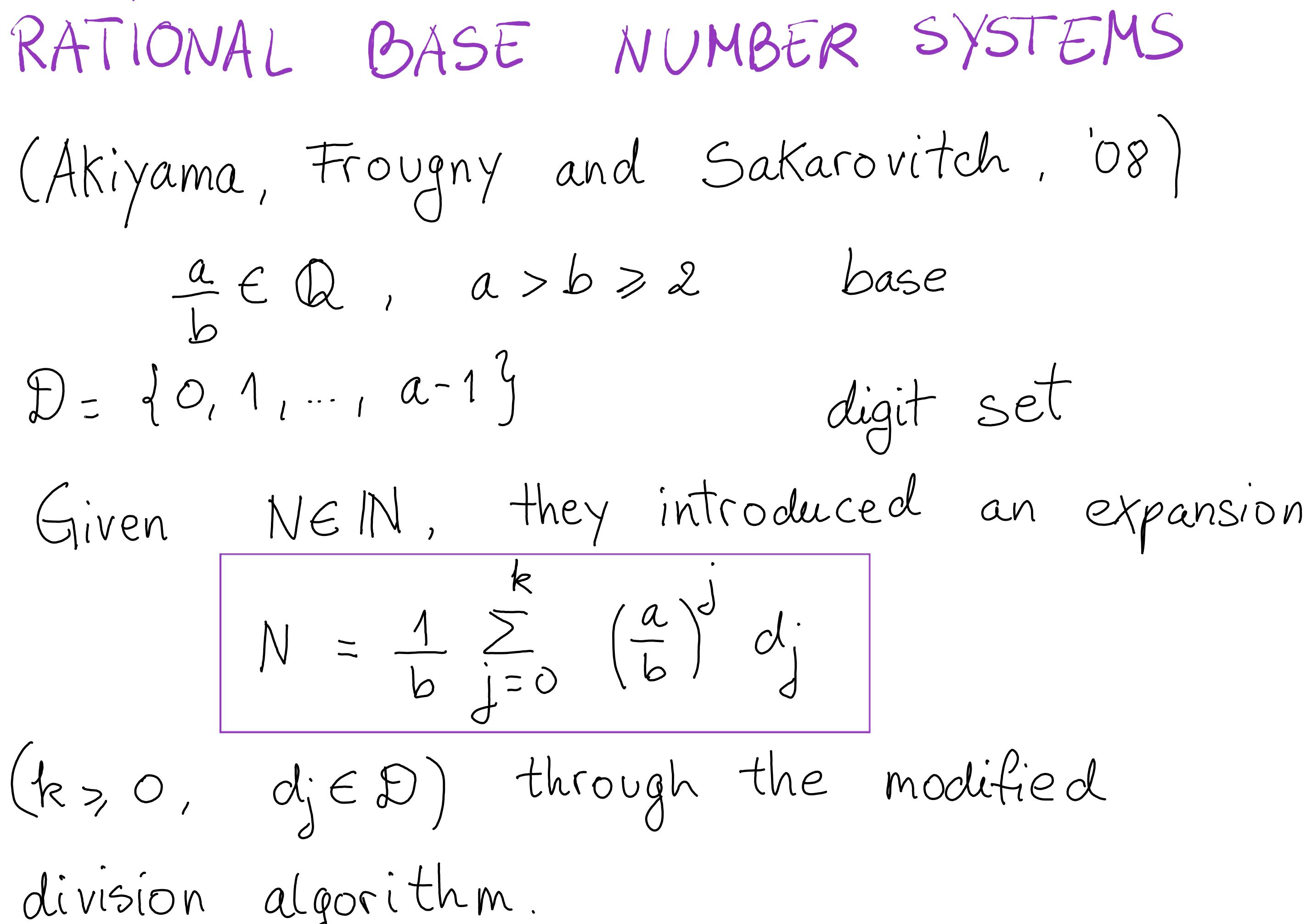
Digit expansions in Rational and Algebraic Basis

Lucía Rossi

EVVE Österreichischer Wissenschaftsfonds

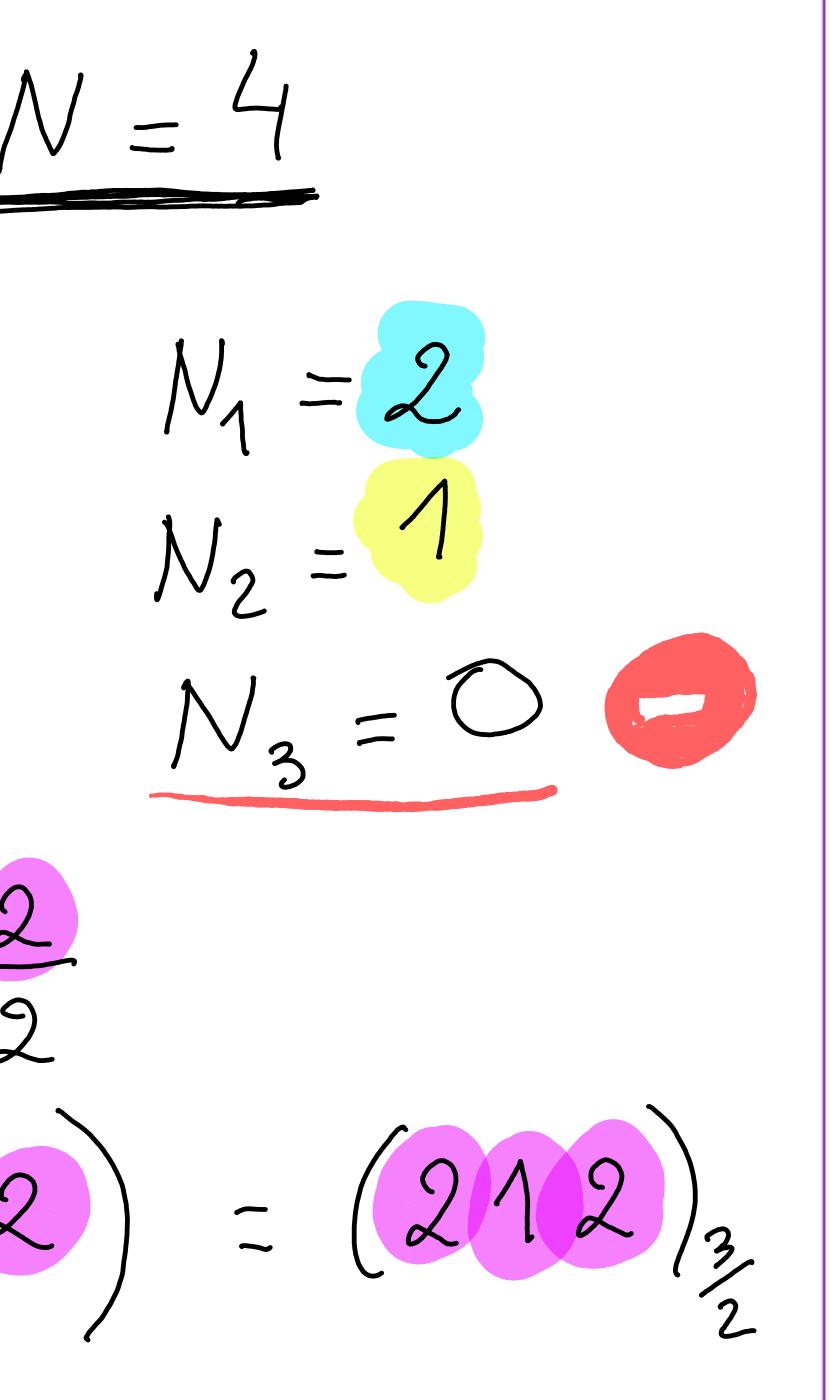
RATIONAL BASE NUMBER SYSTEMS (Akiyama, Frougny and Sakarovitch, '08) $\frac{a}{b} \in \mathbb{Q}$, $a > b \ge 2$ base $D = \{0, 1, ..., a - 1\}$ digit set

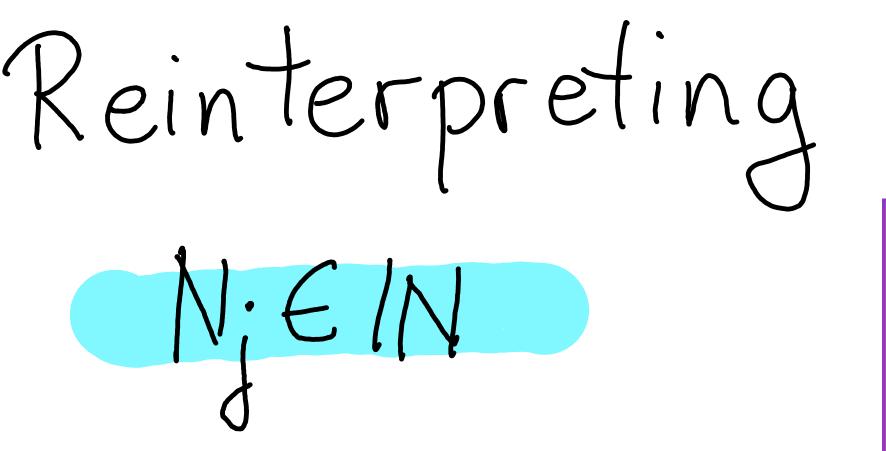
 $D = \{0, 1, ..., a^{-1}\}$ division algorithm.



 $N = N_0, j \ge 0, \quad b N_j = a N_{j+1} + d_j$ where $d_j \equiv b N_j \mod a$ (recall $D = \{0, ..., a - i\}$). Then $N_{k+1} = 0$ for some k.

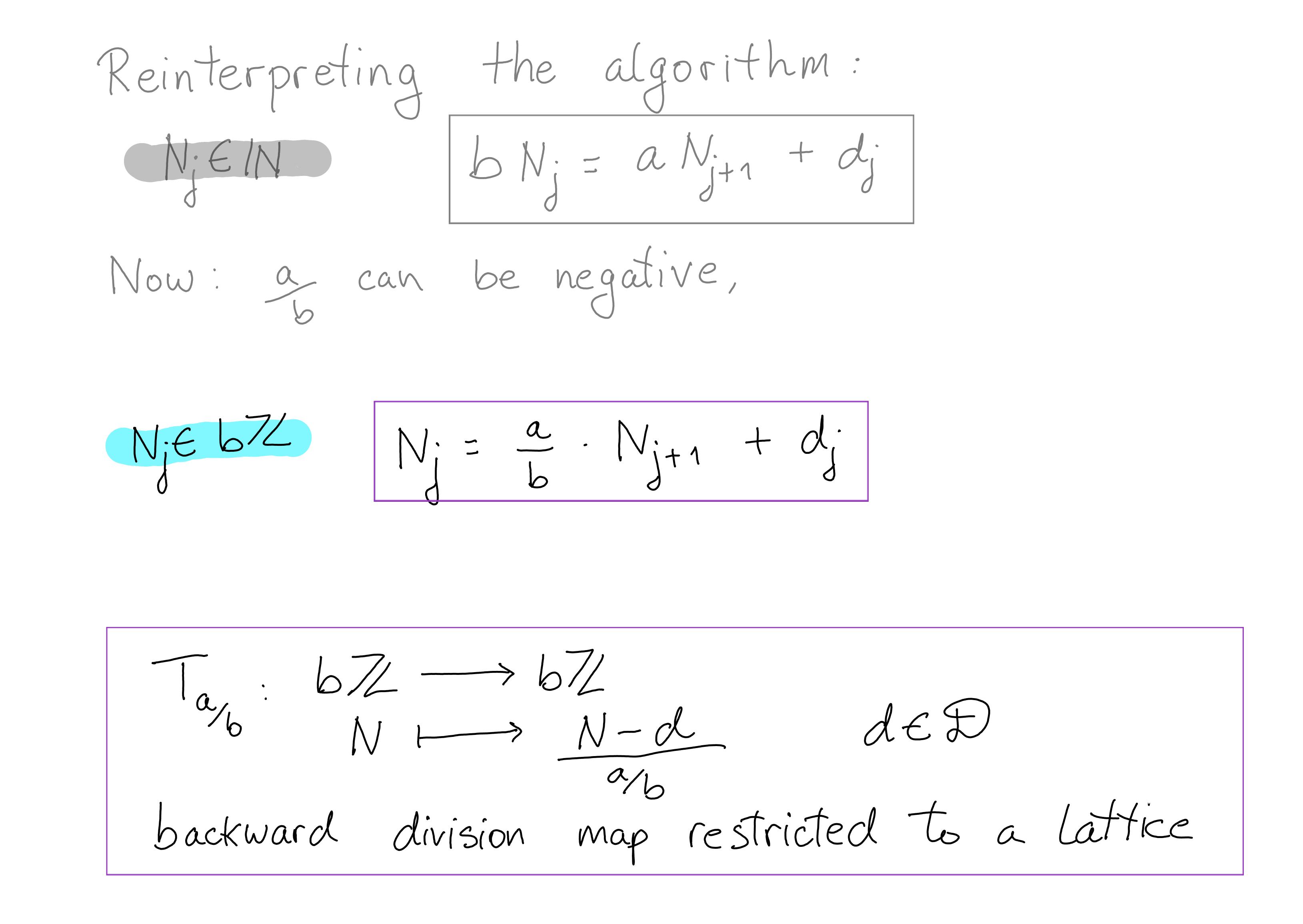
 $N = N_0, j \ge 0, b N_j = a N_{j+1} + d_j$ $dj \equiv bNj \mod a$ (recall $D = \{0, ..., a - 1\}$). where Then $N_{k+1} = 0$ for some le. Example: $\frac{a}{b} = \frac{3}{2}$, $D = \{0, 1, 2\}$, N = 4 $2 \cdot 4 = 3 \cdot N_1 + d_0 \implies d_0 = 2$ $2 \cdot 2 = 3 \cdot N_2 + d_1 \implies d_1 = 1$ $2 \cdot 1 = 3 \cdot N_3 + d_2 \implies d_2 = 2$ $\frac{4}{2} = \frac{3}{2}N_{1} + \frac{2}{2} = \frac{3}{2}N_{2} + \frac{3}{2} \cdot \frac{1}{2} + \frac{2}{2}$ $=\frac{1}{2}\left(\begin{array}{c} \left(\frac{3}{2}\right)^{2} \cdot 2 + \left(\frac{3}{2}\right) \cdot 1 + 2 \right) = \left(\frac{212}{2}\right)^{3}_{2}$

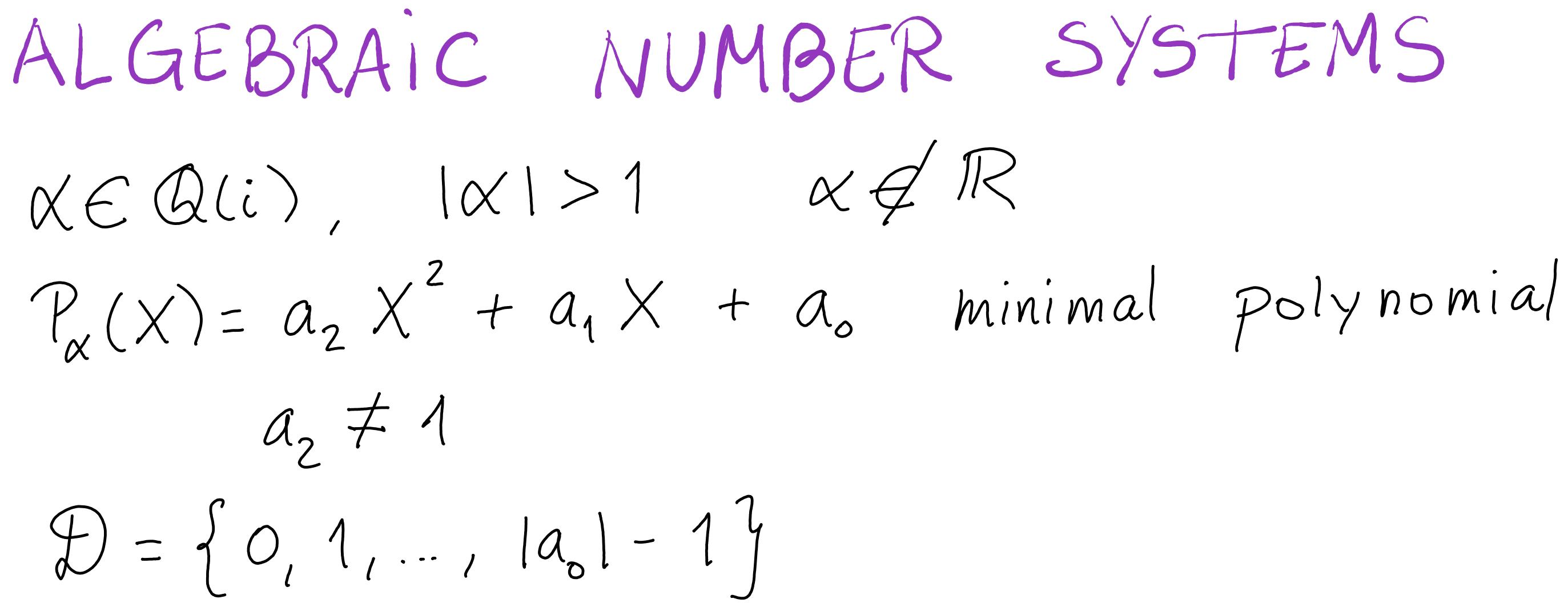


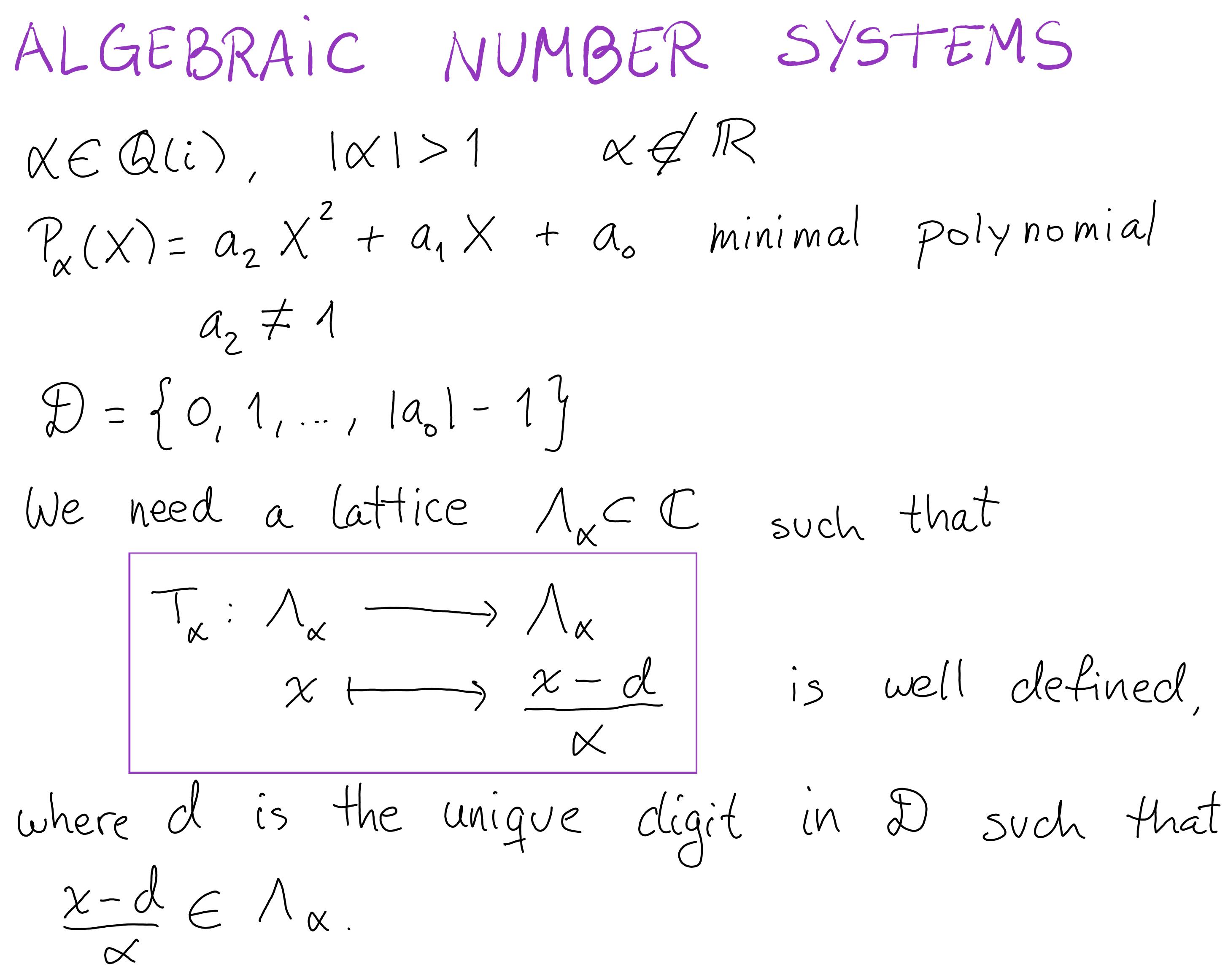




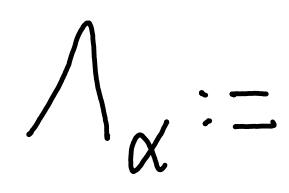
Reinterpreting the algorithm: Now: à can be negative, Nie 672 $N_j = \frac{a}{b} \cdot N_{j+1} + d_j$ $= N = \begin{pmatrix} a \\ b \end{pmatrix} d_k + \dots + \begin{pmatrix} a \\ b \end{pmatrix} d_n + d_0$ (I can get rid of the $\frac{1}{6}$ factor)





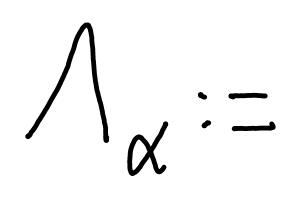


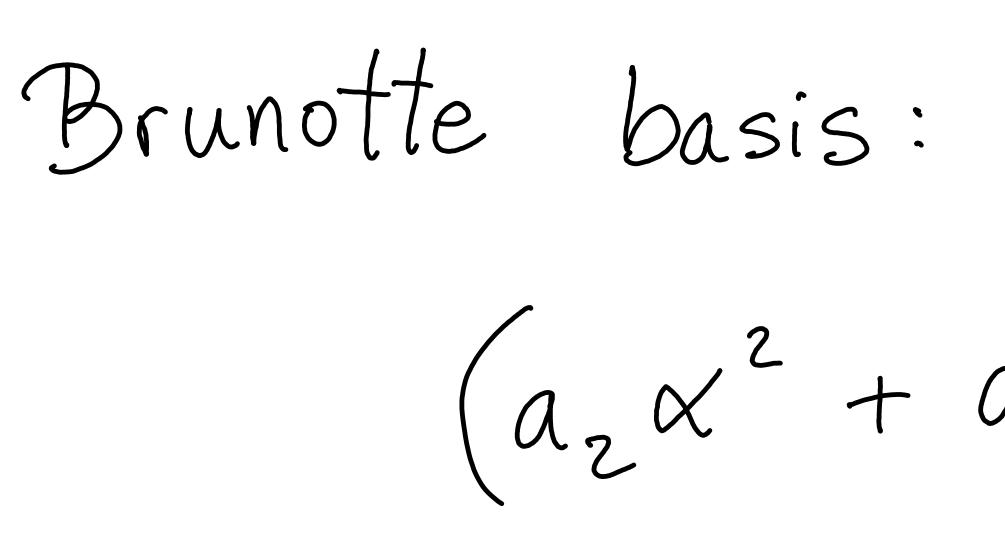
is well defined.



 $\Lambda_{\alpha} \coloneqq \mathbb{Z}[\alpha] \cap \alpha^{-1}\mathbb{Z}[\alpha^{-1}]$

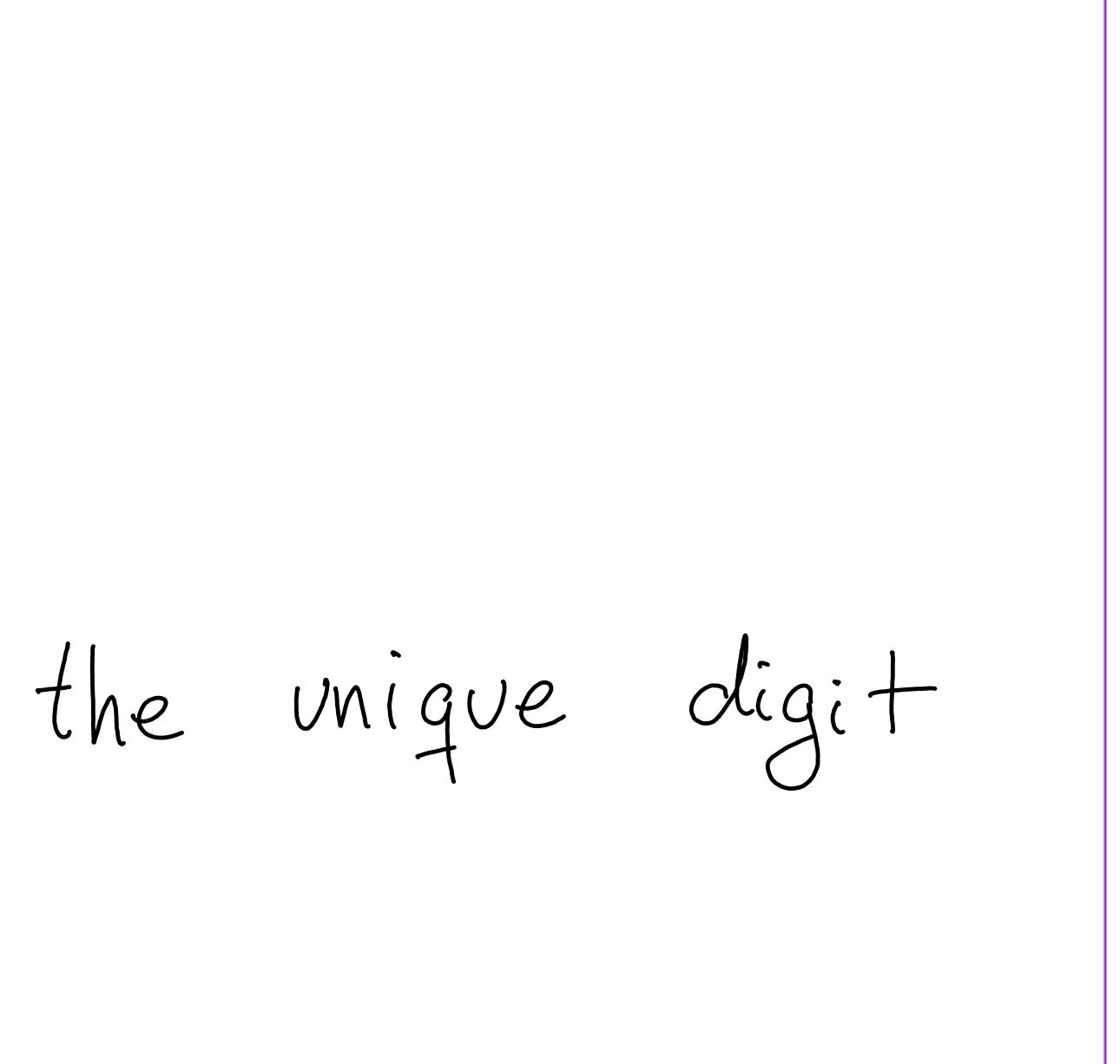
Brunotte basis: $\Lambda_{\alpha} = \alpha_2 Z + (\alpha_2 X + \alpha_1) Z$ $\left(a_2 \alpha^2 + a_1 \alpha + a_0 = 0\right)$





Algorithm: $N = N_0 \in \Lambda_X$ $N_i = \alpha N_{i+1} + \alpha_i$ where chi is that Such Njth EAX

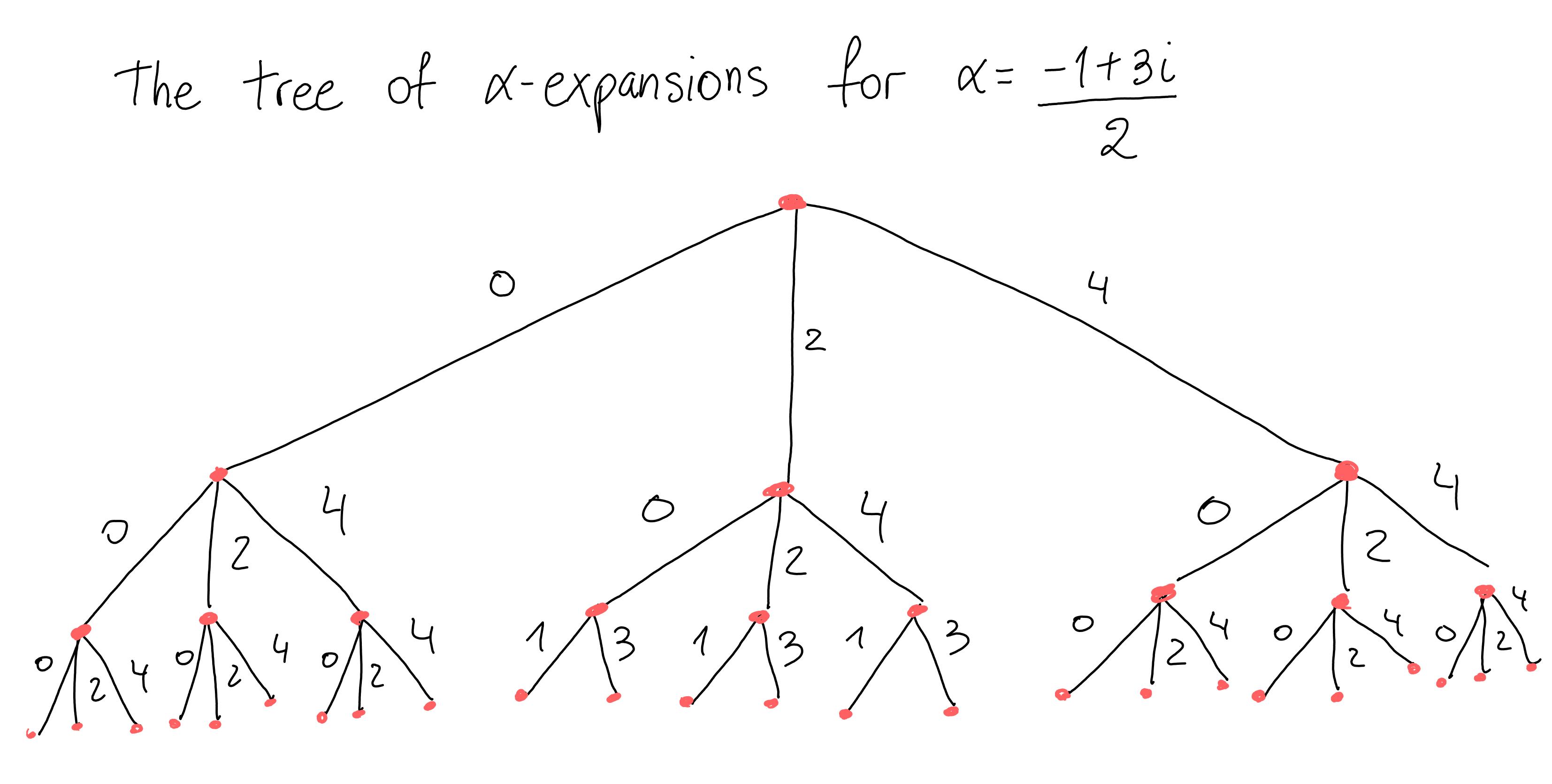
 $\Lambda_{\alpha} := Z[\alpha] \cap \alpha^{-1} Z[\alpha^{-1}]$ Brunotte basis: $\Lambda_{\alpha} = \alpha_2 Z + (\alpha_2 X + \alpha_1) Z$ $\left(a_2 \alpha^2 + a_1 \alpha + a_0 = 0\right)$

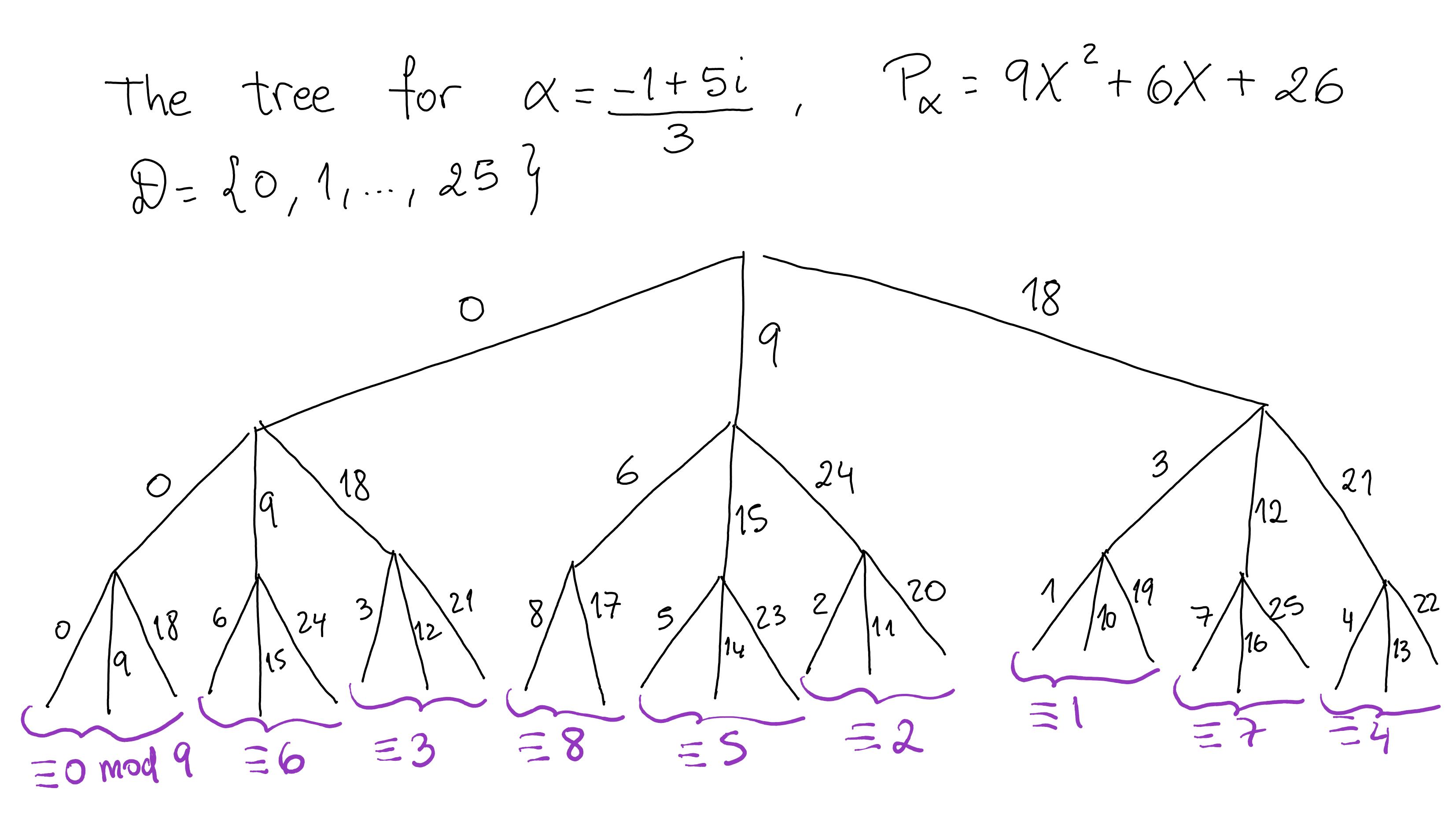


 $P_{x}(x) = 2x^{2} + 2x + 5$ Example: X = -1+3i $D = \{0, 1, 2, 3, 4\}$ $\Lambda_{\chi} = \alpha_2 Z + (\alpha_2 \chi + \alpha_1) Z = 2 Z + (1+3i) Z$ Let $N = 1 + 3i \in \Lambda_X$ $1+3i = -1+3i \cdot 2 + 2$ $2 = \frac{-1+3i}{2} \cdot 0 + 2$ $\implies 1+3i = (22)_{X}$

Does the algorithm always terminate? That is, is there always $k \ge 0$ s.t. $N_k = 0$? No, and the set of bases & with this property is extremely difficult to describe.

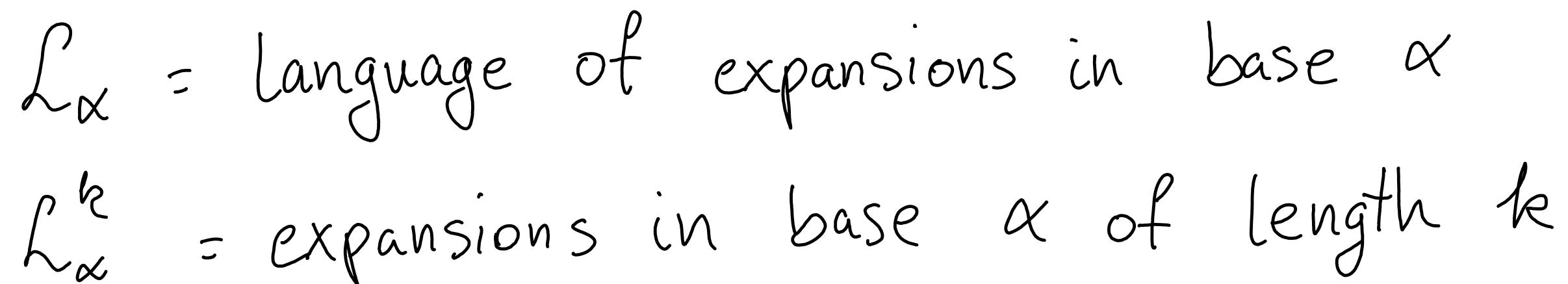
Does the algorithm always terminate? That is, is there always $k \ge 0$ s.t. $N_k = 0$? No, and the set of bases & with this property is extremely difficult to describe. this set has been well studied in the context of shift radix systems. We assume from now on that X has the finite ness property.

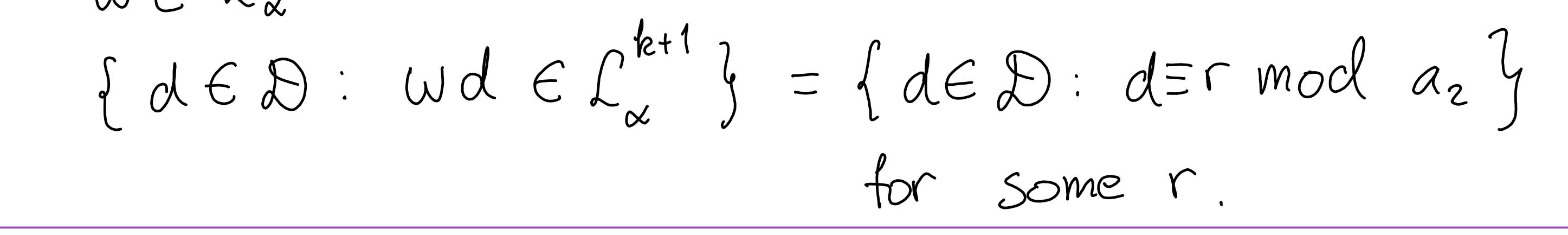




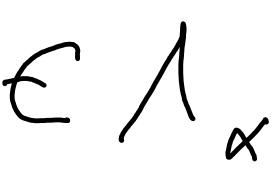
Proposition: WELX

Corollary: $\leq \left| \begin{array}{c} 191 \\ 191 \\ 191 \end{array} \right|$ $\forall R > 0.$





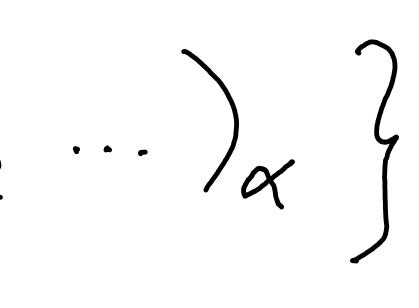
EXPANSION OF COMPLEX NUMBERS Def: An X-expansion of XEC is an expansion of the form $\chi = (d_k \cdots d_0 \cdot d_{-1} d_{-2} \cdots) = \sum_{k=1}^{\infty} d_i \chi^d$ such that each finite prefix dk...dl is the x-expansion of some NEAx (i.e., infinite paths on the Tree).

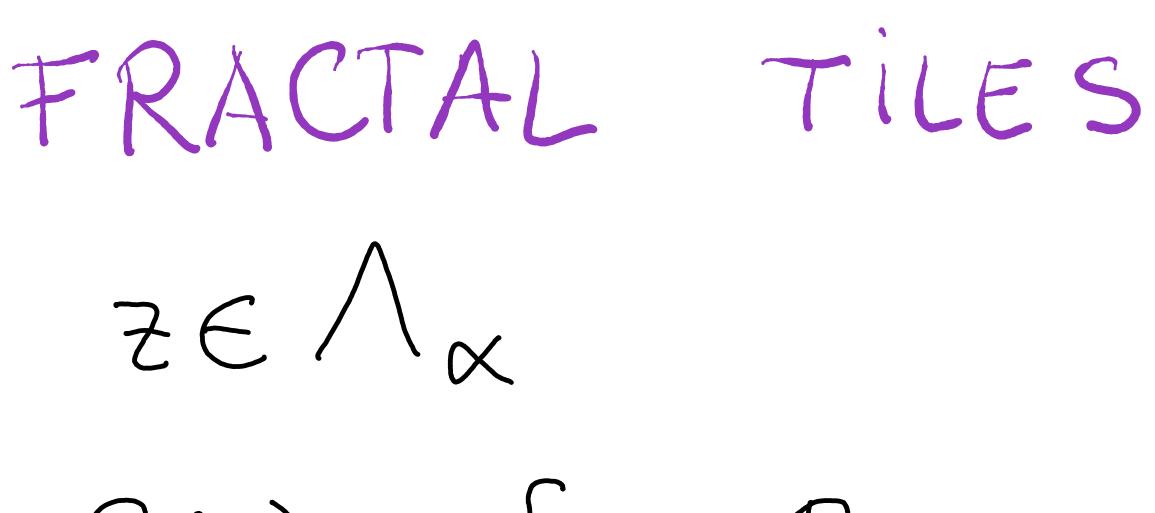


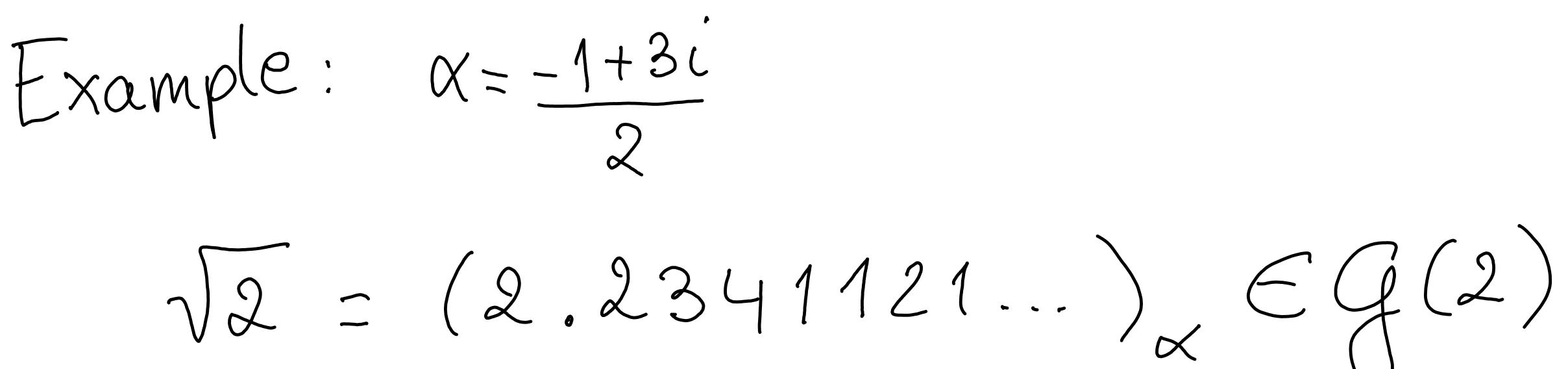


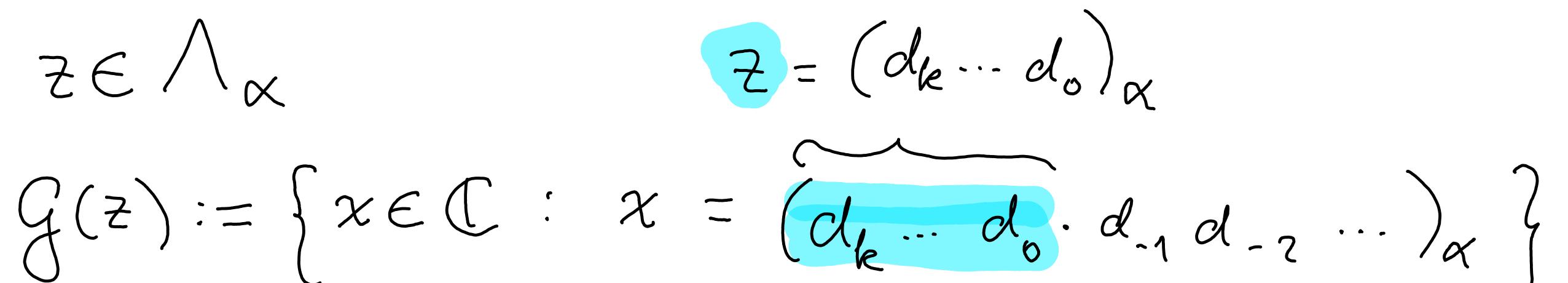
 $Z \in \Lambda_X$ $Z = (d_k \cdots d_o)_X$ $G(Z) := \{ \chi \in \mathbb{C} : \chi = (d_k \dots d_0, d_{-1}, d_{-2}, \dots)_{\alpha} \}$

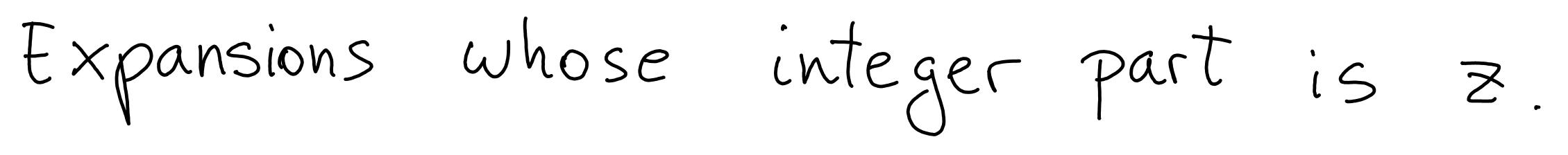
Expansions whose integer part is Z.

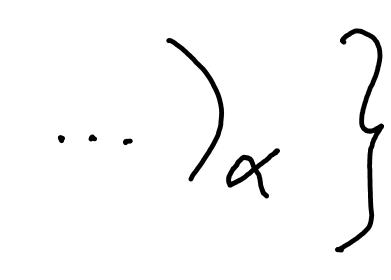


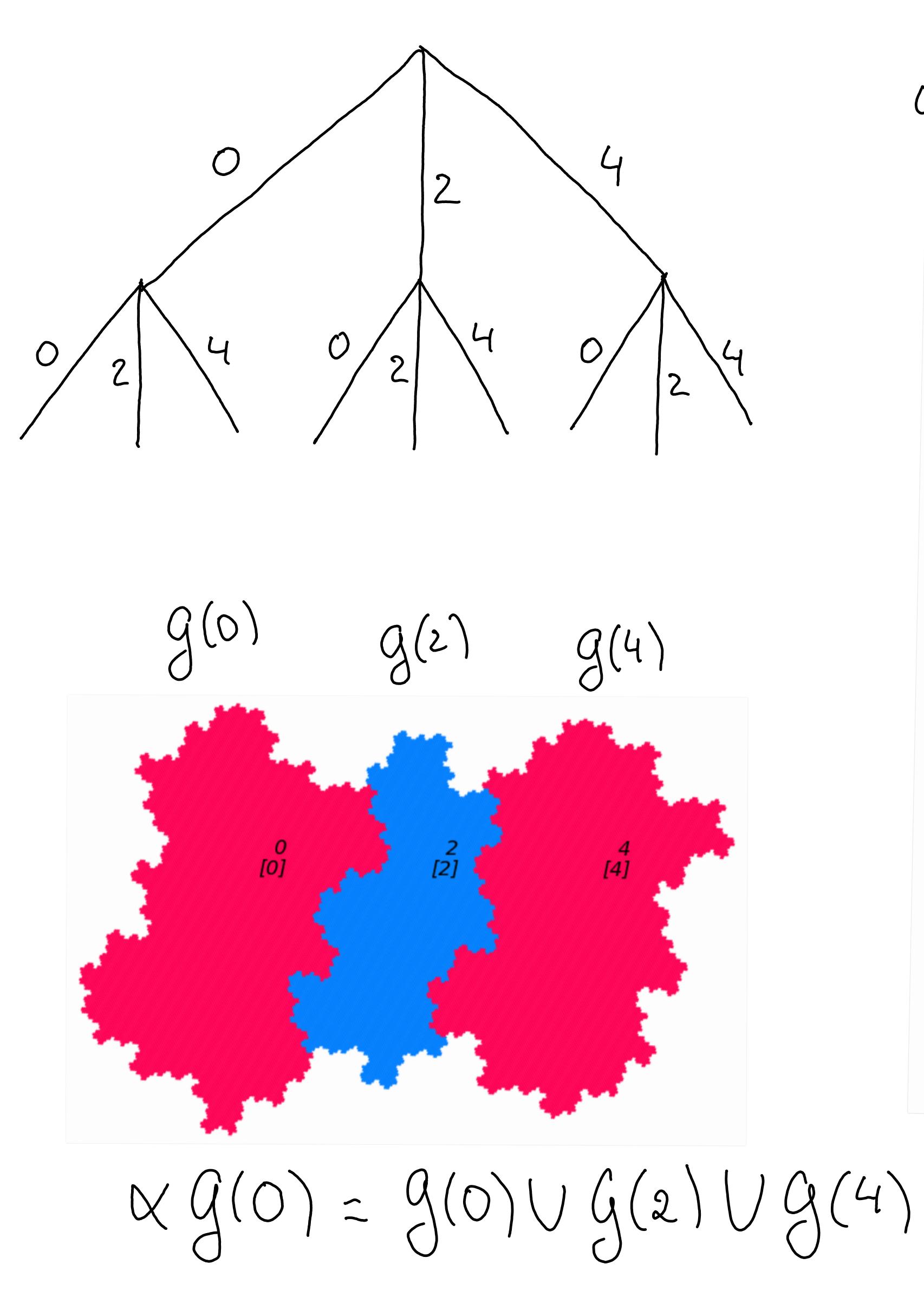




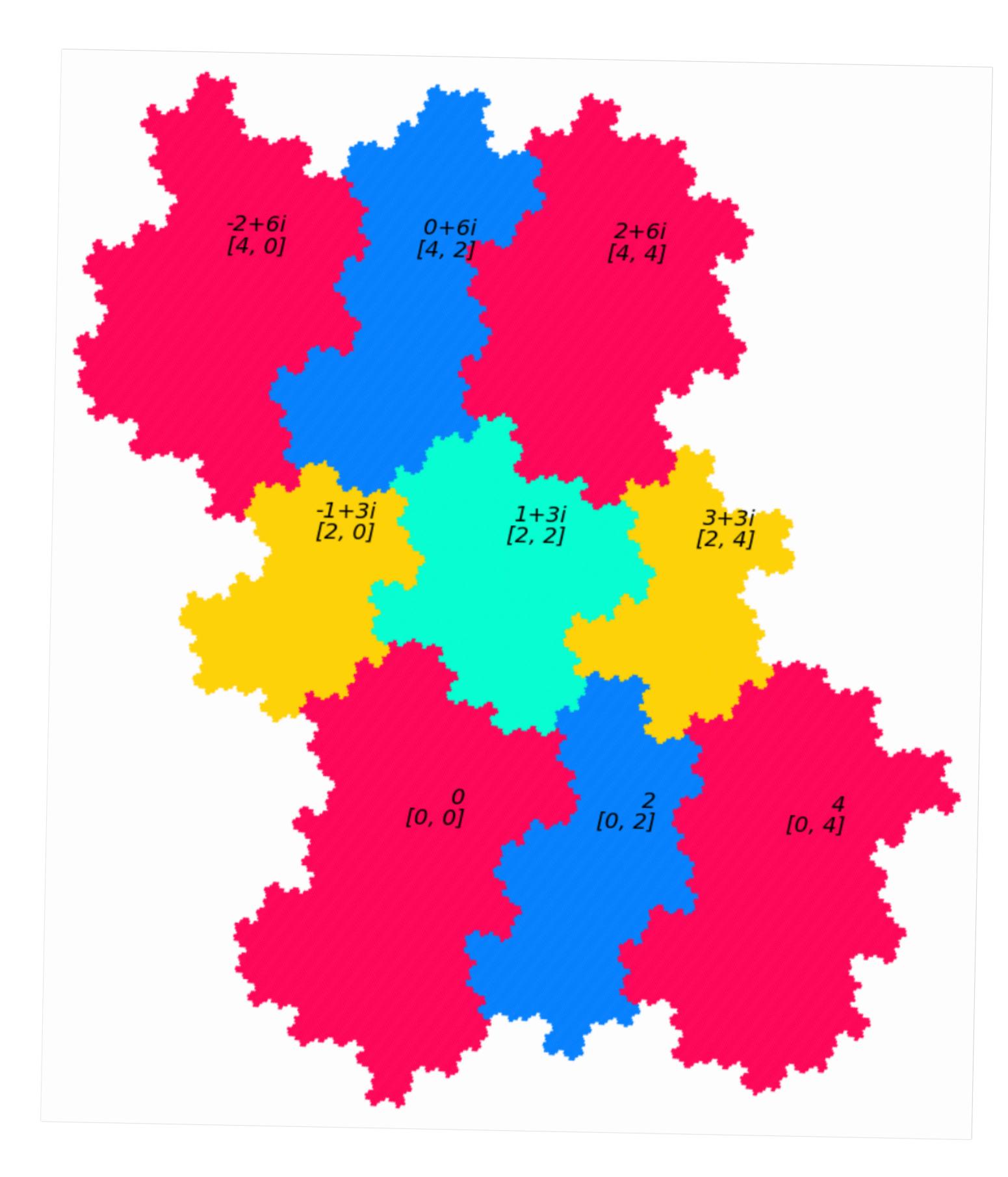




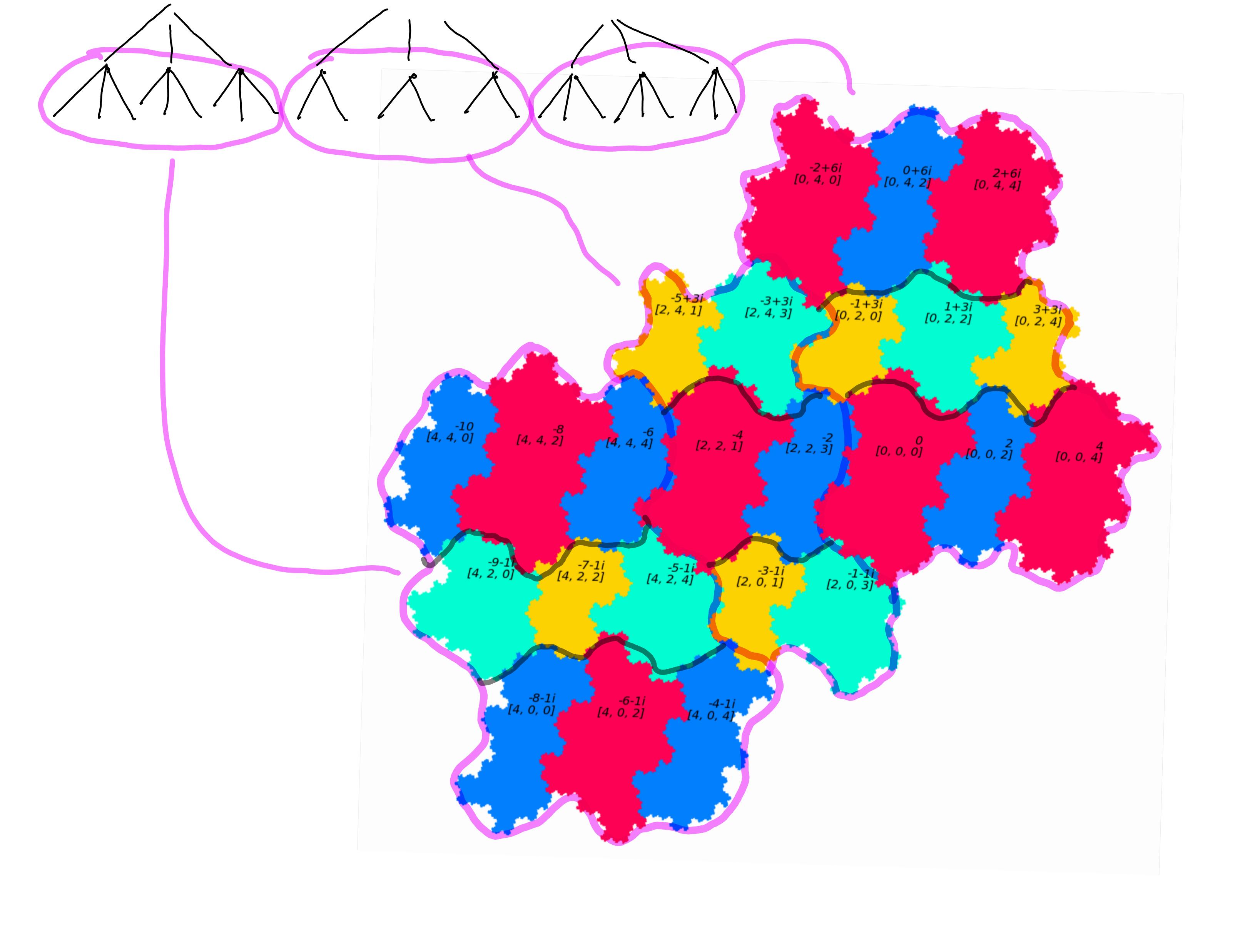


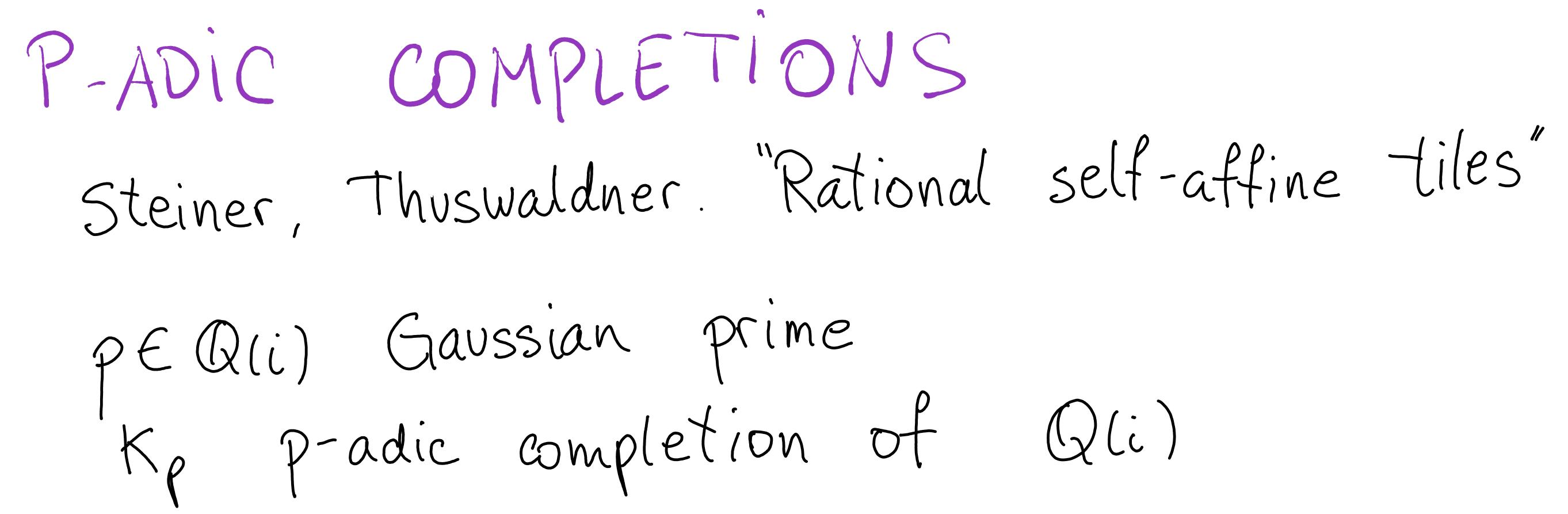


N = -9



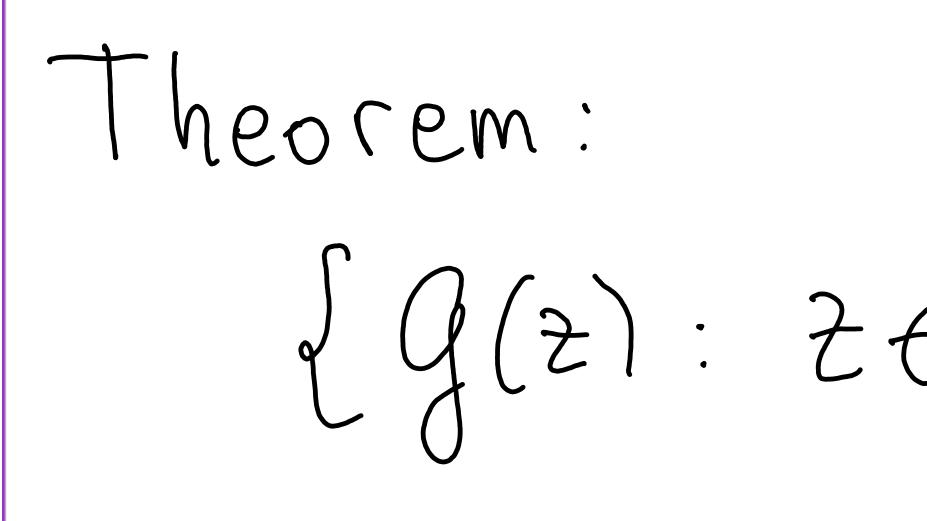
1+3i, $f_{0,1,2,3,4}$



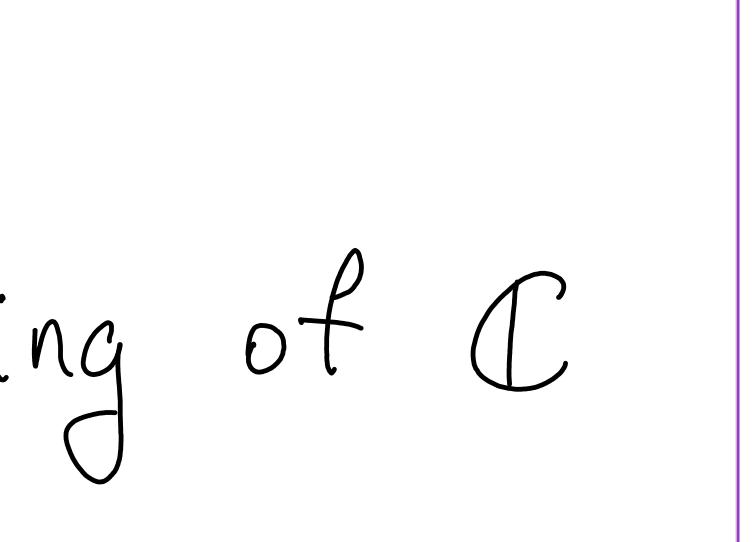


P-ADIC COMPLETIONS Steiner, Thuswaldner. "Rational self-affine tiles" PEQ(i) Gaussian prime Kp P-adic completion of Q(i) a EQ(i) - unique factorization into gaussian primes $X = MUM(\alpha) \in ZCiJ$ (coprime) $den(\alpha) \in \mathbb{Z}[i]$ $den(\alpha) = P_1' \cdots P_s'$

P-ADIC COMPLETIONS Steiner, Thuswaldner. "Rational self-affine tiles" PEQ(i) Gaussian prime Kp p-adic completion of Q(i) $X = MUM(\alpha) \in Z[i]$ (coprime) den (x) E 72 (i) $den(\alpha) = P_1' \cdots P_s'$ Theorem: a series $\sum_{j \le k} d_j x^d$ is an *X*-expansion if and only if it converges to O in Kp Vp [den(x)

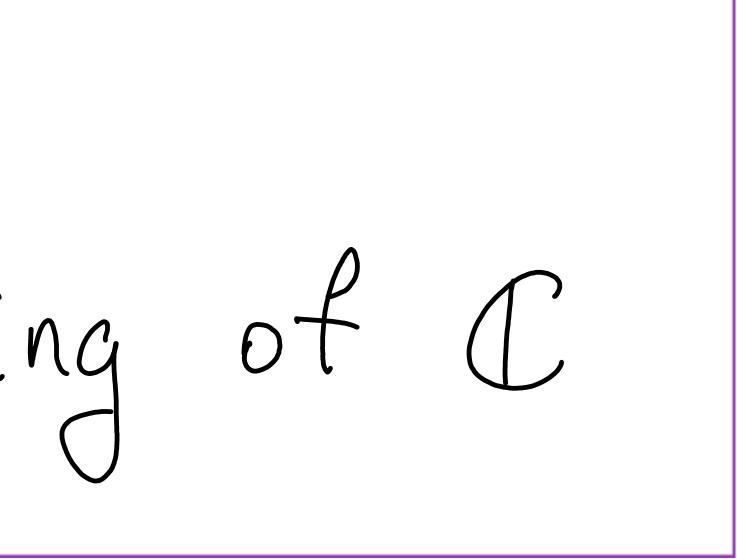


{G(z): ZE / xy forms a tiling of C



heorem: {g(z): ZE May forms a tiling of C

Corollary: The x-expansion of a complex number is unique almost everywhere.

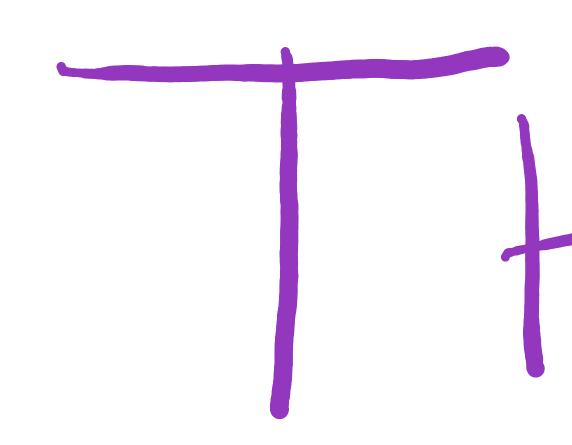


OPEN QUESTIONS

. What are exactly the points with multiple x-expansions?

OPEN QUESTIONS . What are exactly the points with multiple x-expansions?

· Let \mathcal{L}_{x}^{w} be the language of all (infinite) α -expansions. Do all digits (resp. finite words) appear with the same frequency?



HANK