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Introduction Monotone Prox Splitting

Functional analysis: Linear versus nonlinear

Linear functional analysis

• Topological vector spaces

• Linear operators

• Duality

• Theory of distributions

• etc.

1950’s

Nonlinear functional analysis
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Introduction Monotone Prox Splitting

Functional analysis: Linear versus nonlinear

Linear functional analysis

• Topological vector spaces

• Linear operators

• Duality

• Theory of distributions

• etc.

1950’s

Nonlinear functional analysis → outgrowths of linear analysis

Early 1960’s

Monotone operators

Convex analysis

Nonexpansive operators

These new structured theories, which often revolve around turn-
ing equalities in classical linear analysis into inequalities, benefit
from tight connections between each other.
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Convex analysis (Moreau, Rockafellar, 1962+)

Γ0(H): lower semicontinuous convex functions f : H →
]−∞,+∞] such that dom f =

{
x ∈ H | f (x) < +∞

}
6= Ø

f ∗ : x∗ 7→ supx∈H 〈x | x∗〉 − f (x) is the conjugate of f ; if f ∈
Γ0(H), then f ∗ ∈ Γ0(H) and f ∗∗ = f

The subdifferential of f at x ∈ H is

∂f (x) =
{

x∗ ∈ H | (∀y ∈ H) 〈y − x | x∗〉+ f (x)
︸ ︷︷ ︸

fx,x∗ (y)

6 f (y)
}

gra f

epi f

gra fx,x∗gra fx,x∗

gra 〈· | x∗〉

x

f (x)

R

H

f ∗(x∗)

Infimal operations:
(f �g) : x 7→ infy∈H f (y) + g(x − y)
(L ⊲ g) : x 7→ infLy=x g(y)

Fermat’s rule:
x minimizes f ⇔ 0 ∈ ∂f (x)
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Nonexpansive operators (Browder, Minty)

T ∈ B(H) is an isometry if (∀x ∈ H) ‖Tx‖ = ‖x‖, i.e.,

(∀x ∈ H)(∀y ∈ H) ‖Tx − Ty‖ = ‖x − y‖.

T : H → H is nonexpansive if

(∀x ∈ H)(∀y ∈ H) ‖Tx − Ty‖ 6 ‖x − y‖,

firmly nonexpansive if

(∀x ∈ H)(∀y ∈ H) ‖Tx−Ty‖2+‖(Id−T )x−(Id−T )y‖2 6 ‖x−y‖2.

and α-averaged (α ∈ ]0, 1[), if

(∀x ∈ H)(∀y ∈ H) ‖Tx−Ty‖2+
1 − α

α
‖(Id−T )x−(Id−T )y‖2 6 ‖x−y‖2
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Monotone operators (Kačurovskĭı, Minty,

Zarantonello, 1960)

A ∈ B(H) is skew if (∀x ∈ H) 〈x | Ax〉 = 0 and it is positive if
(∀x ∈ H) 〈x | Ax〉 > 0, i.e.,

(∀x ∈ H)(∀y ∈ H) 〈x − y | Ax − Ay〉 > 0. (1)

In 1960, Kačurovskĭı, Minty, and Zarantonello independently
called monotone a nonlinear operator A : H → H that satis-
fies (1)

More generally, a set-valued operator A : H → 2H with
graph gra A =

{
(x , x∗) ∈ H×H | x∗ ∈ Ax

}
is monotone if

(∀(x , x∗) ∈ gra A)(∀(y, y∗) ∈ gra A) 〈x − y | x∗ − y∗〉 > 0,

and maximally monotone if there is no monotone operator
B : H → 2H such that gra A ⊂ gra B 6= gra A
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Convexity/Nonexpansiveness/Monotonicity
If f ∈ Γ0(H), A = ∂f is maximally monotone

(Minty) If T : H → H is firmly nonexpansive, then T = JA for some
maximally monotone A : H → 2H and Fix T = zer A

(Minty) If A : H → 2H is maximally monotone, the resolvent JA =
(Id + A)−1 is firmly nonexpansive with dom JA = H, and the re-
flected resolvent RA = 2JA − Id is nonexpansive

If T : H → H is nonexpansive, A = Id − T is max. mon., Fix T =
{

x ∈ H | Tx = x
}

is closed and convex, and Fix T = zer A

If A : H → 2H is max. mon., (∀x ∈ H) Ax is closed and convex;
zer A = A−1(0) is closed and convex

If A : H → 2H is maximally monotone, int dom A, dom A, int ran A,
and ran A are convex

If T : H → H is an α-averaged (α 6 1/2) nonexpansive operator, it
is maximally monotone

If A = βB is firmly nonexpansive (hence max. mon.), 0 < γ < 2β,
and α = γ/(2β), then Id − γB is an α-averaged nonexpansive op-
erator
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What is a maximally monotone operator in

general?

Who knows? ...certainly a complicated object

The Asplund decomposition

A = ∂f + something (acyclic)

is not fully understood

If H = R, something = 0

In the Borwein-Wiersma decomposition, “something” is the
restriction of a skew operator

Jon Borwein’s conjecture was that in general “something” is
locally the restriction (localization) of a skew linear relation
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Moreau’s proximity operator

In 1962, Jean Jacques Moreau (1923–2014) introduced the
proximity operator of f ∈ Γ0(H)

proxf : x 7→ argmin
y∈H

f (y) +
1

2
‖x − y‖2

and derived all its main properties

Set q = ‖ · ‖2/2. Then f �q + f ∗�q = q and

proxf = ∇(f + q)∗ = ∇(f ∗ �q) = Id − proxf∗ = (Id + ∂f )−1

proxf = J∂f , hence

Fix proxf = zer ∂f = Argmin f
(proxf x , x − proxf x) ∈ gra ∂f
‖proxf x − proxf y‖

2 + ‖proxf∗x − proxf∗y‖2 6 ‖x − y‖2

This suggests that (Martinet’s proximal point algorithm,
1970/72) xn+1 = proxf xn ⇀ x ∈ Argmin f

Patrick L. Combettes Subdifferentials and Monotone Operators 8/35



Introduction Monotone Prox Splitting

Subdifferentials as maximally monotone ops. and

proximity operators as firmly nonexpansive ops.

Rockafellar (1966) has fully characterized subdifferentials as
those maximally monotone operators which are cyclically
maximally monotone

Moreau (1965) has fully characterized proximity operators
as those (firmly) nonexpansive operators which are gradi-
ents of convex functions

Moreau (1963) showed that a convex average of proximity
operator is again a proximity operator

Not all firm nonexpansiveness preserving operations are
proximity preserving

Set






P(H) =
{

T : H → H | (∃ f ∈ Γ0(H)) T = proxf

}

A� B = (A−1 + B−1)−1

L ⊲ A =
(
L ◦ A−1 ◦ L∗)−1
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Proximity-preserving transformations

Let I be finite and put q = ‖·‖2
H/2. For every i ∈ I, let ωi ∈ ]0,+∞[,

put qi = ‖ · ‖2
Gi
/2, let Li ∈ B(H,Gi) r {0}, let Mi ∈ B(Ki ,Gi) r {0},

let fi ∈ Γ0(Gi), let gi ∈ Γ0(Gi), and let hi ∈ Γ0(Ki). Suppose that
∑

i∈I ωi‖Li‖
2 6 1 and that,

(∀i ∈ I)

{

0 ∈ sri
(
dom h∗

i − M∗
i (dom fi ∩ dom g∗

i )
)

0 ∈ sri (dom fi − dom g∗
i ).

Set
T =

∑

i∈I

ωiL
∗
i ◦
(

proxfi
�
(
∂gi � (Mi ⊲ ∂hi)

))

◦ Li .

Then T ∈ P(H). More specifically,

T = proxf , where f =

(
∑

i∈I

ωi

((
fi+g∗

i +h∗
i ◦M∗

i

)∗
�qi

)

◦Li

)∗

−q.
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Proximity-preserving transformations:

Consequences

(Ti)i∈I be a finite family in P(H), (ωi)i∈I convex weights. Then
∑

i∈I ωiTi ∈ P(H) (Moreau, 1963).

Auslender’s barycentric projection method

xn+1 =
∑

i∈I

ωiprojCi
xn

(and under-relaxations thereof) is a proximal algorithm.

Let T1 and T2 be in P(H). Then (T1 − T2 + Id)/2 ∈ P(H).

Let T ∈ P(H) and let V be a closed vector subspace of H.
Then projV ◦ T ◦ projV ∈ P(H).

Let T1 and T2 be in P(H). Then T1 � T2 ∈ P(H).
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Proximity-preserving transformations:

Consequences

K a closed convex cone in H with polar cone K⊖, V a
closed vector subspace of H,

Set

f =

(
1

2
d2

K⊖ ◦ projV

)∗

−
‖ · ‖2

2
and T = projV ◦ projK ◦ projV .

Then T = proxf .

Let x0 ∈ V and (∀n ∈ N) xn+1 = proxf xn.

(xn)n∈N is identical to the alternating projection sequence
xn+1 = (projV ◦ projK )xn.

Hundal (2004) constructed a special V and K so that con-
vergence of alternating projections is only weak and not
strong. We thus obtain a new instance of the weak but not
strong convergence of the proximal point algorithm.
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Proximity-preserving transformations:

Compositions and sums

Take T1 = proxf1
∈ P(H) and T2 = proxf2

∈ P(H). Then T1 ◦ T2 /∈
P(H) (unless H = R) and T1 + T2 /∈ P(H).

The formula T1 ◦ T2 = proxf1+f2
has been characterized. An

interesting instance is (Briceño-Arias/PLC, 2009)

proxφ◦‖·‖+σC
= proxφ◦‖·‖ ◦ proxσC

: x 7→






proxφdC(x)

dC(x)

(
x − projCx

)
, if dC(x) > max Argminφ;

x − projCx , if dC(x) 6 max Argminφ

Example: K a closed convex cone, φ = γ| · |. Then

proxγ‖·‖+ιK
x =







‖projK x‖ − γ

‖projK x‖
projK x , if ‖projK x‖ > γ;

0, if ‖projK x‖ 6 γ.
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Proximity-preserving transformations:

Compositions and sums

Example: K a closed convex cone, φ = ι[−γ,γ]. Then

projB(0;γ)∩K x =







γ

‖projK x‖
projK x , if ‖projK x‖ > γ;

projK x , if ‖projK x‖ 6 γ.

Suppose that 0 ∈ sri (dom f ∗1 − dom f ∗2 ) and that

(f ∗1 + f ∗2 )�q = f ∗1 �q + f ∗2 �q.

Then T1 + T2 = proxf1 � f2
∈ P(H).
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Self-dual classes: T ∈ T(H) ⇔ Id − T ∈ T(H)

JA

Jparamono.

J3*

proxf

projK

projV
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The need for monotone operators in optimization

They offer a synthetic framework to formulate, analyze, and
solve optimization problems but, more importantly,...
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Introduction Monotone Prox Splitting

The need for monotone operators in optimization

They offer a synthetic framework to formulate, analyze, and
solve optimization problems but, more importantly,...

... some key maximal monotone operators arising in the
analysis and the numerical solution of convex minimization
problems are not subdifferentials, for instance:

(Rockafellar, 1970) The saddle operator

A : (x1, x2) 7→ ∂L(·, x2)(x1)× ∂(−L(x1, ·))(x2)

associated with a closed convex-concave function L
(Spingarn, 1983) The partial inverse of a maximally
monotone operator (and even of a subdifferential)
Some operators which arise in the perturbation of opti-
mization problems are no longer subdifferentials
Skew linear operators arising in composite primal-dual
minimization problems (PLC et al., 2011+)
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Interplay: The proximal point algorithm

First derived by Martinet (1970/72) for f ∈ Γ0(H) with con-
stant proximal parameters, and then by Brézis-Lions (1978)

xn+1 = proxγnf xn ⇀ x ∈ Argmin f if
∑

n∈N

γn = +∞ (2)

Then extended to a maximally monotone operator A by
Rockafellar (1976) and Brézis-Lions (1978)

xn+1 = JγnAxn ⇀ x ∈ zer A if
∑

n∈N

γ2
n = +∞ (3)

Note that (2) has more general parameters. However (3) is
considerably more useful to optimization than (2)
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Interplay: The proximal point algorithm

(Rockafellar, 1976) Applying the general proximal point al-
gorithm (3) to the saddle operator leads to various mini-
mization algorithms (e.g., the proximal method of multipliers
in the case of the ordinary Lagrangian)

It was noted by Eckstein/Bersekas (1992) that the Douglas-
Rachford splitting algorithm is implicitly driven by a proximal
iteration for a maximally monotone operator. The same is
true for the forward-backward algorithm!

Applying the general proximal point algorithm (3) to the
partial inverse of a suitably constructed partial inverse
makes it possible to solve the convex composite problem
(Alghamdi, Alotaibi, PLC, Shahzad, 2014)

minimize
(∀i∈I) xi∈Hi

∑

i∈I

(
fi(xi)− 〈xi | zi〉

)
+ g

(
∑

i∈I

Lixi − r

)

Patrick L. Combettes Subdifferentials and Monotone Operators 18/35



Introduction Monotone Prox Splitting

The need for monotone operators in optimization

They offer a synthetic framework to formulate, analyze, and
solve optimization problems but, more importantly,...

... some key maximal monotone operators arising in the
analysis and the numerical solution of convex minimization
problems are not subdifferentials, for instance

(Rockafellar, 1970) The saddle operator

A : (x1, x2) 7→ ∂L(·, x2)(x1)× ∂(−L(x1, ·))(x2)

associated with a closed convex concave function L
(Spingarn, 1983) The partial inverse of a maximally
monotone operator (and even of a subdifferential)
Some operators which arise in the perturbation of opti-
mization problems are no longer subdifferentials
Skew linear operators arising in composite primal-dual
minimization problems (PLC et al., 2011+)
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Periodic projection methods: inconsistent case

b

C2

C3

C1

x0

x2

x1

x3

x4

x5

y2

y3

y1

b

b

b

Basic feasibility problem: find a common point of nonempty
closed convex sets (Ci)16i6m by the method of periodic pro-
jections xmn+1 = proj1 · · ·projmxmn

If the sets turn out not to intersect, the method produces a
cycle (y1, y2, y3)
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Periodic projection methods: inconsistent case

Denote by cyc(C1, . . . ,Cm) is the set of cycles of (C1, . . . ,Cm),
i.e.,

cyc(C1, . . . ,Cm) =
{
(y1, . . . , ym) ∈ Hm

∣
∣ y1 = proj1y2, . . . ,

ym−1 = projm−1ym, ym = projmy1

}
.

Question (Gurin-Polyak-Raik, 1967): Let m > 3 be an inte-
ger. Does there exist a function Φ: Hm → R such that, for
every ordered family of nonempty closed convex subsets
(C1, . . . ,Cm) of H, cyc(C1, . . . ,Cm) is the set of solutions to

minimize
y1∈C1,..., ym∈Cm

Φ(y1, . . . , ym) ?
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Cyclic projection methods

Theorem (Baillon/PLC/Cominetti, 2012): Suppose that dimH >

2 and let N ∋ m > 3. There exists no function Φ: Hm → R

such that, for every ordered family of nonempty closed
convex subsets (C1, . . . ,Cm) of H, cyc(C1, . . . ,Cm) is the set
of solutions to the variational problem

minimize
y1∈C1,..., ym∈Cm

Φ(y1, . . . , ym).
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Cyclic projection methods

Theorem (Baillon/PLC/Cominetti, 2012): Suppose that dimH >

2 and let N ∋ m > 3. There exists no function Φ: Hm → R

such that, for every ordered family of nonempty closed
convex subsets (C1, . . . ,Cm) of H, cyc(C1, . . . ,Cm) is the set
of solutions to the variational problem

minimize
y1∈C1,..., ym∈Cm

Φ(y1, . . . , ym).

However, cycles do have a meaning: if we denote by L the
circular left shift, they solve the inclusion

(0, . . . , 0) ∈ NC1×···×Cm
︸ ︷︷ ︸

subdifferential

(y1, . . . , ym)+ (Id − L)
︸ ︷︷ ︸

not a subdifferential

(y1, . . . , ym),

which involves two maximally monotone operators
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The need for monotone operators in optimization

They offer a synthetic framework to formulate, analyze, and
solve optimization problems but, more importantly,...

... some key maximal monotone operators arising in the
analysis and the numerical solution of convex minimization
problems are not subdifferentials, for instance

(Rockafellar, 1970) The saddle operator

A : (x1, x2) 7→ ∂L(·, x2)(x1)× ∂(−L(x1, ·))(x2)

associated with a closed convex concave function L
(Spingarn, 1983) The partial inverse of a maximally
monotone operator (and even of a subdifferential)
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Skew linear operators arising in composite primal-dual
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Splitting structured problems: 3 basic methods
A, B : H → 2H maximally monotone, solve 0 ∈ Ax + Bx .

Douglas-Rachford splitting (1979)








yn = JγBxn

zn = JγA(2yn − xn)
xn+1 = xn + zn − yn

B :H→H 1/β-cocoercive: forward-backward splitting (1979+)









0 < γn < 2/β
yn = xn − γnBxn

xn+1 = JγnAyn

B :H→H µ-Lipschitzian: forward-backward-forward splitting (2000)
















0 < γn < 1/µ
yn = xn − γnBxn

zn = JγnAyn

rn = zn − γnBzn

xn+1 = xn − yn + rn
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Splitting structured problems: 3 basic methods

A large number of minimization methods are special cases
of these monotone operator splitting methods in a suitable
setting that may involve

product spaces
dual spaces
primal-dual spaces
renormed spaces
or a combination thereof

The simplifying reformulations typically involve monotone
operators which are not subdifferentials. For instance, the
primal-dual minimization of f + g ◦ L leads to the mono-
tone+skew model (Briceño-Arias/PLC, 2011)

[
0
0

]

∈

[
∂f 0
0 ∂g∗

] [
x
x∗

]

+

[
0 L∗

−L 0

] [
x
x∗

]
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Proximal splitting methods in convex optimization

f ∈ Γ0(H), ϕk ∈ Γ0(Gk ), ℓk ∈ Γ0(Gk ) strongly convex, Lk : H →
Gk linear bounded, ‖Lk‖ = 1, h : H → R convex and smooth:

minimize
x∈H

f (x) +

p
∑

k=1

(ϕk � ℓk)(Lk x − rk ) + h(x)

A splitting algorithm activates each function and each lin-
ear operator individually
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Proximal splitting methods in convex optimization

A = ∂f , C = ∇h, Bk = ∂gk , and Dk = ∂ℓk

K = H⊕ G1 ⊕ · · · ⊕ Gp

Subdifferential: M : K → 2K : (x , v1, . . . , vp) 7→

(−z+Ax)× (r1+B−1
1 v1)× · · · × (rp+B−1

p vp)

Not a subdifferential: Q : K → K : (x , v1, . . . , vp) 7→
(
Cx +

∑p
k=1L∗k vk ,−L1x+D−1

1 v1, . . . ,−Lpx+D−1
p vp

)

M and Q are maximally monotone, Q is Lipschitzian, the ze-
ros of M + Q are primal-dual solutions

Solve 0 ∈ Mx + Qx, where x = (x , v1, . . . , vp) via Tseng’s
forward-backward-forward splitting algorithm








yn = xn − Qxn

pn = (Id + M)−1 yn

qn = pn − Qpn

xn+1 = xn − yn + qn
in K to get...
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Proximal splitting methods in convex optimization

Algorithm:
for n = 0, 1, . . .
































y1,n = xn −
(

∇h(xn) +
∑m

k=1 L∗k vk,n

)

p1,n = proxf y1,n

For k = 1, . . . ,p












y2,k,n = vk,n + (Lkxn −∇ℓ∗k (vk,n))
p2,k,n = proxg∗

k
(y2,k,n − rk )

q2,k,n = p2,k,n + (Lkp1,n −∇ℓ∗k (p2,k,n))
vk,n+1 = vk,n − y2,k,n + q2,k,n

q1,n = p1,n −
(

∇h(p1,n) +
∑m

k=1 L∗k p2,k,n

)

xn+1 = xn − y1,n + q1,n

(xn)n∈N converges weakly to a solution and ((vk,n)16k6p)n∈N

converges weakly to a solution and to a dual solution
(PLC/Pesquet, 2012; PLC, 2013)
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Some limitations of the state-of-the-art

We present a new framework that circumvents simultaneously
the limitations of current methods, which require:

inversions of linear operators or knowledge of bounds on
norms of all the Lki

the proximal parameters must be the same for all the subd-
ifferential operators

activation of the proximal operators of all the functions: im-
possible in huge-scale problems

synchronicity: all proximity operator evaluations must be
computed and used during the current iteration

and, in general,

converge only weakly
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Composite convex optimization problem

Let F be the set of solutions to the problem

minimize
xi∈Hi , i∈I

∑

i∈I

(
fi(xi)− 〈xi | z∗i 〉

)
+
∑

k∈K

gk

(
∑

i∈I

Lkixi − rk

)

where fi ∈ Γ0(Hi), gk ∈ Γ0(Gk ), Lki ∈ B(Hi ,Gk )

Let F
∗ be the set of solutions to the dual problem

minimize
v∗

k ∈Gk , k∈K

∑

i∈I

f ∗i

(

z∗i −
∑

k∈K

L∗kiv
∗
k

)

+
∑

k∈K

(
g∗

k (v
∗
k ) + 〈v∗

k | rk〉
)

Associated Kuhn-Tucker set (set of zeros a maximally mono-
tone operator which is not a subdifferential)

Z =

{
(
(x i)i∈I , (v

∗
k)k∈K

)
∣
∣
∣
∣

x i ∈ Hi and z∗i −
∑

k∈K

L∗kiv
∗
k ∈ ∂fi(x i),

v
∗
k ∈ Gk and

∑

i∈I

Lkix i − rk ∈ ∂g∗
k (v

∗
k)

}
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Underlying geometry: The Kuhn-Tucker set

H1 ⊕ · · · ⊕ Hm

G1 ⊕ · · · ⊕ Gp

Z

F

F∗
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Underlying geometry: The Kuhn-Tucker set

H1 ⊕ · · · ⊕ Hm||
xnxn+1

Hn

v∗

n

v∗

n+1−

− •

G1 ⊕ · · · ⊕ Gp

Z

F

F∗

Choose suitable points in the graphs of (∂fi)i∈I and (∂gk)k∈K

to construct a half-space Hn containing Z

Algorithm: (xn+1, v
∗
n+1) = PHn

(xn, v
∗
n) ⇀ (x, v∗) ∈ Z ⊂ F × F∗
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Asynchronous block-iterative proximal splitting

(PLC/Eckstein, 2018)

for n = 0, 1, . . .






























































































for every i ∈ In








l∗i,n =
∑

k∈K L∗ki v
∗
k,ci (n)

(ai,n, a∗
i,n) =

(

prox
γi,ci (n)

fi

(

xi,ci (n)
+ γi,ci (n)

(zi − l∗i,n)
)

, γ
−1
i,ci (n)

(xi,ci (n)
− ai,n) − l∗i,n

)

for every i ∈ I r In
⌊

(ai,n, a∗
i,n) = (ai,n−1, a∗

i,n−1)

for every k ∈ Kn








lk,n =
∑

i∈I Lki xi,dk (n)

(bk,n, b∗
k,n) =

(

rk + prox
µk,dk (n)gk

(

lk,n + µk,dk (n)
v∗

k,dk (n)
− rk

)

, v∗
k,dk (n)

+ µ
−1
k,dk (n)

(lk,n − bk,n)
)

for every k ∈ K r Kn
⌊

(bk,n, b∗
k,n) = (bk,n−1, b∗

k,n−1)
(

(t∗i,n)i∈I , (tk,n)k∈K

)

=
(

(a∗
i,n +

∑

k∈K L∗ki b
∗
k,n)i∈I , (bk,n −

∑

i∈I Lki ai,n)k∈K

)

τn =
∑

i∈I ‖t∗i,n‖
2 +

∑

k∈K ‖tk,n‖
2

if τn > 0
∣

∣

∣

∣

∣

θn =
λn

τn

max

{

0,
∑

i∈I

(

〈xi,n | t
∗
i,n〉 − 〈ai,n | a

∗
i,n〉

)

+
∑

k∈K

(

〈tk,n | v
∗
k,n〉 − 〈bk,n | b

∗
k,n〉

)

}

else θn = 0
for every i ∈ I
⌊

xi,n+1 = xi,n − θnt∗i,n
for every k ∈ K
⌊

v∗
k,n+1 = v∗

k,n − θntk,n
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Asynchronous block-iterative proximal splitting II

H1 ⊕ · · · ⊕ Hm|||
x0xnxn+1

Dn

Hn

v∗

0

v∗

n

v∗

n+1

−

−
− •

G1 ⊕ · · · ⊕ Gp

Z

F

F∗

Construct Hn as before

The half-space Dn satisfies (xn, v
∗
n) = PDn

(x0, v
∗
0)

Algorithm: (xn+1, v
∗
n+1) = PHn∩Dn

(x0, v
∗
0)→ PZ (x0, v

∗
0) ∈ F × F∗
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Outlook

Just like in the early 1960s the frontier separating linear from
noninear problems was not a useful one, the current di-
chotomy between the class of convex/monotone problems
and its complement (“everything else”) is not pertinent.

One must define a structured extension of the remarkably
efficient convexity/nonexpansiveness/monotonicity trio that
would ideally enjoy similar rich connections. This is an ex-
trememely challenging task.
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