid if $z \rightarrow M$ (a hermirtion matriz)
eroblem (1) is also solved.
The schur operators χ_{l} exist only for $l=1,2, \ldots, N$; they involve only $\operatorname{Tr} z^{\prime}$ for $l=1,2, . . N$ and are all independent. In particular, they are not constrained by any trace identities.

We will realize the independence of the χ_{l} by constructing their action in terms of independent Heisenberg oscillators $a_{1}, a_{2}, \ldots, a_{N}$.

We will find below that they also solve problems (2) and (4)!

More generally, a composite giant graviton operator $\chi\left(r_{1}, r_{2}, r_{3}, \ldots, r_{N}\right)$ applied to the fermi sea changes it to a new state with the filling $\left(f_{1}, f_{2}, \ldots, f_{N}\right)$
where

$$
\left.\begin{array}{l}
f_{1}=r_{N}, f_{2}=r_{N-1}+r_{N}+1, f_{3}=r_{N-2}+r_{N-1}+r_{N}+2, \cdots \\
r_{N}=f_{1}, r_{N-1}=f_{2}-f_{1}-1, r_{N-i}=f_{i+1}-f_{i}-1, i=1,2, \cdots N-1 \tag{k}
\end{array}\right\}
$$

Clearly $f_{1}=0, f_{2}=1, f_{3}=2, \cdots, f_{N}=N-1 \Rightarrow r_{N}=0, r_{N-1}=0, \cdots r_{1}=0 \quad$ (no giant gravity)

$$
-\left|F_{0}\right\rangle \longleftrightarrow|0\rangle
$$

IE is possible to invent $a_{1}, a_{2}, \cdots a_{N}$ such that

$$
\left[a_{i}, a_{j}^{+}\right]=\delta_{i j} \quad i, j=1,2, \cdots N \text { such that } a_{1}, a_{2}, \cdots a_{N} \text { solves problem (2) }
$$

and the state $\underbrace{\chi\left(r_{1}, r_{2}, \cdots r_{N}\right)}_{\text {ill }}\left|F_{0}\right\rangle$ is represented by

$$
\frac{\left(a_{1}^{+}\right)^{r_{1}}}{\sqrt{r_{1}!}} \frac{\left(a_{2}^{+}\right)^{r_{2}}}{\sqrt{r_{2}!}} \cdot \frac{\left(a_{N}^{+}\right)^{r_{N}}}{\sqrt{r_{N}!}}|0\rangle
$$

$$
\left|f_{1}, f_{2}, \cdots f_{N}\right\rangle \quad \equiv\left|r_{1}, r_{2}, \cdots r_{N}\right\rangle-(
$$

Note the spacial case $X_{l} \equiv x\left(r_{1}=0, r_{2}=0, \ldots r_{l}=1, r_{l+1}=0, \ldots\right)$
$\xrightarrow[O]{\rightarrow+}$ whole at devin l

$$
\begin{aligned}
\Rightarrow \quad f_{1}=0, f_{2}=1, \ddot{f}_{N}, f_{N-l+1}=N-l+1, f_{N-l+2}=N-l+2, \ldots \\
f_{N-l}=N-l-1
\end{aligned}
$$

$$
\begin{array}{r}
a_{k}^{\dagger}\left|f_{1}, \ldots, f_{N}\right\rangle=\sqrt{f_{N-k+1}-f_{N-k}}\left|f_{1}, \ldots, f_{N-k}, f_{N-k+1}+1, \ldots, f_{N}+1\right\rangle, \\
k=1, \ldots, N-1
\end{array}
$$

$$
\begin{equation*}
a_{N}^{\dagger}\left|f_{1}, \ldots, f_{N}\right\rangle=\sqrt{f_{1}+1}\left|f_{1}+1, \ldots, f_{N}+1\right\rangle . \tag{2.15}
\end{equation*}
$$

Thus, a_{k}^{\dagger} moves each of the top k fermions, counting down from the topmost filled level, up by one step. Similarly, the action of a_{k} is to move each of the top k fermions down by one step:

$$
\begin{array}{r}
a_{k}\left|f_{1}, \ldots, f_{N}\right\rangle=\sqrt{f_{N-k+1}-f_{N-k}-1}\left|f_{1}, \ldots, f_{N-k}, f_{N-k+1}-1, \ldots, f_{N}-1\right\rangle \\
k=1, \ldots, N-1
\end{array}
$$

$$
\begin{equation*}
a_{N}\left|f_{1}, \ldots, f_{N}\right\rangle=\sqrt{f_{1}}\left|f_{1}-1, \ldots, f_{N}-1\right\rangle . \tag{2.16}
\end{equation*}
$$

$$
\begin{align*}
a_{k}^{\dagger} \equiv & \sum_{m_{k}>m_{k-1}>\cdots>m_{0}} \sqrt{m_{1}-m_{0}}\left(\psi_{m_{0}}^{\dagger} \psi_{m_{0}}\right)\left(\psi_{m_{1}+1}^{\dagger} \psi_{m_{1}}\right) \cdots\left(\psi_{m_{k}+1}^{\dagger} \psi_{m_{k}}\right) \\
& \times \delta\left(\sum_{m=m_{0}+1}^{m_{1}-1} \psi_{m}^{\dagger} \psi_{m}\right) \delta\left(\sum_{m=m_{1}+1}^{m_{2}-1} \psi_{m}^{\dagger} \psi_{m}\right) \cdots \delta\left(\sum_{m=m_{k-1}+1}^{m_{k}-1} \psi_{m}^{\dagger} \psi_{m}\right) \\
& \times \delta\left(\sum_{m=m_{k}+1}^{\infty} \psi_{m}^{\dagger} \psi_{m}\right), \tag{2.17}
\end{align*}
$$

and

$$
\begin{align*}
& a_{N}^{\dagger} \equiv \sum_{m_{N}>m_{N-1}>\cdots>m_{1}} \sqrt{m_{1}+1}\left(\psi_{m_{1}+1}^{\dagger} \psi_{m_{1}}\right) \cdots\left(\psi_{m_{N}+1}^{\dagger} \psi_{m_{N}}\right) \\
& \times \delta\left(\sum_{m=m_{1}+1}^{m_{2}-1} \psi_{m}^{\dagger} \psi_{m}\right) \cdots \delta\left(\sum_{m=m_{N-1}+1}^{m_{N}-1} \psi_{m}^{\dagger} \psi_{m}\right) \\
& \times \delta\left(\sum_{m=m_{N}+1}^{\infty} \psi_{m}^{\dagger} \psi_{m}\right) . \tag{2.18}
\end{align*}
$$

and

The N bosonic oscillators a_{k}, a_{k}^{+}
as explicit operators in the Fermion Hílbert space. written in terms of Fermion bílinears.

Here,

$$
\delta(\hat{O}) \equiv \int_{0}^{2 \pi} \frac{d \theta}{2 \pi} \exp (i \theta \hat{O})
$$

$$
\begin{align*}
& \psi_{n}^{\dagger} \psi_{n}= \sum_{k=1}^{N} \delta\left(\sum_{i=k}^{N} a_{i}^{\dagger} a_{i}-n+N-k\right) \\
& \psi_{n+1}^{\dagger} \psi_{n}= \sigma_{1}^{\dagger} \delta\left(\sum_{i=1}^{N} a_{i}^{\dagger} a_{i}-n+N-1\right) \\
&+\sum_{k=1}^{N-1} \sigma_{k} \sigma_{k+1}^{\dagger} \theta_{+}\left(a_{k}^{\dagger} a_{k}-1\right) \delta\left(\sum_{i=k+1}^{N} a_{i}^{\dagger} a_{i}-n+N-k-1\right) \\
& \text { Written } \begin{array}{l}
\text { bosonic }
\end{array} \\
& \psi_{n+2}^{\dagger} \psi_{n}= \sigma_{1}^{\dagger^{2}} \delta\left(\sum_{i=1}^{N} a_{i}^{\dagger} a_{i}-n+N-1\right) \\
&+\sum_{k=1}^{N-1} \sigma_{k}^{2} \sigma_{k+1}^{\dagger}{ }^{2} \theta_{+}\left(a_{k}^{\dagger} a_{k}-2\right) \delta\left(\sum_{i=k+1}^{N} a_{i}^{\dagger} a_{i}-n+N-k-1\right) \\
&-\sum_{k=2}^{N-1} \sigma_{k-1} \sigma_{k+1}^{\dagger} \theta_{+}\left(a_{k-1}^{\dagger} a_{k-1}-1\right) \delta\left(a_{k}^{\dagger} a_{k}\right) \delta\left(\sum_{i=k+1}^{N} a_{i}^{\dagger} a_{i}-n+N-k-1\right) \tag{2.21}\\
&-\sigma_{2}^{\dagger} \delta\left(a_{1}^{\dagger} a_{1}\right) \delta\left(\sum_{i=1}^{N} a_{i}^{\dagger} a_{i}-n+N-2\right)
\end{align*}
$$

Exact bosonization of N non-relativistic fermions in 1D

The N-fermion states are given by (linear combinations of)

$$
\begin{equation*}
\left|f_{1}, \cdots, f_{N}\right\rangle=\psi_{f_{1}}^{\dagger} \psi_{f_{2}}^{\dagger} \cdots \psi_{f_{N}}^{\dagger}|0\rangle_{F} \tag{2}
\end{equation*}
$$

where f_{m} are arbitrary integers satisfying $0 \leq f_{1}<f_{2}<$ $\cdots<f_{N}$, and $|0\rangle_{F}$ is the usual Fork vacuum annihilated by $\psi_{m}, m=0,1, \cdots, \infty$.

FIG. 1. The action of σ_{k}^{\dagger}.
A.Dhar, GM, N.suryanarayana, M. Smedback

$$
\begin{aligned}
& \sigma_{k}=\frac{1}{\sqrt{a_{k}^{\dagger} a_{k}+1}} a_{k}, \\
& \sigma_{k}^{\dagger}=a_{k}^{\dagger} \frac{1}{\sqrt{a_{k}^{\dagger} a_{k}+1}}, \quad\left[\quad \begin{array}{l}
\text { Note: only } N \\
\text { bosonic } \\
\text { Oscillators!! }
\end{array}\right. \\
& {\left[a_{k}, a_{l}^{\dagger}\right]=\delta_{k l}, \quad k, l=1, \cdots, N .} \\
& \left|r_{1}, \cdots, r_{N}\right\rangle=\frac{\left(a_{1}^{\dagger}\right)^{r_{1} \cdots\left(a_{N}^{\dagger}\right)^{r_{N}}}}{\sqrt{r_{1}!\cdots r_{N}!}|0\rangle .} \\
& \left|f_{1}, f_{2}, \cdots, f_{N}\right\rangle \leftrightarrow\left|r_{1}, r_{2}, \cdots, r_{N}\right\rangle \text { with } \\
& r_{k}=f_{N-k+1}-f_{N-k}-1, \quad k=1,2, \cdots N-1, \\
& r_{N}=f_{1} .
\end{aligned}
$$

$$
\left|F_{0}\right\rangle \leftrightarrow|0\rangle, \quad \mathrm{f}_{\mathrm{N}}^{+} \mathrm{f}_{\mathrm{N}-1}\left|F_{0}\right\rangle \leftrightarrow a_{1}^{+}|0\rangle
$$

Geometry of these oscillators:
"construct" real space $=$ circle of length L :

$$
\left.\begin{array}{rl}
\phi\left(x_{j}\right) \equiv \phi_{j} & =\sum_{m^{\prime}=1}^{N} a_{m} e^{i \frac{2 \pi m}{L} x_{j}}+c c . \\
& =\sum_{m=1}^{N} a_{m} e^{i 2 \pi} \frac{m}{N}+c c \\
\sqrt{2 \omega_{m}}
\end{array}\right] .
$$

$$
\begin{aligned}
x_{j} & =j \varepsilon \quad \varepsilon=\frac{L}{N} \\
& =\frac{j L}{N}
\end{aligned}
$$

The ground state: $\quad a_{m}|0\rangle=0$

$\Pi\left(x_{j}\right)$ determined by demanding:

$$
\begin{aligned}
& {\left[\phi\left(x_{j}\right), \pi\left(x_{k}\right)\right]=i \delta j_{k}} \\
& \pi\left(x_{j}\right)=\frac{1}{i} \sum_{m} \frac{1}{\sqrt{2}} \sqrt{\omega_{m}}\left(a_{m} e^{i 2 \pi j m / N}-c_{m}^{+} e^{-i \frac{2 n j m}{N}}\right)
\end{aligned}
$$

Entanglement entropy (Holzhey-Wilczek, calabrese-Cardy, casini-Huterta, Herzog,...
$S_{H}=\frac{1}{3} \ln \left(\frac{x_{2}-x_{1}}{\varepsilon}\right) \quad \varepsilon=\frac{L}{N}$ solves problem (4) for fermions in a box:
Note that a finite number N of oscillators modes force us to have a finite number (N) of lattice points.

Alternatively, a finite number of oscillators can be represented by a finite number of energy levels of a single particle problem.
semiclassically, these correspond to phase space orbits. E.g. $\omega_{m} \sim$ $m, m=1,2, \ldots, N$ implies a fuzzy phase space torus. In fact, in the giant graviton problem, the two-dimensional plane of the fermion is non-commutative, in the Ads geometry it maps to a fuzzy sphere.

Dynamics:
By exploiting the maps (*), (*) one can map the problem of N free fermions in a single particle Hamiltonian spectrum $\mathcal{E}(m)$, to the bosonic Hamiltonian $H=\sum_{i=1}^{N} \mathcal{E}\left(\sum_{k=1}^{i} a_{k}^{+} a_{k}\right)$

Zero potential: N free fermions in a box have a single particle Hamiltonian spectrum $\mathcal{E}(m)=4 \pi^{2} \frac{m^{2}}{L^{2}}$. This maps to a quartic bosonic Hamiltonian $H=\sum_{i=1}^{N} \frac{4 \pi^{2}}{L^{2}}\left(\sum_{k=1}^{i} a_{k}^{+} a_{k}\right)^{2}$. For small excitations, $a_{k}^{+} a_{k}$ are non-zero only for small k, hence the Hamiltonian becomes effectively quadratic.

This solves the Tomonaga problem. (A. Dhar, GM, Nemani S)
This Hamiltonian can be expressed in terms of the lattice variables ϕ_{x}, π_{y} introduced above. (complicated).

Non-zero potential: How does one find a bosonic theory which reproduces the fermionic entanglement entropy

$$
\begin{aligned}
S_{A}= & \frac{1}{3} \ln \left[\left(x_{2}-x_{1}\right) P_{F}\left(x_{0}\right)\right] & & \text { where } P_{F}(x)=\sqrt{2\left(E_{F}-V(x)\right)} \\
& + \text { constant } & & \text { and } x_{0}=\frac{x_{1}+x_{2}}{2}
\end{aligned}
$$

This can be achieved by putting the bosonic theory in a circle with a metric

$$
d s^{2}=-d t^{2}+\gamma^{2}(x) d x^{2}=-d t^{2}+d \tilde{x}^{2} \quad \tilde{x}=\int^{x} \gamma\left(x^{\prime}\right) d x^{\prime}
$$

in terms of the \tilde{x} coordinate, the entanglement entropy iof the bosionic theory, as we found earlier, is

$$
S_{A}=\frac{1}{3} \ln \frac{\tilde{x}_{2}-\tilde{x}_{1}}{\varepsilon} \quad \varepsilon=L / N
$$

using the relation between x and \tilde{x}, we find

$$
S_{A}=\frac{1}{3} \ln \left(\sqrt{\frac{\gamma\left(x_{1}\right)}{\varepsilon} \frac{\gamma\left(x_{2}\right)}{\varepsilon}}\left(x_{2}-x_{1}\right)\right) \simeq \frac{1}{3} \ln \left(\frac{\gamma\left(\frac{x_{1}+x_{2}}{2}\right)}{\varepsilon}\left(x_{2}-x_{1}\right)\right)
$$

choosing $\gamma(x)=P_{F}(x)$, we find the correct bosonic theory \rightarrow this gives a complete solution of problem 4.

Back to Problem 4a:
In terms of the above bosonization, using matric $\gamma(x)=\operatorname{sh}^{2} x$, and $\varepsilon=l_{s} / \mu \mathrm{N}=g_{s} l_{s}$, we reproduce the $c=1$ EE

$$
S_{A}=\frac{1}{3} \ln \left(\frac{x_{2}-x_{1}}{g_{s} l_{s}} \operatorname{sh}^{2}\left(x_{0}\right)\right)=\frac{1}{3} \ln \left(\frac{x_{2}-x_{1}}{\frac{l_{s}}{N}} \mu \operatorname{sh}^{2}\left(x_{0}\right)\right)
$$

Note $\epsilon \sim g_{s} l_{s}$ (double scaling)
\Rightarrow The boson in question is not the tachyon (the 2D string field), presumably it's a DO brane, which has the characteristic length scale $g_{s} l_{s}$ (more confirmation needed)

Note also that $\ln \left(\frac{1}{g_{s}} \operatorname{sh}\left(x_{1}\right) \operatorname{sh}\left(x_{2}\right)\right)=\frac{1}{2}\left(\Phi\left(\mathrm{x}_{1}\right)+\Phi\left(\mathrm{x}_{2}\right)\right)$ where $\Phi(x)=2 x$ is the value of the Dilaton at large x (weak coupling region). While this is suggestive, the correct classical contributions to hol. EE (RT) would involve Exp $[-2 \Phi(x)]$, (= area of a point). *

* Discussion with Juan Maldacena
conclusion:

We showed problems with the standard bosonization of matrix models, or of non-relativistic fermions for any N, however large. These follow from (i) trace identity constraints, (ii) failure to satisfy Heisenberg commutation relations, (iii) failure of particle interpretation of the bosonic theory, and (iv) Ndependent entanglement entropy.

We show that all these problems can be solved by using an exact bosonization of N non-interacting non-relativistic fermions. The real space bosons are constructed on a lattice circle; alternatively they can be understood in terms of fuzzy phase spaces.

The EE of $c=1$ matrix model can be explained in terms of such a bosonic theory, which has apparent differences from the 2D string.

It is important to study how these observations apply to more general instances of holography.

