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In the last few decades, spacetime and geometry have emerged in many
contexts as dual descriptions to matrix valued field theories.

It is expected that a smooth continuum results tf one takes a suitable
large N Limit where N = dimension of the matrix.

(e this tallke, we will revisit this Lssue Lin some exa mples. We will explore
some subtleties of the large N Limit and discuss a way to deal with

themt.



Examp les:

AAS/CFT: Here gauge invariant operators of SU(N) Yang-Mills fields are supposed to
describe bulk fields in the large N Limit. To bring out possible subtleties of this Limit
we will describe a stmpler example.

C=1 matrix model/2D string theory:

M;;(©) - A;(8),i = 1,2,..,N S=[dtTr ( M2 — V(M)),V(M) — — M?
This is equivalent to N free fermions with coordinates A;(t) tn a potential };; V(4;)

¥ 6(1—2() =pR0), Sp(A4,t) = T(x,t), A= 2ucoshx (Das-jevicki)
—Vv—
matrix. 2P string

Here on the RHS, T(x,t) describes a massless scalar field called the Tachyon, whteh Ls
the only dynamdical field of the 2B string theory. There are many quantities which
agree on both sides as N — oo, (see reviews by Ginsparg, Klebanov;

S-matrix=> Polchinskl, gM-Sengupta-wadia, Moore,.. Yin et al, Sewn)



However, there are several reasons why such a duality cannot be exact for any finite
value of N, however Large. n the following many of our statements will be valid for
matrix @M in general and not necessarily only the c=1 wmatrix model.

[
Problemn 1: (trace Ldentities) f )\ “ “ n LEXI!

'}‘l A AN
p(4,t) has to have some strange properties as a function of 4.

This follows from the cayley Ha mLlton Ldentities which, at any given t, relate
Tr MN*P,p > 1 to Lower traces Tr MNP, p > 0. since Tr MP = [ dA p(Q) AP, this
Lmplies constraints between moments of p(4).

(These follow from the fact that it is enough to determine all N etgenvalues from the
first N traces, hence higher traces cannot be independent. )



Thus, e.g. for N=2
3 1
Tr M3 =5 Tr M Tr M? ——(TrM)3
AB+213== (Al+Az)(AZ+/1 )——(/11+/12)

n terms of p(4,t) tt means a constraint

3 1
JdAp@,0)2° = > (J dap(, )2 (J dX p(X, OX) — z(f dA p(4,t)A)°

If we wish to write the matrix path tntegral wn terms of a density path integral, and
eventually, for c=1, the tach yow path tntegral, we must tinelude these constraints ana
hope th65 9o away tn the N — oo Limit.

(work tn progress L a4 ¢c=0 context with R. Suroshe; for earlier work based on phase space
path integrals and MogaL product constraint, see Dhar-gM-wadia, discussed below)



Problem 2: (not bosons!)

p(4,t) and its conjugate field, do not have the bosonic Heisenberg algebra, again

related to finite N. Note that p(4,t) = Y7 (4, )P4, t)

Recall the standard bosonization of relativistic fermions in 1D:

Wie)= (P () + i bp(2)) T —Fiohe
P(z) = (¥, (B + i9, @)/ 7 ~ Lefp
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For finite N number of fermions, say tw a box, the two species of fermions corvesponds
to particles and holes; the Latter have a finite number of modes, na mely N. Hence, the

Helsenberg algebra does not hold. (n fact, the a, do wot have a closed algebra!

This s the Tomonaga problem.



4 ]




For finite N number of fermions, a closed operator algebra of fermion bilinears is the
W-infinity algebra:

-l.
Won™ Fute, Wi, Wpg ] = Snp oy Yy

Alternative bases of the algebra are

(,{(9:, ]p) = f,ml ‘f I+ 1) lf‘(%-— '2;) e,. <-- wlgwer distribution

(phase space olewslt5 operator)

Bosonization can be done tn terms of phase space density operator. This operator is
constrained, however, following from

[ty By @y = W fetrva) o= wE,,

Dhar-gM-wadia, Pas-Bhar-gM-wadia,.... Kulkarni-gM-Morita (1992-2019)



Problem =: (problem with particle tnterpretation)

Correlators of single trace operators Tr M' = 0 do not have a good Large N Limit even

l , ;o
when — — 0 tn the large N Limit:

(0,,0,,0,,) N NI

01| [01,] |04, N

, 10;| = /0,0,

For L, = O(1), there Ls a good Large N Limit, namely =o, which, tn fact shows the
orthogonality of “L-particle” states (stngle trace) to “2-particle” states (double traces),
leading to a Fock space interpretation of single-trace states.

For L, > ©(N*3), the correlator diverges, ruling out a particle interpretation of single
trace states.



Problem 4: (entanglement entropy)

Entanglement entropy of the matrix model
(equivalently, of the fermion field theory (i )-L-))

BY using standard methods (see Das-Hampton-Liu), the entanglement entropy of a
subregion A = [2,, do ] With respect to the complement set, in the fermi ground state
(filled Fermi sea) is given by

Sa = %ln[(lz — 2)Pp(19)] + constant, where Pg(1) = V2(Er —V (1)), 4o =

A1+,
2

For fermions in a box of length L, F=(3) ~ _’;‘:

1 Ay—A L
SA=—1n(2 1), where € = =
3 € N

N

This agrees with the Calabrese-Cardy formula for a boson with uv cut-off A = —

— N It appears that the fermion number N is transformed to a UV cut-off for the

= “bosons” !  what bosowns are these?

- |



Problemw 4a

— 1 —
C=1: the above formula becomes g, = 5In (gz(xx)l ) Das 1995, Hartnoll-Mazene 2015
s\420

A

1 1
ZMN)

1N sh?(x)”’

where go(x) = x = cosh™(

uUN = fixed in N — oo limit (togetherwith u—0) = L

Is
Reinstating Iy S, = % In (x;— lxl sh? (x0)> = % In <x2 l_ *1 u sh? (x0)>
i L\ N
£ ~ ~
‘b\‘z:—{ij s Tj_ (for fixed p)

This ts surprising from 2D string viewpoint, one expects € ~ I (we will
come back to this)



Solution

We will first tackle problems 1-4 and address 4a subsequently.
The hint of the solution comes from a situation similar to problem = which appears
Ln the physties of glant gravitons.

Glant gravitons

6' /0 BPS geame’u% has S= x (p, t) xSz x (0, )
' A0S S

<=2 qglant gravitons are D3 branes, wrapping the second Sz, and
0, moving tw the other coordinates.

0—'-00

SUSY demands that p =0, 0= 0y, =t

t L ’
The size of the glant gravitow Ls given ba L - Nn L=1.2,.., N. There are gravitons

with the same quawtum numbers, but WL’ch tncreasing L (> \/ (gSN ) ), the gm\/ucow
shrinks below string length. Hence the correct representation is in terms of giant
gravitons. (Susskind-Toumbas)



Boundary theory= /= BPS sector of N=4 SYM on S=x tlme.
The half BPS sector is defined in terms of the charges

(E.51,52 Ri,RzR3) = (E0,0: 0,0, J), with E=7, W , M , }’/;h/},/;{ 3.2

The actlon, prqjec’ccol from the original SYM action to this sector, Ls

[ dt Tr(|DZ|1? = |Z12) = 3 [ dt(|0,zi]% = |z]?), 7 = dg +id, ’LZ'ZZZTJ)" 2D

Ln the Last expression we have gone from Z to the elgenvalues z; by a gauge choice.

Just like tn the bulk, the description tn terms of gravitons is replaced by B branes
(giant gravitons), in the boundary theory, the description in terms of single trace
operators Like Tr Z'  are replaced by Schur polynomials. The reasow for this
replacement was preoiseLg problem 2. In particular, for L ~ N, the single trace and
double trace operators were not orthogonal, they went as

(0T0, 0, )~ JTLIz/N ~VN which blows up in the Large N Limit!



Schur poly nomtals:
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roblem (1) Ls QL@

The Schur operators y, exist only for L=1,2,...,N; they tnvolve only Tr Z' for
l=1,2,.,N and are all independent. In particular, they are not constrained log
any trace Ldentities.

we will realize the independence of the x, by constructing their action in

terms of tndependent tHeisenberg oscillators a,, a,, ..., ay .

we will fina below that they also solve problems (2) and (4)!



Move generally, a composite giant graviton operator y (ry, vy, ¥a, ..., 1) applied to
the fermi sea changes it to a new state with the filling (£, 5, -, )

béhure Jc;:rﬂ; f'a.: rN-—c*‘YI.V"')*,Z: YiN-2 "'V;,_"'Y'-o-z - j &)
! ;ry_(,= 7&&4(—;._“"' ,C:-l,z) - N-1

chmdy {20, f,20, L2, B 2 D vy 20 Yzo, onie (e gied gradny
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a{; |f17'°°7fN> — \/fN—k+1 _fN—k |f17"')fN—k7fN—k+1+17"'7fN+1>v

k=1,...,N—1
N 1) (2.15)

vhi+1|fi+1,.

Thus, a;rc moves each of the top k fermions, counting down from the topmost filled level,

up by one step. Similarly, the action of aj is to move each of the top k fermions down by
one step:

a}\/’ |f17 7fN

ar |f1,.. s IN) = VIN-k+1— [Nk — L f1seo oy fN—k [N—kt1 — 1, fN — 1),
k=1,....N—1
an |fi,-s fN) = VI lA=1,. = 1), (2.16)

The N bosownle oscillators
ay, ar

as explicit operators in the
Fermion Hilbert space.

o —t

Z Vit =m0 (Vg Pme) (Yl s1%my ) -+ (G, +18me)
1>-->Mmo
-1

mk—l

mp>m
mi— mao—1
( ™ zpmv,bm) a( 3 ¢,’fn¢m)---5( ¥ zp;‘nv,bm)
mo+1 m=mi+1

m=my_1+1

¢;fn¢m , E=1,2,...,(N —1) (2.17)

and

a;r\/’ Z vmi +1 ( m1+11/)m1) (¢InN+1¢mN)

my>mpy_—1>-->my

<o i) thibm) - b Wbt

m=m1+1 m=mpy_1+1

x6( i ¢,fn¢m). (2.18)

m=mpy-+1

The bosonic oscillators ay, aj
written Ln terms of Fermilon
bilinears.

Hevre,

) 2w do
(5(0) =‘/(; g eXp(ZOO),



N ,N
Pl Y = Z 5(2 ala; —n+ N — k) The Fermion bLlinears
k=1 “i=k written in terms of the

N ’, ’ +
bosownte oscillators a;, a
¢n+1¢n: a{é(E agai—n+N—1> ke Zk

1=1

N-1
+Zak 0k+1 9+(akak—1) 5(2 aaz—n—|—N k—l)

k=1 i=k+1

N
2
¢n+2 Un = UI 5(20304—714-]\[— 1)

i=1

N-1 N
2
+Y ool 9+(a;rcak—2)5(z a}ai—n+N—k-1)
k=1 1=k+1
N-1 N
_ Ok—1 0;2+1 9+(a,];_1ak_1 —1) 6(a;fcak) 5( Z aIai —n+N—k— 1)

=5
o

i=k+1

N
_02 5(a1a1 (Z alaz- —n+ N — 2) (2.21)

1=1



Exact bosonization of N nown-relativistic fermions in 1D

The N-fermion states are given by (linear combinations of) A Dhay, aM, N .Suyga nWa raga na, M. Smed baclk

|fi oo fn) = l/f},‘/’}rz ""/’}NK»F, (2) 1
where f, are arbitrary integers satisfying 0 = f, < f, < O = ap, .
+++ < fn,and |0)f is the usual Fock vacuum annihilated by a,':ak + 1 Note: ew
Ymym =0, 1, -+, 00 —  bosowntic
| ’
Ea— S f+] ol =af , Oscillators!!
----------- N ‘/a;{ak +1 _ -
B ________________ fN—l+1
fN—l [ak, a}.] - 31(1’ k; l - 1; Y, N-
1- 'l o o« 1- ry
N _(a)]) (ay)
"""""" Y f_++l |rl’...)rN>_ |O>'
L — i —> e vt e
----------- Nk — Nk |f1' fZ' ""fN> < |T'1,T'2, ""rN) with
ry = Jfn-k+1 —Sv—k — L k=12---N—1,
___________ fy — ry = f1-
FIG. 1. The action of o} . |F0> A |O), fI;I*_fN—llFO> « Cli_l())



Geowmetry of these oscillators: ‘i,

“Construct” real spaoe— circle of length L : . .
(LUW XJ = Ji_ £z =
, | ~
P[’( )z 5‘ Z—a e L cc > - l/é___
¥ e P
T tTE e
w: -QH - IT(x) determined by demanding:
4 Q'L i [76(’(5)) (%) J :Lgk o
® - : TR S ¢ | Y _ uw_J_'_'_"
™ 0 Pam r-%“ “(XJ): —::'-2%1‘0: (am QL 1t} /A/_ C,-LE '\y
The ground state: /3 |0> =0 "~

Entanglement entropy (Holzhey-wilezek, calabrese-Cardy, Casini-Huterta, Herzog, ...

ﬁ ,L_@%__;_(_, ) g= AN- )—SOL\/es problem (4) for fermions in a box:

Note that a finite number N of oscillators modes force us to have a finite number (N)
of lattice polnts.



Alternatively, a funite number of oscillators can be represented by a
funite number of energy Levels of a stngle particle problem.
Sewiclassieally, these corvespond to phase space orbits. €.9. ®,, ~
m, m=1,2,..., N Lmplies a fuzzy phase space torus. n fact, tn the
gLant gravitow problem, the two-dimensional plane of the fermion

Ls non-commutative, in the Ads geometry it maps to a fuzzy
sphere.

DY WAMALES:

BY exploiting the maps (*), (*) one can map the problem of N free
fermeions in a single particle Hamiltonian spectrum E(m), to the
bosonic Hamiltonian H=Y 1, E(Y:_; afay )



Zero potential: N free fermions tn a box have a single particle Hamiltontan
2 m?
12

spectrum F(m) = 4n This maps to a quartic bosonic Hamiltonian

—_ N 47-[2 i + 2 ’ , +
H=221 7 (Xh_qaifag)?. For small excitations, aj a, are non-zero only for
small R, hewnce the Hamiltontan becomes eﬁ:eotweLg gquadratic.

This solves the Tomonaga problem. (A. Dhar, gM, Nemanl S)

This Hamtiltonian can be expressed in terms of the Lattice variables ¢,,

, , 4
introduced above. (complicated).



Nown-zero potential: How does one find a bosonic theory which reproduces the
fermionic entanglement entropy

G = % A[{x;a Jel)] e B(x)= (20(Be —Viw)

M—J Lo = ]"','I' )LL

This can be achieved by putting the bosonic theory in a cirele with a weetric
L 1 A ~L ~ »
l= —dt+ Y d* = —At"+ X 3 =f Y(n') é'
In terms of the % coordinate, the entanglement entropy iof the bosionic
theory, as we found earlier, is Sl 3
(g o~ v - Wﬁnﬁﬁ
saz L b . Lafics.

Usting the relation between xand L We find X

e 4 ([T bam) 7 4 OS2 o)
Choosing ¥ (x) =Pr(x) , we find the correct bosonie theory

= this gives a complete solution of problem 4.




Back to Problemw 4a:

n terms of the above bosonization, using matric y(x) = sh? x, anol
e=Ll/UN = g L, we reproduce the c=1 €€

1 Xy — X 1 Xy — X
Si==In|22—Lsh?(xy) | = = In| =22 ush?(x,)
3 L 3 l

NS
Note € ~ gs s (double scaling)

=0 The boson L guestion is not the tachyon (the 2B string field), presumably
Lt’s a DO brawne, which has the characteristic length scale g L, (more
confirmation neeoed)

sh(xq) sh(x2)> — % (@(x1) + P(x2)) where P(x) = 2 x Ls the value of

the Dilatow at Large x (weak coupling region). While this Ls suggestive, the correct
classical contributions to hol. EE (RT) would involve Exp[-2 P(x)1, (=area of a
‘Poiwt). %

1
Note also that ln<g

* Dlscussion with Juan Maldacena



Concluston:

we showed problems with the standarad bosonization of matrix wmodels, or of
nown-relativistic fermions for any N, however large. These follow from (1) trace
Lalewti’% constraints, (it) failure to satisfg Helsenberg commutation relations,
(i) failure of particle interpretation of the bosonic theory, and (Lv) N-
dependent entanglement entropy.

We show that all these problems can be solved by using an exact bosonization
of N non-interacting non-relativistic fermions. The real space bosons are
constructed ow a lattice cirele; alternatively they can be understood tn terms of
fuzzy phase spaces.

The €€ of c=1 matrix model can be explained in terms of such a bosonie
theory, which has apparent differences from the 2D string,.

It Ls tmportant to study how these observations apply to more general instances
of holography.



