Between Subdifferentials and Monotone Operators

Patrick L. Combettes

Department of Mathematics North Carolina State University Raleigh, NC 27695, USA

Modern Maximal Monotone Operator Theory: From Nonsmooth Optimization to Differential Inclusions Wien, 27 Februar 2019

Supported by the NSF under grant DMS-1818946

э

Functional analysis: Linear versus nonlinear

Nonlinear functional analysis

A B > A B >

3

Functional analysis: Linear versus nonlinear

Early 1960's Nonlinear functional analysis \rightarrow outgrowths of linear analysis

These new structured theories, which often revolve around turning equalities in classical linear analysis into inequalities, benefit from tight connections between each other.

Convex analysis (Moreau, Rockafellar, 1962+)

- $\Gamma_0(\mathcal{H})$: lower semicontinuous convex functions $f: \mathcal{H} \rightarrow]-\infty, +\infty]$ such that dom $f = \{x \in \mathcal{H} \mid f(x) < +\infty\} \neq \emptyset$
- $f^*: x^* \mapsto \sup_{x \in \mathcal{H}} \langle x | x^* \rangle f(x)$ is the conjugate of f; if $f \in \Gamma_0(\mathcal{H})$, then $f^* \in \Gamma_0(\mathcal{H})$ and $f^{**} = f$
- The subdifferential of f at $x \in \mathcal{H}$ is

Nonexpansive operators (Browder, Minty)

• $T \in \mathscr{B}(\mathcal{H})$ is an *isometry* if $(\forall x \in \mathcal{H}) ||Tx|| = ||x||$, i.e.,

 $(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) ||Tx - Ty|| = ||x - y||.$

T: $\mathcal{H} \to \mathcal{H}$ is nonexpansive if

$$(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) ||Tx - Ty|| \leq ||x - y||,$$

firmly nonexpansive if

 $(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) ||Tx - Ty||^2 + ||(Id - T)x - (Id - T)y||^2 \leq ||x - y||^2.$ and α -averaged ($\alpha \in]0, 1[$), if

$$(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) \|Tx - Ty\|^2 + \frac{1 - \alpha}{\alpha} \|(\mathsf{Id} - T)x - (\mathsf{Id} - T)y\|^2 \leq \|x - y\|^2$$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

Monotone operators (Kačurovskiĭ, Minty, Zarantonello, 1960)

■ $A \in \mathscr{B}(\mathcal{H})$ is skew if $(\forall x \in \mathcal{H}) \langle x | Ax \rangle = 0$ and it is positive if $(\forall x \in \mathcal{H}) \langle x | Ax \rangle \ge 0$, i.e.,

 $(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) \quad \langle x - y \mid Ax - Ay \rangle \ge 0.$ (1)

- In 1960, Kačurovskii, Minty, and Zarantonello independently called *monotone* a nonlinear operator $A: \mathcal{H} \to \mathcal{H}$ that satisfies (1)
- More generally, a set-valued operator $A: \mathcal{H} \to 2^{\mathcal{H}}$ with graph gra $A = \{(x, x^*) \in \mathcal{H} \times \mathcal{H} \mid x^* \in Ax\}$ is monotone if

 $(\forall (x, x^*) \in \operatorname{gra} A)(\forall (y, y^*) \in \operatorname{gra} A) \quad \langle x - y \mid x^* - y^* \rangle \ge 0,$

and *maximally monotone* if there is no monotone operator $B: \mathcal{H} \to 2^{\mathcal{H}}$ such that gra $A \subset$ gra $B \neq$ gra A

◆□ > ◆□ > ◆臣 > ◆臣 > 善 の < @

Convexity/Nonexpansiveness/Monotonicity

- If $f \in \Gamma_0(\mathcal{H})$, $A = \partial f$ is maximally monotone
- (Minty) If $T: \mathcal{H} \to \mathcal{H}$ is firmly nonexpansive, then $T = J_A$ for some maximally monotone $A: \mathcal{H} \to 2^{\mathcal{H}}$ and Fix T = zer A
- (Minty) If $A: \mathcal{H} \to 2^{\mathcal{H}}$ is maximally monotone, the resolvent $J_A = (\operatorname{Id} + A)^{-1}$ is firmly nonexpansive with dom $J_A = \mathcal{H}$, and the reflected resolvent $R_A = 2J_A \operatorname{Id}$ is nonexpansive
- If $T: \mathcal{H} \to \mathcal{H}$ is nonexpansive, A = Id T is max. mon., Fix $T = \{x \in \mathcal{H} \mid Tx = x\}$ is closed and convex, and Fix $T = \operatorname{zer} A$
- If $A: \mathcal{H} \to 2^{\mathcal{H}}$ is max. mon., $(\forall x \in \mathcal{H}) Ax$ is closed and convex; $\operatorname{zer} A = A^{-1}(0)$ is closed and convex
- If $A: \mathcal{H} \to 2^{\mathcal{H}}$ is maximally monotone, int dom A, dom A, int ran A, and ran A are convex
- If $T: H \to H$ is an α -averaged ($\alpha \leq 1/2$) nonexpansive operator, it is maximally monotone
- If $A = \beta B$ is firmly nonexpansive (hence max. mon.), $0 < \gamma < 2\beta$, and $\alpha = \gamma/(2\beta)$, then $Id - \gamma B$ is an α -averaged nonexpansive operator

What is a maximally monotone operator in general?

- Who knows? ...certainly a complicated object
- The Asplund decomposition

 $A = \partial f$ + something (acyclic)

is not fully understood

- If $\mathcal{H} = \mathbb{R}$, something = 0
- In the Borwein-Wiersma decomposition, "something" is the restriction of a skew operator
- Jon Borwein's conjecture was that in general "something" is locally the restriction (localization) of a skew linear relation

3

Moreau's proximity operator

■ In 1962, Jean Jacques Moreau (1923–2014) introduced the proximity operator of $f \in \Gamma_0(\mathcal{H})$

$$\operatorname{prox}_f : x \mapsto \operatorname{argmin}_{y \in \mathcal{H}} f(y) + \frac{1}{2} \|x - y\|^2$$

and derived all its main properties

Set
$$q = \| \cdot \|^2/2$$
. Then $f \Box q + f^* \Box q = q$ and

 $\operatorname{prox}_f = \nabla (f+q)^* = \nabla (f^* \Box q) = \operatorname{Id} - \operatorname{prox}_{f^*} = (\operatorname{Id} + \partial f)^{-1}$

• prox_f =
$$J_{\partial f}$$
, hence

- Fix $\operatorname{prox}_f = \operatorname{zer} \partial f = \operatorname{Argmin} f$
- (prox_f x, x prox_f x) \in gra ∂f
- $||prox_{f}x prox_{f}y||^{2} + ||prox_{f^{*}}x prox_{f^{*}}y||^{2} \leq ||x y||^{2}$
- This suggests that (Martinet's proximal point algorithm, 1970/72) $x_{n+1} = \operatorname{prox}_f x_n \rightarrow x \in \operatorname{Argmin} f$

() ⇒) = ...

Subdifferentials as maximally monotone ops. and proximity operators as firmly nonexpansive ops.

- Rockafellar (1966) has fully characterized subdifferentials as those maximally monotone operators which are cyclically maximally monotone
- Moreau (1965) has fully characterized proximity operators as those (firmly) nonexpansive operators which are gradients of convex functions
- Moreau (1963) showed that a convex average of proximity operator is again a proximity operator
- Not all firm nonexpansiveness preserving operations are proximity preserving

Set

$$\begin{cases} \mathcal{P}(\mathcal{H}) = \{T : \mathcal{H} \to \mathcal{H} \mid (\exists f \in \Gamma_0(\mathcal{H})) \ T = \mathsf{prox}_f \} \\ A \Box B = (A^{-1} + B^{-1})^{-1} \\ L \triangleright A = (L \circ A^{-1} \circ L^*)^{-1} \end{cases}$$

Proximity-preserving transformations

Let *I* be finite and put $q = \|\cdot\|_{\mathcal{H}}^2/2$. For every $i \in I$, let $\omega_i \in]0, +\infty[$, put $q_i = \|\cdot\|_{\mathcal{G}_i}^2/2$, let $L_i \in \mathscr{B}(\mathcal{H}, \mathcal{G}_i) \setminus \{0\}$, let $M_i \in \mathscr{B}(\mathcal{K}_i, \mathcal{G}_i) \setminus \{0\}$, let $f_i \in \Gamma_0(\mathcal{G}_i)$, let $g_i \in \Gamma_0(\mathcal{G}_i)$, and let $h_i \in \Gamma_0(\mathcal{K}_i)$. Suppose that $\sum_{i \in I} \omega_i \|L_i\|^2 \leq 1$ and that,

$$(orall i \in I) \quad egin{cases} 0 \in ext{sri} \left(ext{dom} \, h_i^* - M_i^*(ext{dom} \, f_i \cap ext{dom} \, g_i^*)
ight) \ 0 \in ext{sri} \left(ext{dom} \, f_i - ext{dom} \, g_i^*
ight). \end{cases}$$

Set

$$T = \sum_{i \in I} \omega_i L_i^* \circ \left(\operatorname{prox}_{f_i} \Box \left(\partial g_i \Box \left(M_i \triangleright \partial h_i \right) \right) \right) \circ L_i.$$

Then $T \in \mathcal{P}(\mathcal{H})$. More specifically,

$$T = \operatorname{prox}_{f}, \quad \text{where} \quad f = \left(\sum_{i \in I} \omega_{i} \left(\left(f_{i} + g_{i}^{*} + h_{i}^{*} \circ M_{i}^{*}\right)^{*} \Box q_{i} \right) \circ L_{i} \right)^{*} - q.$$

・ロ > ・ 同 > ・ 三 > ・ 三 > ・

3

Proximity-preserving transformations: Consequences

- $(T_i)_{i \in I}$ be a finite family in $\mathcal{P}(\mathcal{H})$, $(\omega_i)_{i \in I}$ convex weights. Then $\sum_{i \in I} \omega_i T_i \in \mathcal{P}(\mathcal{H})$ (Moreau, 1963).
- Auslender's barycentric projection method

$$x_{n+1} = \sum_{i \in I} \omega_i \text{proj}_{C_i} x_n$$

(and under-relaxations thereof) is a proximal algorithm.

- Let T_1 and T_2 be in $\mathcal{P}(\mathcal{H})$. Then $(T_1 T_2 + Id)/2 \in \mathcal{P}(\mathcal{H})$.
- Let $T \in \mathcal{P}(\mathcal{H})$ and let V be a closed vector subspace of \mathcal{H} . Then $\text{proj}_V \circ T \circ \text{proj}_V \in \mathcal{P}(\mathcal{H})$.
- Let T_1 and T_2 be in $\mathcal{P}(\mathcal{H})$. Then $T_1 \square T_2 \in \mathcal{P}(\mathcal{H})$.

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ① < ○

Introduction Monotone Prox Splitting

Proximity-preserving transformations: Consequences

- K a closed convex cone in \mathcal{H} with polar cone K^{\ominus} , V a closed vector subspace of \mathcal{H} ,
- Set

$$f = \left(\frac{1}{2}d_{K^{\ominus}}^2 \circ \operatorname{proj}_V\right)^* - \frac{\|\cdot\|^2}{2} \quad \text{and} \quad T = \operatorname{proj}_V \circ \operatorname{proj}_K \circ \operatorname{proj}_V.$$

- Then $T = \operatorname{prox}_f$.
- Let $x_0 \in V$ and $(\forall n \in \mathbb{N}) x_{n+1} = \operatorname{prox}_f x_n$.
- $(x_n)_{n \in \mathbb{N}}$ is identical to the alternating projection sequence $x_{n+1} = (\operatorname{proj}_V \circ \operatorname{proj}_K) x_n$.
- Hundal (2004) constructed a special V and K so that convergence of alternating projections is only weak and not strong. We thus obtain a new instance of the weak but not strong convergence of the proximal point algorithm.

▶ ◀ Ē ▶ Ē • • • • •

Proximity-preserving transformations: Compositions and sums

- Take $T_1 = \operatorname{prox}_{f_1} \in \mathcal{P}(\mathcal{H})$ and $T_2 = \operatorname{prox}_{f_2} \in \mathcal{P}(\mathcal{H})$. Then $T_1 \circ T_2 \notin \mathcal{P}(\mathcal{H})$ (unless $\mathcal{H} = \mathbb{R}$) and $T_1 + T_2 \notin \mathcal{P}(\mathcal{H})$.
- The formula $T_1 \circ T_2 = \text{prox}_{f_1+f_2}$ has been characterized. An interesting instance is (Briceño-Arias/PLC, 2009)

$$\begin{aligned} & \operatorname{prox}_{\phi \circ \|\cdot\| + \sigma_{C}} = \operatorname{prox}_{\phi \circ \|\cdot\|} \circ \operatorname{prox}_{\sigma_{C}} \colon x \mapsto \\ & \left\{ \frac{\operatorname{prox}_{\phi} d_{C}(x)}{d_{C}(x)} (x - \operatorname{proj}_{C} x), \quad \text{if } d_{C}(x) > \max \operatorname{Argmin} \phi; \\ & x - \operatorname{proj}_{C} x, \qquad \text{if } d_{C}(x) \leqslant \max \operatorname{Argmin} \phi \end{array} \right. \end{aligned}$$

Example: K a closed convex cone, $\phi = \gamma |\cdot|$. Then

$$\operatorname{prox}_{\gamma \|\cdot\|+\iota_{K}} x = \begin{cases} \frac{\|\operatorname{proj}_{K} x\| - \gamma}{\|\operatorname{proj}_{K} x\|} & \text{if } \|\operatorname{proj}_{K} x\| > \gamma; \\ 0, & \text{if } \|\operatorname{proj}_{K} x\| \leqslant \gamma. \end{cases}$$

э.

Proximity-preserving transformations: Compositions and sums

Example: K a closed convex cone, $\phi = \iota_{[-\gamma,\gamma]}$. Then

$$\operatorname{proj}_{B(0;\gamma)\cap K} x = \begin{cases} \frac{\gamma}{\|\operatorname{proj}_{K} x\|} \operatorname{proj}_{K} x, & \text{if } \|\operatorname{proj}_{K} x\| > \gamma;\\ \operatorname{proj}_{K} x, & \text{if } \|\operatorname{proj}_{K} x\| \leqslant \gamma. \end{cases}$$

Suppose that $0 \in sri(dom f_1^* - dom f_2^*)$ and that

$$(f_1^*+f_2^*)\Box q=f_1^*\Box q+f_2^*\Box q.$$

Then $T_1 + T_2 = \operatorname{prox}_{f_1 \square f_2} \in \mathcal{P}(\mathcal{H}).$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

Self-dual classes: $T \in \mathfrak{T}(\mathcal{H}) \Leftrightarrow \mathsf{Id} - T \in \mathfrak{T}(\mathcal{H})$

The need for monotone operators in optimization

They offer a synthetic framework to formulate, analyze, and solve optimization problems but, more importantly,...

The need for monotone operators in optimization

- They offer a synthetic framework to formulate, analyze, and solve optimization problems but, more importantly,...
- ... some key maximal monotone operators arising in the analysis and the numerical solution of convex minimization problems are not subdifferentials, for instance:
 - (Rockafellar, 1970) The saddle operator

 $A\colon (x_1,x_2)\mapsto \partial \mathcal{L}(\cdot,x_2)(x_1)\times \partial (-\mathcal{L}(x_1,\cdot))(x_2)$

associated with a closed convex-concave function $\ensuremath{\mathcal{L}}$

- (Spingarn, 1983) The partial inverse of a maximally monotone operator (and even of a subdifferential)
- Some operators which arise in the perturbation of optimization problems are no longer subdifferentials
- Skew linear operators arising in composite primal-dual minimization problems (PLC et al., 2011+)

= 990

Interplay: The proximal point algorithm

First derived by Martinet (1970/72) for $f \in \Gamma_0(\mathcal{H})$ with constant proximal parameters, and then by Brézis-Lions (1978)

$$x_{n+1} = \operatorname{prox}_{\gamma_n f} x_n \longrightarrow x \in \operatorname{Argmin} f \quad \text{if} \quad \sum_{n \in \mathbb{N}} \gamma_n = +\infty$$
 (2)

Then extended to a maximally monotone operator A by Rockafellar (1976) and Brézis-Lions (1978)

$$x_{n+1} = J_{\gamma_n A} x_n \rightarrow x \in \operatorname{zer} A \quad \text{if} \quad \sum_{n \in \mathbb{N}} \gamma_n^2 = +\infty$$
 (3)

Note that (2) has more general parameters. However (3) is considerably more useful to optimization than (2)

・ロ > ・ 同 > ・ 三 > ・ 三 > ・

I naa

Interplay: The proximal point algorithm

- (Rockafellar, 1976) Applying the general proximal point algorithm (3) to the saddle operator leads to various minimization algorithms (e.g., the proximal method of multipliers in the case of the ordinary Lagrangian)
- It was noted by Eckstein/Bersekas (1992) that the Douglas-Rachford splitting algorithm is implicitly driven by a proximal iteration for a maximally monotone operator. The same is true for the forward-backward algorithm!
- Applying the general proximal point algorithm (3) to the partial inverse of a suitably constructed partial inverse makes it possible to solve the convex composite problem (Alghamdi, Alotaibi, PLC, Shahzad, 2014)

$$\underset{(\forall i \in I)}{\text{minimize}} \sum_{i \in I} \left(f_i(x_i) - \langle x_i \mid z_i \rangle \right) + g\left(\sum_{i \in I} L_i x_i - r \right)$$

< ロ > < 同 > < 回 > < 回 > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - >

= 990

The need for monotone operators in optimization

- They offer a synthetic framework to formulate, analyze, and solve optimization problems but, more importantly,...
- ... some key maximal monotone operators arising in the analysis and the numerical solution of convex minimization problems are **not** subdifferentials, for instance
 - (Rockafellar, 1970) The saddle operator

 $A: (x_1, x_2) \mapsto \partial \mathcal{L}(\cdot, x_2)(x_1) \times \partial (-\mathcal{L}(x_1, \cdot))(x_2)$

associated with a closed convex concave function $\ensuremath{\mathcal{L}}$

- (Spingarn, 1983) The partial inverse of a maximally monotone operator (and even of a subdifferential)
- Some operators which arise in the perturbation of optimization problems are no longer subdifferentials
- Skew linear operators arising in composite primal-dual minimization problems (PLC et al., 2011+)

・ 同 ト ・ ヨ ト ・ ヨ ト …

= 990

Periodic projection methods: inconsistent case

Basic feasibility problem: find a common point of nonempty closed convex sets $(C_i)_{1 \le i \le m}$ by the method of periodic projections $x_{mn+1} = \text{proj}_1 \cdots \text{proj}_m x_{mn}$

■ If the sets turn out not to intersect, the method produces a cycle (y
₁, y
₂, y
₃)

Periodic projection methods: inconsistent case

Denote by $cyc(C_1, \ldots, C_m)$ is the set of cycles of (C_1, \ldots, C_m) , i.e.,

$$cyc(C_1, \ldots, C_m) = \{ (\overline{y}_1, \ldots, \overline{y}_m) \in \mathcal{H}^m \mid \overline{y}_1 = proj_1 \overline{y}_2, \ldots, \\ \overline{y}_{m-1} = proj_{m-1} \overline{y}_m, \ \overline{y}_m = proj_m \overline{y}_1 \}.$$

Question (Gurin-Polyak-Raik, 1967): Let $m \ge 3$ be an integer. Does there exist a function $\Phi: \mathcal{H}^m \to \mathbb{R}$ such that, for every ordered family of nonempty closed convex subsets (C_1, \ldots, C_m) of \mathcal{H} , $cyc(C_1, \ldots, C_m)$ is the set of solutions to

$$\underset{y_1 \in C_1, \dots, y_m \in C_m}{\text{minimize}} \Phi(y_1, \dots, y_m)?$$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ① < ○

Cyclic projection methods

■ Theorem (Baillon/PLC/Cominetti, 2012): Suppose that dim $\mathcal{H} \ge$ 2 and let $\mathbb{N} \ni m \ge 3$. There exists **no** function $\Phi: \mathcal{H}^m \to \mathbb{R}$ such that, for every ordered family of nonempty closed convex subsets (C_1, \ldots, C_m) of \mathcal{H} , $cyc(C_1, \ldots, C_m)$ is the set of solutions to the variational problem

$$\min_{y_1 \in C_1, \dots, y_m \in C_m} \Phi(y_1, \dots, y_m).$$

ゆ くち くち ううくう

Cyclic projection methods

■ Theorem (Baillon/PLC/Cominetti, 2012): Suppose that dim $\mathcal{H} \ge$ 2 and let $\mathbb{N} \ni m \ge 3$. There exists **no** function $\Phi: \mathcal{H}^m \to \mathbb{R}$ such that, for every ordered family of nonempty closed convex subsets (C_1, \ldots, C_m) of \mathcal{H} , $cyc(C_1, \ldots, C_m)$ is the set of solutions to the variational problem

$$\underset{y_1 \in C_1, \dots, y_m \in C_m}{\text{minimize}} \Phi(y_1, \dots, y_m).$$

However, cycles do have a meaning: if we denote by L the circular left shift, they solve the inclusion

$$(0,\ldots,0) \in \underbrace{N_{C_1 \times \cdots \times C_m}}_{\text{subdifferential}}(y_1,\ldots,y_m) + \underbrace{(\text{Id}-L)}_{\text{not a subdifferential}}(y_1,\ldots,y_m),$$

which involves two maximally monotone operators

The need for monotone operators in optimization

- They offer a synthetic framework to formulate, analyze, and solve optimization problems but, more importantly,...
- ... some key maximal monotone operators arising in the analysis and the numerical solution of convex minimization problems are **not** subdifferentials, for instance
 - (Rockafellar, 1970) The saddle operator

 $A: (x_1, x_2) \mapsto \partial \mathcal{L}(\cdot, x_2)(x_1) \times \partial (-\mathcal{L}(x_1, \cdot))(x_2)$

associated with a closed convex concave function $\ensuremath{\mathcal{L}}$

- (Spingarn, 1983) The partial inverse of a maximally monotone operator (and even of a subdifferential)
- Some operators which arise in the perturbation of optimization problems are no longer subdifferentials
- Skew linear operators arising in composite primal-dual minimization problems (PLC et al., 2011+)

= 990

Splitting structured problems: 3 basic methods

- A, B: $\mathcal{H} \to 2^{\mathcal{H}}$ maximally monotone, solve $0 \in A\overline{x} + B\overline{x}$.
 - Douglas-Rachford splitting (1979)

$$y_n = J_{\gamma B} x_n$$

$$z_n = J_{\gamma A} (2y_n - x_n)$$

$$x_{n+1} = x_n + z_n - y_n$$

■ $B: \mathcal{H} \rightarrow \mathcal{H} \ 1/\beta$ -cocoercive: forward-backward splitting (1979+)

 $\begin{bmatrix} 0 < \gamma_n < 2/\beta \\ y_n = x_n - \gamma_n B x_n \\ x_{n+1} = J_{\gamma_n A} y_n \end{bmatrix}$

■ $B: \mathcal{H} \rightarrow \mathcal{H} \mu$ -Lipschitzian: forward-backward-forward splitting (2000)

$$0 < \gamma_n < 1/\mu$$

$$y_n = x_n - \gamma_n B x_n$$

$$z_n = J_{\gamma_n A} y_n$$

$$r_n = z_n - \gamma_n B z_n$$

$$x_{n+1} = x_n - y_n + r_n$$

Splitting structured problems: 3 basic methods

- A large number of minimization methods are special cases of these monotone operator splitting methods in a suitable setting that may involve
 - product spaces
 - dual spaces
 - primal-dual spaces
 - renormed spaces
 - or a combination thereof
- The simplifying reformulations typically involve monotone operators which are **not** subdifferentials. For instance, the primal-dual minimization of $f + g \circ L$ leads to the monotone+skew model (Briceño-Arias/PLC, 2011)

$$\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \in \begin{bmatrix} \partial f & \mathbf{0} \\ \mathbf{0} & \partial g^* \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{x}^* \end{bmatrix} + \begin{bmatrix} \mathbf{0} & L^* \\ -L & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{x}^* \end{bmatrix}$$

= 900

・ 同) ・ ヨ) ・ ヨ) …

Proximal splitting methods in convex optimization

■ $f \in \Gamma_0(\mathcal{H})$, $\varphi_k \in \Gamma_0(\mathcal{G}_k)$, $\ell_k \in \Gamma_0(\mathcal{G}_k)$ strongly convex, $L_k : \mathcal{H} \to \mathcal{G}_k$ linear bounded, $||L_k|| = 1$, $h : \mathcal{H} \to \mathbb{R}$ convex and smooth:

minimize
$$f(x) + \sum_{k=1}^{p} (\varphi_k \Box \ell_k) (L_k x - r_k) + h(x)$$

 A splitting algorithm activates each function and each linear operator individually

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ● ●

Proximal splitting methods in convex optimization

•
$$A = \partial f$$
, $C = \nabla h$, $B_k = \partial g_k$, and $D_k = \partial \ell_k$

$$\bullet \mathcal{K} = \mathcal{H} \oplus \mathcal{G}_1 \oplus \cdots \oplus \mathcal{G}_p$$

- Subdifferential: $\boldsymbol{M} : \boldsymbol{\mathcal{K}} \to 2^{\boldsymbol{\mathcal{K}}} : (\boldsymbol{x}, v_1, \dots, v_p) \mapsto (-z + A\boldsymbol{x}) \times (r_1 + B_1^{-1}v_1) \times \cdots \times (r_p + B_p^{-1}v_p)$
- Not a subdifferential: $\mathbf{Q} : \mathcal{K} \to \mathcal{K} : (x, v_1, \dots, v_p) \mapsto (Cx + \sum_{k=1}^{p} L_k^* v_k, -L_1 x + D_1^{-1} v_1, \dots, -L_p x + D_p^{-1} v_p)$
- M and Q are maximally monotone, Q is Lipschitzian, the zeros of M + Q are primal-dual solutions
- Solve $\mathbf{0} \in \mathbf{M}\mathbf{x} + \mathbf{Q}\mathbf{x}$, where $\mathbf{x} = (x, v_1, \dots, v_p)$ via Tseng's forward-backward-forward splitting algorithm

in ${\cal K}$ to get...

э.

Proximal splitting methods in convex optimization

Algorithm: for n = 0, 1, ... $y_{1,n} = x_n - (\nabla h(x_n) + \sum_{k=1}^m L_k^* v_{k,n})$ $p_{1,n} = \operatorname{prox}_t y_{1,n}$ For k = 1, ..., p $y_{2,k,n} = v_{k,n} + (L_k x_n - \nabla \ell_k^* (v_{k,n}))$ $p_{2,k,n} = \operatorname{prox}_{g_k^*} (y_{2,k,n} - r_k)$ $q_{2,k,n} = p_{2,k,n} + (L_k p_{1,n} - \nabla \ell_k^* (p_{2,k,n}))$ $v_{k,n+1} = v_{k,n} - y_{2,k,n} + q_{2,k,n}$ $q_{1,n} = p_{1,n} - (\nabla h(p_{1,n}) + \sum_{k=1}^m L_k^* p_{2,k,n})$ $x_{n+1} = x_n - y_{1,n} + q_{1,n}$

■ $(x_n)_{n \in \mathbb{N}}$ converges weakly to a solution and $((v_{k,n})_{1 \leq k \leq p})_{n \in \mathbb{N}}$ converges weakly to a solution and to a dual solution (PLC/Pesquet, 2012; PLC, 2013)

🗇 🕨 🖉 🖻 🖌 🖉 🗖 👘

э.

Some limitations of the state-of-the-art

We present a new framework that circumvents simultaneously the limitations of current methods, which require:

- inversions of linear operators or knowledge of bounds on norms of all the L_{ki}
- the proximal parameters must be the same for all the subdifferential operators
- activation of the proximal operators of all the functions: impossible in huge-scale problems
- synchronicity: all proximity operator evaluations must be computed and used during the current iteration

and, in general,

converge only weakly

◆□ → ◆ 三 → ◆ 三 → ○ ○ ○

Composite convex optimization problem

Let F be the set of solutions to the problem

$$\underset{x_i \in \mathcal{H}_i, i \in I}{\text{minimize}} \quad \sum_{i \in I} \left(f_i(x_i) - \langle x_i \mid z_i^* \rangle \right) + \sum_{k \in K} g_k \left(\sum_{i \in I} L_{ki} x_i - r_k \right)$$

where $f_i \in \Gamma_0(\mathcal{H}_i)$, $g_k \in \Gamma_0(\mathcal{G}_k)$, $L_{ki} \in \mathscr{B}(\mathcal{H}_i, \mathcal{G}_k)$

Let F* be the set of solutions to the dual problem

$$\underset{v_k^* \in \mathcal{G}_k, \, k \in K}{\text{minimize}} \quad \sum_{i \in I} f_i^* \left(z_i^* - \sum_{k \in K} L_{ki}^* v_k^* \right) + \sum_{k \in K} \left(g_k^* (v_k^*) + \langle v_k^* \mid r_k \rangle \right)$$

 Associated Kuhn-Tucker set (set of zeros a maximally monotone operator which is **not** a subdifferential)

$$\mathbf{Z} = \left\{ \left((\overline{x}_i)_{i \in I}, (\overline{v}_k^*)_{k \in K} \right) \mid \overline{x}_i \in \mathcal{H}_i \text{ and } z_i^* - \sum_{k \in K} L_{ki}^* \overline{v}_k^* \in \partial f_i(\overline{x}_i), \\ \overline{v}_k^* \in \mathcal{G}_k \text{ and } \sum_{i \in I} L_{ki} \overline{x}_i - r_k \in \partial g_k^*(\overline{v}_k^*) \right\}$$

Underlying geometry: The Kuhn-Tucker set

æ.

< E

Underlying geometry: The Kuhn-Tucker set

Choose suitable points in the graphs of $(\partial f_i)_{i \in I}$ and $(\partial g_k)_{k \in K}$ to construct a half-space \mathbf{H}_n containing \mathbf{Z}

Algorithm: $(\boldsymbol{x}_{n+1}, \boldsymbol{v}_{n+1}^*) = P_{H_n}(\boldsymbol{x}_n, \boldsymbol{v}_n^*) \rightharpoonup (\boldsymbol{x}, \boldsymbol{v}^*) \in \mathbf{Z} \subset \mathbf{F} \times \mathbf{F}^*$

Asynchronous block-iterative proximal splitting (PLC/Eckstein, 2018)

for
$$n = 0, 1, ...$$

for every $i \in I_n$
 $\begin{bmatrix} I_{i,n}^* = \sum_{k \in K} L_{ki}^* v_{k,c_i(n)}^* \\ (a_{i,n}, a_{i,n}^*) = (\text{prox}_{\gamma_{i,c_i(n)}} f_i(x_{i,c_i(n)} + \gamma_{i,c_i(n)}(z_i - l_{i,n}^*)), \gamma_{i,c_i(n)}^{-1}(x_{i,c_i(n)} - a_{i,n}) - l_{i,n}^*) \\ \text{for every } i \in I \setminus I_n \\ [(a_{i,n}, a_{i,n}^*) = (a_{i,n-1}, a_{i,n-1}^*)] \\ \text{for every } k \in K_n \\ [(b_{k,n}, b_{k,n}^*) = (f_k + \text{prox}_{k,a_k(n)}g_k(l_{k,n} + \mu_{k,d_k(n)}v_{k,d_k(n)}^* - f_k), v_{k,d_k(n)}^* + \mu_{k,d_k(n)}(l_{k,n} - b_{k,n})) \\ \text{for every } k \in K \setminus K_n \\ [(b_{k,n}, b_{k,n}^*) = (b_{k,n-1}, b_{k,n-1}^*)] \\ ((t_{i,n}^*)_{i\in I}, (t_{k,n})_{k \in K}) = ((a_{i,n}^* + \sum_{k \in K} L_{ki}^* b_{k,n}^*)_{i\in I}, (b_{k,n} - \sum_{i \in I} L_{ki}a_{i,n})_{k \in K}) \\ \tau_n = \sum_{i \in I} \|t_{i,n}^*\|^2 + \sum_{k \in K} \|t_{k,n}\|^2 \\ \text{if } \tau_n > 0 \\ [(b_{n,n} = \frac{\lambda_n}{\tau_n} \max\left\{0, \sum_{i \in I} (\langle x_{i,n} + t_{i,n}^* \rangle - \langle a_{i,n} + a_{i,n}^* \rangle) + \sum_{k \in K} (\langle t_{k,n} + v_{k,n}^* \rangle - \langle b_{k,n} + b_{k,n}^* \rangle) \right\} \\ \text{else } \theta_n = 0 \\ \text{for every } i \in I \\ [x_{i,n+1} = x_{i,n} - \theta_n t_{i,n}^* \\ \text{for every } k \in K \\ [v_{k,n+1}^* = v_{k,n}^* - \theta_n t_{k,n}^*] \end{cases}$

Asynchronous block-iterative proximal splitting II

- The half-space D_n satisfies $(\boldsymbol{x}_n, \boldsymbol{v}_n^*) = P_{D_n}(\boldsymbol{x}_0, \boldsymbol{v}_0^*)$
- Algorithm: $(\boldsymbol{x}_{n+1}, \boldsymbol{v}_{n+1}^*) = P_{\boldsymbol{H}_n \cap \boldsymbol{D}_n}(\boldsymbol{x}_0, \boldsymbol{v}_0^*) \rightarrow P_{\boldsymbol{Z}}(\boldsymbol{x}_0, \boldsymbol{v}_0^*) \in \boldsymbol{F} \times \boldsymbol{F}^*$

- Just like in the early 1960s the frontier separating linear from noninear problems was not a useful one, the current dichotomy between the class of convex/monotone problems and its complement ("everything else") is not pertinent.
- One must define a structured extension of the remarkably efficient convexity/nonexpansiveness/monotonicity trio that would ideally enjoy similar rich connections. This is an extrememely challenging task.

伺 と く ヨ と く ヨ と

э

References

- PLC, Monotone operator theory in convex optimization, Math. Program., vol. B170, 2018.
- H. H. Bauschke and PLC, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed. Springer, New York, 2017.
- PLC and J. Eckstein, Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions, *Math. Program.*, vol. B168, 2018.
- PLC and L. E. Glaudin, Proximal activation of smooth functions in splitting algorithms for convex image recovery, arxiv, 2018.
- L. M. Briceño-Arias and PLC, A monotone+skew splitting model for composite monotone inclusions in duality, SIAM J. Optim., vol. 21, 2011.
- Chierchia, Chouzenoux, PLC, Pesquet, Proximity Operator Repository, http://proximity-operator.net/

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ① < ○