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Integrability of a dynamical system X ∈ X(M)

Exact integrability
dim(M) = n

{f1, . . . , fn−1} ∈ C∞(M)

X (fi ) = 0

Functionally independent

f1, ..., fn−2 ∈ C∞(M) & Φ ∈ Ωn(M)

X (fi ) = 0

Functionally independent

LXΦ = 0, Φ 6= 0
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Invariant volume form for a Hamiltonian system (M ,Π,H)

(1) To describe the symplectic leaves of
(M,Π)

and to apply Liouville’s theorem obtaining
invariant volume forms on the leaves.

Note that:

Symplectic leaves for some types of
Poisson manifolds are hard to
compute.

(2) To look for an invariant volume form on
the whole manifold.

⇓

Unimodularity of Poisson manifolds is related
with the existence of invariant volume forms

Liouville’s theorem

Given a Hamiltonian on a symplectic manifold, the flow of the Hamiltonian
vector field preserves the symplectic volume.
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Poisson-Lie groups

Poisson-Lie group (G ,Π): Poisson structures on G compatible with multiplication

Lie bialgebra (g, g∗): compatible pairs of Lie algebras in duality

⇓

There exist δ : g→ ∧2g such that:

(i) is a 1-cocycle on g with values on g⊗ g, where g acts on g⊗ g by ad (2), i.e.

ad
(2)
X (δY )− ad

(2)
Y (δX )− δ[X ,Y ] = 0, ∀X ,Y ∈ g

(ii) [·, ·]∗ := δt : g∗ × g∗ −→ g∗ defines a Lie bracket on g∗, i.e., is a skew-symmetric bilinear
map on g∗ satisfying the Jacobi identity.
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Why on Poisson-Lie groups?

[[r , r ]] ∈ Λ3g is ad-invariant =⇒ r ∈ ∧2g is a solution of GYBE

⇓

Π = r l − r r is a Poisson-Lie structure on G

An interesting connection between integrable systems and Poisson-Lie groups.a

aM. Semenov-Tian-Shansky, Integrable systems: the r-matrix Approach
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Why on Poisson-Lie groups?

Hamiltonian systems on Poisson-Lie groups appear in the differential equation
approach to the singular value decomposition (SVD) of a bidiagonal matrix.

I M. Chu, A differential equation approach to the singular value decomposition of bidiagonal matrices.

I D. Percy, J. Demmel, L.-C. Li, C. Tomei, The Bidiagonal Singular Value Decomposition and
Hamiltonian Mechanics.

The system of differential equations underlying the SVD is Hamiltonian with
respect to the (standard) Sklyanin bracket {·, ·} defined on SL(n,R).
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Why on Poisson-Lie groups?

A method for obtaining integrable deformations

of Lie-Poisson bi-Hamiltonian systems is applied in

I A. Ballesteros, J. C. Marrero and Z. Ravanpak, Poisson-Lie groups, bi-Hamiltonian systems and
integrable deformations. J. Phys. A Math. Theor. 50 (2017), 145204.

⇓

We have interesting examples

from the Poisson-Lie deformation theory of Lie-Poisson bi-Hamiltonian systems
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Aim of this talk

To discus about the existence of invariant volume form Ωn(G ): LXΩ = 0

for Poisson-Lie Hamiltonian system (G ,Π,H)

Previous result in

I J.C. Marrero, Hamiltonian dynamics on Lie algebroids, Unimodularity and preservation of volumes

g is a Lie algebra

{·, ·}g∗ is Lie-Poisson bracket

H a function as kinetic type

(g∗, {·, ·}g∗ ,H), Hamiltonian Lie-Poisson system

XH preserves a volume form

m

g is unimodular
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Poisson cohomology

(M,Π) Poisson manifold

∂Π : νk(M)→ νk+1(M)
∂ΠP = [[Π,P]]

The first cohomology group

H1
Π(M) =

PΠ(M)

HamΠ(M)

X ∈ PΠ(M) ⇐⇒ [[X ,Π]] = LXΠ = 0

XΠ
H ∈ HamΠ(M) ⇐⇒ XΠ

H = Π#(dH), H ∈ C∞(M)
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Unimodularity of Poisson manifolds
(M,Π) an orientable Poisson manifold

The modular vector field MΠ
Φ ∈ X(M) of (M,Π) with respect to Φ

LXΠ
H

Φ =MΠ
Φ(H)Φ =⇒ MΠ

Φ is a Poisson vector field

The divergence of the Hamiltonian vector field XΠ
H w.r.t the volume form Φ

MΠ
Φ(H) = divΦ(XΠ

H ), for H ∈ C∞(M)

If Φ′ = eFΦ is another positive volume form on M =⇒ MΠ
Φ′ =MΠ

Φ − XΠ
F

MΠ
Φ induces a cohomology class [MΠ

Φ] ∈ H1
Π(M) in the first Poisson

cohomology group of M, is called the modular class of M.

(M,Π) is unimodular if [MΠ
Φ] = 0, i.e., MΠ

Φ = XΠ
F , for F ∈ C∞(M).
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Obstruction

We can fine a volume form with MΠ
Φ = 0⇐⇒ [MΠ

Φ] = 0

MΠ
Φ = 0 ⇐⇒ Φ is invariant under all Hamiltonian flows

⇓

The modular class is the obstruction to the existence of of a volume form in (M,Π)

invariant under all Hamiltonian flows.
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Unimodularity of Poisson manifolds

(M,Π) a Poisson manifold, dim(M) = n

M Unimodular

m

∃Φ ∈ Ωn(M) volume form

LXH
Φ = 0 ∀H ∈ C∞(M)

M Unimodular =⇒ ∃F ∈ C∞(M), Φ′ ∈ Ωn(M) :MΠ
Φ′ = XΠ

F

⇓

LXH
eFΦ′ = 0, ∀H ∈ C∞(M)
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Unimodularity of Lie-Poisson structure on the dual of a Lie algebra
g Lie algebra, dim(g) = n, (g∗, {·, ·}) Lie-Poisson structure

ΠLP =
1

2
cγαβxγ

∂

∂xα
∧ ∂

∂xβ
& Φ = dx1 ∧ . . . ∧ dxn =⇒ MΠLP

Φ = cβαβ
∂

∂xα

The modular character Mg ∈ g∗ of g

Mg(ξ) = Tr(adξ), for ξ ∈ g

If {eα} is a basis of g with dual basis {eα}, we have

Mg = cβαβe
α, [eα, eβ] = cγαβeγ

(g∗,ΠLP) is unimodular if and only if the Lie algebra g is unimodular, that is Mg = 0.a

aJ.C. Marrero, Hamiltonian dynamics on Lie algebroids, Unimodularity and preservation of
volumes
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Modular vector field w.r.t a left-invariant volume form on G

(G ,Π) a connected Poisson-Lie group with Lie bialgebra (g, g∗), dim(G ) = n

Mg ∈ g∗ (resp. Mg∗ ∈ g) the modular character of g (resp. g∗)

ν l left-invariant volume form on G

⇓

MΠ
ν l =

1

2
(Ml

g∗ +Mr
g∗ + Π](Mr

g))1

1S. Evens J.-H. Lu and A. Weinstein, Transverse measures, the modular class and a cohomology pairing
for Lie algebroids
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Unimodularity of a Poisson-Lie group

The 1-form Mr
g is exact =⇒ Mr

g = d(log f0)

f0(g) := det (Adn
g ) : Λng→ Λng, for g ∈ G

[MΠ
ν l ] = [

1

2
(Ml

g∗ +Mr
g∗ + Π](d(log f0)))] = [

1

2
(Ml

g∗ +Mr
g∗)]

(G ,Π) unimodular

m

Mg∗ = 0, i.e. g∗ is unimodular

(G ,Π) is unimodular =⇒MΠ
ν l

= 1
2X

Π
(log f0)
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Preservation of volume forms

(G ,Π) connected Poisson-Lie group & H : G → R Hamiltonian function

Theorem

XΠ
H preserves a volume form on G

m

∃σ ∈ C∞(G ) : LXΠ
H

Φ = XΠ
H (σ − log

√
f0) +

1

2
(Ml

g∗(H) +Mr
g∗(H)) = 0

If ν ∈ ∧ng∗, with ν 6= 0, then the volume form eσν l is preserved by XΠ
H .
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Consequences

LXΠ
H

Φ = XΠ
H (σ − log

√
f0) +

1

2
(Ml

g∗(H) +Mr
g∗(H)) = 0

Consequence 1

g ∈ G is a singular point of XΠ
H

&
XΠ
H preserves a volume form on G

⇓

Ml
g∗(g)(H) +Mr

g∗(g)(H) = 0

Consequence 2

H ∈ C∞(G ) a first integral of
vector field Ml

g∗ +Mr
g∗

m

e log
√
f0v l is preserved by XΠ

H

Mr
g = d(log f0)
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Unimodularity of Poisson-Lie groups & preservation of volume forms

(G ,Π) connected Poisson-Lie group, dim(G ) = n

Corollary

If (G ,Π) is unimodular, ν ∈ ∧ng∗ with ν 6= 0

⇓

The volume form
√
f0ν

l is preserved by all Hamiltonian vector fields

f0 : G → R: Mr
g = d(log f0)
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Ex 1: Integrable deformation of the Euler top

Integrable deformation of the Euler top

ẋ = eηx(y2 − z2),

ẏ = ηeηxyz2 − 1

2
ηeηxy(y2 + z2) +

sinh(ηx)

η
(2z − y),

ż = −ηeηxy2z +
1

2
ηeηxz(y2 + z2) +

sinh(ηx)

η
(z − 2y).

On the so-called “book” Lie group Gη, with the Lie algebra g

[X ,Y ] = −ηY , [X ,Z ] = −ηZ , [Y ,Z ] = 0

Gη is diffeomorphic to R3, we can choose global coordinates, group law

g(x , y , z) · g ′(x ′, y ′, z ′) = g
(
x + x ′, y + y ′e−ηx , z + z ′e−ηx

)
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Ex 1: Poisson-Lie structure on Gη

The system is bi-Hamiltonian w.r.t two Poisson-Lie structures on Gη

ΠG ,0 = −z ∂
∂x
∧ ∂

∂y
+ y

∂

∂x
∧ ∂

∂z
+

1

2

(
− η(y2 + z2) +

e−2ηx − 1

η

)
∂

∂y
∧ ∂

∂z

ΠG ,1 = −y ∂

∂x
∧ ∂

∂y
+ z

∂

∂x
∧ ∂

∂z
+

(
− ηyz +

e−2ηx − 1

η

)
∂

∂y
∧ ∂

∂z

and two functions

H0 = yzeηx + 2

(
cosh(ηx)− 1

η2

)
H1 = −1

2
(y2 + z2)eηx +

cosh(ηx)− 1

η2

The dynamical system defined by the Hamiltonian vector field Π]
G ,0(dH0) = Π]

G ,1(dH1).
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Ex 1: Euler top system

η → 0 limit, Poisson bivectors on the 3-dimensional abelian Lie group R3

ΠR3,0 = −z ∂
∂x
∧ ∂

∂y
+ y

∂

∂x
∧ ∂

∂z
− x

∂

∂y
∧ ∂

∂z

ΠR3,1 = −y ∂

∂x
∧ ∂

∂y
+ z

∂

∂x
∧ ∂

∂z
− 2x

∂

∂y
∧ ∂

∂z

They are the Lie-Poisson structures associated with the Lie algebras g∗ ' so(3) and
g∗ ' sl(2,R), respectively. The Hamiltonian functions H0 and H1 go to

Hη=0
0 = x2 + yz , Hη=0

1 = −1

2
(x2 + y2 + z2).

The dynamical system defined by Π]
R3,0

(dHη=0
0 ) = Π]

R3,1
(dHη=0

1 )

ẋ = y2 − z2, ẏ = x(2z − y), ż = x(z − 2y)

It is equivalent to a particular case of the Euler top.
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Ex 1: Unimodularity of (Gη,ΠG ,0) & (Gη,ΠG ,1)

The dual Lie algebras

g∗0 ' so(3) : [X̄ , Ȳ ]g∗0 = −Z̄ , [X̄ , Z̄ ]g∗0 = Ȳ , [Ȳ , Z̄ ]g∗0 = −X̄
g∗1 ' sl(2,R) : [X̄ , Ȳ ]g∗1 = −Ȳ , [X̄ , Z̄ ]g∗1 = Z̄ , [Ȳ , Z̄ ]g∗1 = −2X̄

Mg∗1
=Mg∗2

= 0 =⇒ Both are unimodular Lie algebras

⇓

Both Poisson-Lie structures are unimodular

⇓

The dynamical system admits invariant volume forms
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Ex 1: Volume form preseved by the flow of the Hamiltonian vector fields

The modular character of Lie algebra g: Mg = −2ηX̄

Mr
g = −2ηdx = d(log f0)

f0 = e−2ηx

The volume form Φ =
√
f0ν

l = eηxdx ∧ dy ∧ dz

is preserved by all Hamiltonian vector fields, for v = X̄ ∧ Ȳ ∧ Z̄ ∈ ∧3g∗.
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If Π is unimodular

(G ,Π) a connected Poisson-Lie group, dim(G ) = n

If Π is unimodular

⇓

For ν ∈ ∧ng∗ with ν 6= 0,
the volume form

√
f0ν

l is preserved
by all Hamiltonian vector fields,

Mr
g = d(log f0)
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What if Π is not unimodular!

If Π is not unimodular

XΠ
H preserves volume formeσv l ⇐⇒ XΠ

H (σ − log
√
f0) +

1

2
(Ml

g∗(H) +Mr
g∗(H)) = 0

(1) g ∈ G is a singular points of XΠ
H

&

Ml
g∗(g)(H) +Mr

g∗(g)(H) 6= 0

⇓

XΠ
H does not preserve a global volume form

(2) H ∈ C∞(G ) a first integral of
vector field Ml

g∗ +Mr
g∗

⇓

e log
√
f0v l is preserved by XΠ

H

Mr
g = d(log f0)
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Ex 2: A Hamiltonian system on the Poisson-Lie group SL(2,R)

Consider the special linear group SL(2,R) with Lie algebra sl(2,R)

SL(2,R) =

{
A =

(
a11 a12

a21 a22

)
∈ GL(2,R) | detA = 1

}
sl(2,R) = {A ∈ gl(2,R) | TrA = 0}

Poisson-Lie structure on GL(2,R)

{a11, a12} = a11a12, {a11, a21} = a11a21, {a11, a22} = 2a12a21,

{a12, a21} = 0, {a12, a22} = a12a22, {a21, a22} = a21a22

detA = a11a22 − a12a21 is a Casimir =⇒ {·, ·} a Poisson structure on SL(2,R)

This Poisson-Lie structure is the one defined by the so-called Drinfel’d-Jimbo r-matrix.a

aA. G. Reyman, Poisson structures related to quantum groups.
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Ex 2: Drinfel’d-Jimbo r -matrix

With respect to the basis {J3, J+, J−}

J3 =

(
1 0
0 −1

)
J+ =

(
0 1
0 0

)
J− =

(
0 0
1 0

)
The (standard) Drinfel’d-Jimbo r -matrix is given by

r = J− ∧ J+ ∈ ∧2sl(2,R)

δ(J3) = 0, δ(J±) = J3 ∧ J±

[J3, J±]g∗ = J±, [J+, J−]g∗ = 0

Interestingly, this Poisson structure is the same as the Sklyanin bracket appeared in the
singular value decomposition in Toda-SVD.
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Ex 2: Unimodularity of Poisson-Lie structure on SL(2,R)

Mg∗ = 2J3 6= 0 & Mg = 0

⇓

1

2
(Mr

g∗+Ml
g∗) = 2a11

∂

∂a11
− 2a22

∂

∂a22

⇓

The Poisson manifold (SL(2,R), {·, ·}) is not unimodular.
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Ex 2: Preservation of a volume form by X Π
H on SL(2,R)

H =
1

2
Tr(ATA) =

1

2
(a2

11 + a2
12 + a2

21 + a2
22) =

1

2

2∑
i ,j=1

a2
ij , H ∈ C∞(GL(2,R))

This Hamiltonian function generates the Toda-SVD flow defined by the Poisson bracket.

A =

(
a 0

0
1

a

)
∈ SL(2,R), a 6= 0

is a singular point for the Hamiltonian vector field XΠ
H on SL(2,R).

Ml
g∗(A)(H) +Mr

g∗(A)(H) = 4a2 − 4

a2

For a 6= ±1 =⇒Ml
g∗(A)(H) +Mr

g∗(A)(H) 6= 0

⇓

XΠ
H does not preserve a global volume form on SL(2,R).
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Ex 3: A Hamiltonian system on the Poisson-Lie group S3

S3 the unit sphere in R4 − {(0, 0, 0, 0)}

In R4 − {(0, 0, 0, 0)}

(x , y , z , t)(x ′, y ′, z ′, t ′) = (xx ′ − yy ′ − zz ′ − tt ′, xy ′ + yx ′ − zt ′ + tz ′,
zx ′ − ty ′ + xz ′ + yt ′, zy ′ + tx ′ + xt ′ − yz ′)

This is the Lie group structure identifying the quaternions H with R4 − {(0, 0, 0, 0)}.
If {e1, e2, e3, e4} is the canonical basis in R4−{(0, 0, 0, 0)}, non-zero commuting relations

[e2, e3]g = −2e4, [e2, e4]g = 2e3, [e3, e4]g = −2e2.

S3 is a closed normal Lie subgroup of R4 − {(0, 0, 0, 0)}.
{e2, e3, e4} is a basis of the Lie algebra of the Lie subgroup S3 ∼= SU(2,C).
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Ex 3: Poisson-Lie structure on S3

Poisson structure Π on R4 − {(0, 0, 0, 0)}

{x , y} = −(z2 + t2), {x , z} = yz

{y , z} = −xz , {x , t} = yt, {y , t} = −xt

Π = −(z2 + t2)
∂

∂x
∧ ∂

∂y
+ yz

∂

∂x
∧ ∂

∂z
+ yt

∂

∂x
∧ ∂

∂t
− xz

∂

∂y
∧ ∂

∂z
− xt

∂

∂y
∧ ∂

∂t

‖ · ‖ : R4 − {(0, 0, 0, 0)} → R, (x , y , z , t)→ ‖(x , y , z , t)‖2 = x2 + y2 + z2 + t2

is a Casimir function

⇓

Poisson-Lie structure on S3 ∼= SU(2,C).
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Ex 3: Unimodularity of (S3,Π)

[e2, e3]g∗ = −[e3, e2]g∗ = −e3,

[e2, e4]g∗ = −[e4, e2]g∗ = −e4

Mg∗ = −2e2 6= 0 & Mg = 0

⇓

1

2
(Ml

g∗ +Mr
g∗) = −2(x

∂

∂y
− y

∂

∂x
)

⇓

(S3, {·, ·}) is not unimodular.
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Ex 3: Preservation of a volume form by X Π
H on S3

H : S3 → R
(x , y , z , t) 7→ P(z , t), P ∈ C∞(R2)

is a first integral of 1
2 (Ml

g∗ +Mr
g∗)|S3

XΠ
H (σ − log

√
f0) +

1

2
(Ml

g∗(H) +Mr
g∗(H)) = 0

Mg = 0⇒ f0 = Constant ⇒ Φ = ν l for ν ∈ ∧ng∗

⇓

XΠ
H preserves any left-invariant volume form Φ on S3
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Unimodularity in Poisson-Lie groups vs preservation of volume forms

Let (G ,Π) be a connected Poisson-Lie group, dim(G ) = n

If Π is unimodular

⇓

For ν ∈ ∧ng∗ with ν 6= 0,
the volume form

√
f0ν

l is preserved
by all Hamiltonian vector fields,

for f0 ∈ C∞(G ) & Mr
g = d(log f0)

If a volume form is preserved
by a Hamiltonian vector field

with respect to certain functions

⇓

Π is unimodular!
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Morse function

G a Lie group with identity element e, H ∈ C∞(G )

Definition

A function H is said to be Morse at e if

i) dH(e) = 0

ii) (HessH)(e) : g× g→ R is nondegenerate

H : G → R is Morse if the Hessian of H at each singular point of H is nondegenerate.
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Preservation of volume forms and unimodularity of Poisson-Lie groups

(G ,Π) a connected Poisson-Lie group, dim(G ) = n

Theorem

H ∈ C∞(G ) a Morse function at e & XΠ
H preserves a volume form Φ on G

⇓

The dual Lie algebra g∗ is unimodular (i .e. Π is unimodular)

m

The volume form
√
f0ν

l is preserved by all Hamiltonian vector fields
ν ∈ ∧ng∗ & ν 6= 0 & Mr

g = d(log f0)
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Ex 4

ΠLP the Lie-Poisson structure on dual Lie algebra g∗ of Lie algebra g

If I : g∗ × g∗ → R is a symmetric R-bilinear form then we can consider the Hamiltonian
function HI : g∗ → R given by

HI (µ) =
1

2
I (µ, µ), for µ ∈ g∗

If {eγ} is a basis of g with dual basis {eγ} for g∗ and {xγ} the corresponding global
coordinates of g∗, we have that

HI (x) =
1

2
Iαβxαxβ

The identity element of g∗ as an abelian Poisson-Lie group is a singular point of HI .

HI is Morse at 0 ⇐⇒ I is nondegenerate
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Ex 4

Hypothesis in the theorem: HI is Morse at 0 & XΠLP
HI

preserves a volume form

∼=

I is nondegenerate & g is unimodular

⇓

f0 : g∗ → R, f0 = 1

⇓

The volume form Φ = dx1 ∧ · · · ∧ dxn is preserved by all flows

This extends a previous result by Kozlov a for the particular case when HI is a
Hamiltonian function of kinetic type, i.e. I is positive definite.

aV. V. Kozlov, Invariant measures of the Euler-Poincaré equations on Lie algebras
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Morse function and contrast function

G a Lie group with identity element e, H ∈ C∞(G )

A smooth function H : G → R is a contrast function if H(e) = 0 & dH(e) = 0.

XH = XH−H(e)

⇓

If H is Morse =⇒ H − H(e) is contrast

This kind of functions plays an important role in information geometry.
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Information geometry and Morse functions

ι : G → Rn an embedding of the Lie group G in Rn, ι(e) = 0

〈·, ·〉 a non-degenerate bilinear symmetric form on Rn

H〈·,·〉 : Rn → R : H〈·,·〉(x) = 1
2〈x , x〉, for x ∈ Rn

H = H〈·,·〉 ◦ ι : G → R

⇓

dH(e) = 0 &H(e) = 0 =⇒ H is contrast

If 〈·, ·〉g with g = TeG ⊆ T0Rn ∼= Rn is non-degenerate

⇓

H is Morse at e
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Contrast functions on Lie groups

If G is a matrix Lie group, the smooth function H : G → R

H(A) = Tr ((Id − A)(Id − At)) A ∈ G

is Morse at Id ∈ G . Here Id is the identity matrix in GL(n,R).

The previous function H is useda as a metric contrast function on GL(n,R).

aK. Grabowska, J. Grabowski, M. Kuś and G. Marmo, Lie groupoids in information geometry
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Future work

I P. Xu, Gerstenhaber Algebras and BV-Algebras in Poisson Geometry.

Information geometry & Discrete geometric mechanics

Divergence functions & Discrete Lagrangian functions

Future work

To study the relation between
Hamiltonian dynamics on Poisson-Lie groups

&
Discrete geometric mechanics and information geometry
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Future work

I M. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions.

Poisson homogeneous spaces are given by the quotient G/H of a Poisson-Lie group G with a
closed Lie subgroup H of G

We have a description of the modular class of the Poisson structure on G/H2.

Future work

What is relation between the unimodularity of the Poisson structure on G/H
&

the existence of invariant volume forms for the Hamiltonian system on G/H?

2S. Evens J.-H. Lu and A. Weinstein, Transverse measures, the modular class and a cohomology pairing
for Lie algebroids
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Thank you!
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