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A Lie algebroid (E, p,[,]) over M is
® a vector bundle E -+ M
® a bundle map E — TM, called the anchor map or the anchor
® a Lie bracket [,-]: AT'(E) — ['(E) on the space of sections,
such that the following compatibility conditions hold
1. the Leibniz rule [s, fs'] = ps(f)s’ + f[s, s']
2. the morphism property pjs 1 = [ps, ps']
for all f € F(M), s,s’ € [(E).
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- an action Lie algebroid, uniquely determined for a Lie algebra
g and a g—space M as follows:
e fF=gx M
® for any s € g, viewed as a section of E, ps € [(TM) is the
associated infinitesimal generator of the g—action
® the bracket of 5,5’ € g, regarded as sections of E, coincides
with the corresponding bracket in g.
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- the standard Lie algebroid E = TM with p = Id 1y

- a Lie algebra, regarded as a vector bundle over a point

- an action Lie algebroid, uniquely determined for a Lie algebra
g and a g—space M as follows:
e fF=gx M
® for any s € g, viewed as a section of E, ps € [(TM) is the
associated infinitesimal generator of the g—action
® the bracket of 5,5’ € g, regarded as sections of E, coincides
with the corresponding bracket in g. The structure maps p and
[, -] are extended from g to all [(E) by linearity and by use of
the Leibniz rule, respectively.

- the Atiyah algebroid of a principal G—bundle p: P — M:
E = TP/G, the anchor and the Lie bracket are induced by dp
and the Lie bracket of vector fields on P, respectively
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JET LIE ALGEBROID

Let (E,p,[-,-]) be a Lie algebroid over M. Then JX(E) is a vector
bundle over M and it admits a canonical Lie algebroid structure:
the bracket in JX(E) is defined such that taking the Lie brackets
commutes with the prolongation of sections,

[S(k)a ka)] = [s, 5/](k)

for all sections s, s’ € T'(E), while the anchor is fixed by the
morphism property to obey ps,, = ps.

EXAMPLE

JY(TM) is isomorphic to the Atiyah algebroid of S*(M), the
GL-principal bundle of tangent frames.
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Let us identify a Lie algebroid (E, p,[,]) with the following
Q-manifold (E[1], Qg), F(E[1]) ~ (AE*), where

® (Qef,s) = psf for any f € F(M) = FO(E[1]), s € T(E)
® [ts,[QE; ts']] = t[s,s), for all 5,8 € T(E).

Here ¢s is the contraction with s, viewed as a degree -1 super
derivation of F(E[1])



JET LIE ALGEBROID AS A (Q-MANIFOLD
Let us identify a Lie algebroid (E, p,[,]) with the following
Q-manifold (E[1], Qg), F(E[1]) ~ (AE*), where
® (Qef,s) = psf for any f € F(M) = FO(E[1]), s € T(E)
® [ts,[QE; ts']] = t[s,s), for all 5,8 € T(E).

Here ¢s is the contraction with s, viewed as a degree -1 super
derivation of F(E[1])

Functions on E[1] can be regarded as F(M)—valued
F(M)—multilinear cochains on I'(E):

NT(E) — F(M)



JET LIE ALGEBROID AS A (Q-MANIFOLD

Let us identify a Lie algebroid (E, p,[,]) with the following
Q-manifold (E[1], Qg), F(E[1]) ~ (AE*), where
® (Qef,s) = psf for any f € F(M) = FO(E[1]), s € T(E)
® [ts,[QE; ts']] = t[s,s), for all 5,8 € T(E).

Here ¢s is the contraction with s, viewed as a degree -1 super
derivation of F(E[1])

Functions on E[1] can be regarded as F(M)—valued
F(M)—multilinear cochains on I'(E):

NT(E) — F(M)

The corresponding Chevalley-Eilenberg differential equals to Q.
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JK(E) corresponds to the k—jet prolongation of (E[1], Q), i.e.
o JH(E)[1] = J5(x) for m: E[1] = M, Qu(p) = QY
® The canonical extension of Q‘(EOO) to C[1], which we will denote
by the same letter, anti-commutes with d

® We have a bi-complex dj + Q,(:-OO), where the bi-grading is
given by the two "independent” degrees - the degree of
differential forms and the degree of functions on J*°(7).
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JK(E) corresponds to the k—jet prolongation of (E[1], Q), i.e.
o JH(E)[1] = J5(x) for m: E[1] = M, Qu(p) = QY

® The canonical extension of Q‘(EOO) to C[1], which we will denote
by the same letter, anti-commutes with d

® We have a bi-complex dj + Q,(:-OO), where the bi-grading is
given by the two "independent” degrees - the degree of
differential forms and the degree of functions on J*°(7).

® Functions of degree r on JX(E)[1] can be regarded as
r—multi-linear skew-symmetric differential operators on I'(E)
with values in F(M): for every degree / function h on J¥(r),
viewed as a section of A/ JX(7)*, the associated multi-linear
differential operator acts as follows:

F(E) 3 5S51,...5 — <h, (51)(k) VANPIRAN (S/)(k)>
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e Similarly, functions on C[1] can be canonically identified with
multi-linear skew-symmetric differential operators on I'(E)
with values in Q(M): given a function ¢ on C[1], regarded as
a section of A(T*M) @ A JK(7)*, the associated multi-linear
differential operator acts as follows:

M(E)>si,...s1— (o, (51)(/() VANRAN (S/)(k)> € Q(M)

® Let us combine it with the integration over M (provided it is
well-defined, eg. M is oriented, sections are compactly
supported). We obtain a differential /—cochain ¢, on I'(E) .



JET LIE ALGEBROID AS A (Q-MANIFOLD

Taking into account that the integral of a differential form w
depends only on its image in Q"(M)/dyQ"~1(M) and, moreover,
for all p and sp,...,s; as above one has

dm (e, (51)(k) VAN (S/)(k)> = (dpep, (51)(k) VANIVAN (S/)(k)>

we immediately conclude that:

® The differential cochains on I'(E), considered as a Lie algebra,
are determined by the top-degree cohomology of dj, i.e. the
first term of the spectral sequence, associated to the above
mentioned bi-complex;

® The Chevalley-Eilenberg cohomology of (I'(E),[,]) are
determined by the second term of the same spectral sequence.
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More general case: let Q" be a homological degree 1 vector field on
C[1] which anti-commutes with dj, i.e. dy + Q' is a degree 1
homological vector field again (Q’ is not necessarily vertical).

In particular, Q" can be the infinite jet prolongation of a
homological degree 1 vector field on E (cf. the jet Lie algebroid
example).

Let us split Q' into horizontal and vertical (evolutionary) parts

Q' =Q,+ Q.

Then

® Q. is also homological (and it also anti-commutes with dj as
it is evolutionary)

® there exists a canonical degree 0 vector field v, such that

Q;, = [dh,¢] and

exp 1 (dh + Q’) exp (=) = dp + Q.



BOTT SEQUENCE

Every vector bundle m: E — M gives rise to the short exact
sequence

0 —s D*(r,1) — D¥(m,1) ™% SK(TM) @ E* — 0

where D*(r, ') the bundle whose sections are linear differential
operators of order k acting from ['(7) to ['(x’), r is a trivial vector
bundle of rank r, and symb, is the symbol map which associates
to any differential operator of order k its principal symbol.
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Every vector bundle m: E — M gives rise to the short exact
sequence

0 —s D*(r,1) — D¥(m,1) ™% SK(TM) @ E* — 0

where D*(r, ') the bundle whose sections are linear differential
operators of order k acting from ['(7) to ['(x’), r is a trivial vector
bundle of rank r, and symb, is the symbol map which associates
to any differential operator of order k its principal symbol.

One has D¥(7,1) ~ JX(n)*, where JX(7) is the bundle of k—jets
of smooth sections of .



By dualizing of the above exact sequence, we obtain for all kK > 1
the short exact sequence of vector bundles, called the Bott
sequence (R. Bott, 1963)

0— SKT*MY® E — JKE) — JSYE) — 0



In particular, k = 1 gives us

0—TM®E — JYE)—E —0



In particular, k = 1 gives us

0—TM®E — JYE)—E —0

The embedding of T*M ® E into J(E) is determined for every
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In particular, k = 1 gives us

0—TM®E — JYE)—E —0

The embedding of T*M ® E into J(E) is determined for every
f,he C°(M) and s € [(E) by the following formula

fdh®@sw— f (hS(l) — (hS)(l))

where s € T(E), 51y € I'(J*(E)) is the first jet-prolongation of s.

Every connection V on E is in one-to-one correspondence with a
splitting o: E — JY(E):

o(s) = S1) + Vs

where Vs € I[(T*M ® E) is identified with its image in ['(J1(E)).



JET LIE ALGEBROID AND THE BOTT SEQUENCE

Let (E,p,[,-]) be a Lie algebroid over M. Now the Bott sequence

0— SHT*M)® E — JY(E) — JS"YE) — 0

becomes an exact sequence of Lie algebroids.
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Let E be a Lie algebroid with a vector bundle connection viewed as
a splitting of the Bott sequence:

o: E— JY(E)

The compatibility of a Lie algebroid structure with a connection is
governed by the vanishing of the compatibility tensor S, the
curvature of the splitting, defined for all s, s’ € T'(E) by the formula

S(s,s') = [o(s),0(s)] — o ([s, s'])

Given that p(S(s,s’)) =0, it is obvious that S can be identified
with a section of T*M @ E @ AN2E*.
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(E, V) is called a Cartan-Lie algebroid (Blaom, 2004) over M, if E
is a Lie algebroid, V a connection in E — M, and its induced
splitting o: E — JY(E) is a Lie algebroid morphism, i.e. if S = 0.
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(E, V) is called a Cartan-Lie algebroid (Blaom, 2004) over M, if E
is a Lie algebroid, V a connection in E — M, and its induced
splitting o: E — JY(E) is a Lie algebroid morphism, i.e. if S = 0.

EXAMPLES

® let E =M x g be an action Lie algebroid. Then the
canonical flat connection V is compatible. Furthermore, every
Lie algebroid with a flat compatible connection is locally an
action Lie algebroid;

e If E is a bundle of Lie algebras, then V on E is compatible if
and only if it preserves the fiber-wise Lie algebra bracket;



CARTAN-LIE ALGEBROID

EXAMPLES

e If E = TM is the standard Lie algebroid, a connection on TM
is compatible if and only if the dual connection is flat.
However, any torsion-free connection on TM gives rise to a
compatible connection on J*(TM).

® let m: P — M be a principal H-bundle, b be the Lie algebra
of H, g be a Lie algebra, such that i C g. Consider a Cartan
structure on P, i.e. an H-equivariant 1-form w: TP — g, the
restriction of which onto the fibers of 7 is the MC form for H,
such that w is a linear isomorphism T,P ~ g for each p € P.
Then the Atiyah algebroid of P is canonically a Cartan-Lie
algebroid; it is flat if and only if the corresponding Cartan
structure is flat.
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The choice of a connection on E gives us the decomposition of
differential forms on E[1] into the product of vertical and
horizontal forms:
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CARTAN-LIE ALGEBROIDS VIA Q-MANIFOLDS

The choice of a connection on E gives us the decomposition of
differential forms on E[1] into the product of vertical and
horizontal forms:

"ER) = @ ”IUEN)

pt+q=m

The connection is compatible with the Lie algebroid structure if
and only if Ly preserves the corresponding horizontal distribution

on E[1] (Q = QEg).

This means that Lo = Q + j, where @: QPI(E[1]) — QP9(E[1])
and p: QPI(E[1]) — QPHLI-1(E[1])



Observe that the Lie derivative of any tensor field x along a vector
field depends on the first jet-prolongation of this vector field only,
which allows to introduce a natural Lie algebroid representation of
JY(TM) on arbitrary tensor fields, such that the jet prolongations
of a vector field acts by the Lie derivative. This idea can be
generalized to arbitrary Lie algebroids



Observe that the Lie derivative of any tensor field x along a vector
field depends on the first jet-prolongation of this vector field only,
which allows to introduce a natural Lie algebroid representation of
JY(TM) on arbitrary tensor fields, such that the jet prolongations
of a vector field acts by the Lie derivative. This idea can be
generalized to arbitrary Lie algebroids

The representations of JY(E) on E and TM, combined with a
Cartan connection V on E, give us representations of E on E and
TM - *V and "V on E and TM, respectively, such that for all
s,s €eT(E), X eT(TM)

WVss' = [s,5]+V,,s
VX = [057X]+P(vxs) (1)

The anchor map p: E — TM obeys the property "Vop=po“V.
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Let ¥ be a d-dimensional Lorentzian manifold, (M, g) be a
Riemannian manifold, (E, p) be a Lie algebroid over M supplied
with a fiber metric s, and B be an E—valued 2-form on M.

DEFINITION (FI1ELDS OF THE CYMH)

The Higgs field(s) is a smooth map X: ¥ — M, while the gauge
field(s) A is a section of X*(E) ® T*%L.

The fields (X, A) together can be viewed as a bundle map
TM — E or, equivalently, to a degree preserving map of the
corresponding graded superspaces ¢: T[1]X — E[1].



Let VE be a vector bundle connection on E; it determines an
E —connection on E by the formula V£ p(s)s’, the E—torsion of
which is defined for all s, s’ € T(E) as
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Let VE be a vector bundle connection on E; it determines an
E —connection on E by the formula V£ p(s)s’, the E—torsion of
which is defined for all s, s’ € T(E) as

t(s,s') =[s,s'| - V55 + stls

Let us denote by DX the canonical section of X*TM @ T*%

defined as
DX: =dX — p(A)

and by F the following section of X*E @ N> T*X:
F: = DA+ t(A A)

where D is covariant derivative Q (X, X*E) — Q*1(Z, X*E)
determined by the pull-back of V£ by the formula

D=d+ DXV,
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parts which transform as tensors: DX and F.



Consider T[1]X and E[1] as graded supermanifolds with
homological vector fields Qpgr and Qg provided by the
corresponding Lie algebroid structures.

¢: TX — E is a Lie algebroid morphism if the induced pullback
map ®: = ¢* on superfunctions is a chain map, i.e. is satisfies

F = Qpr® —PQe =0

The I.h.s. of the above equation is a derivation of degree 1 which
covers ®. As soon as we choose a connection, F splits into two
parts which transform as tensors: DX and F.

PROPOSITION

¢: TL — E is a Lie algebroid morphism if and only if both DX
and F vanish.



THE CYMH AcTION

The coupled (curved) YMH functional is of the form
SCYMH[X7 A] = SCYM[X7 A] + SHiggs[Xa A] where

1
SH,'ggs[X,A] = 2/g(DX,*DX)
b
1
Sevm[X, Al = 2/"6(G7*G)
b

Here x is the Hodge operator on ¥ determined by the Lorentzian
metric and G is of the form F + B(DX, DX).



EXAMPLE (YANG-MILLS-HIGGS THEORY)

Let g be a Lie algebra, V' be a unitary representation of g, and let

E = g x V be the corresponding action Lie algebroid together with
the canonical flat Cartan connection. Then the CYMH reduces to

the usual Yang-Mills-Higgs action (provided B = 0).



GAUGE TRANSFORMATIONS

Let us view bundle maps TX — E as sections of the following
bundle (an "exact sequence” in the category of Lie algrbroids):
TY x E — TX. Apparently, (X, A) is a Lie algebroid morphism if
an only if so is the corresponding section.



GAUGE TRANSFORMATIONS

Let us view bundle maps TX — E as sections of the following
bundle (an "exact sequence” in the category of Lie algrbroids):
TY x E — TX. Apparently, (X, A) is a Lie algebroid morphism if
an only if so is the corresponding section.

Denote by E the pull-back of E, i.e. E=ExX. The jet algebroid
JY(E) acts on the space of bundle maps as follows:

given ¢ € [(E), h € C°(X x M) one has

66(1)¢ c = ®ol,
5dh®e¢ .= .F(h)qDOLe



PROPOSITION

1. Forany A el (JI(E)) Oy is an infinitesimal symmetry of the

Lie algebroid morphism equation F = 0;

2. Forany MAerl (Jl(E)) one has [0y, 3] = dpa-
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transformation for any € € ['(E):



Let V be a connection on E. Let us trivially extend it to a
connection on £ — ¥ x M. The induced splitting of the Bott
sequence o: E — JY(E) allows to define the following gauge

transformation for any € € ['(E):

Let us choose a local system of coordinates {X'}"_; and a local
frame {e,},_; of E, in which

V(e : = wh(X)dX' @ e
plea) = = ph(X)xi
leaen] = = CGp(X)ec

A = A¥x,dx)e,

e = €€(x,X)e,

where x € X



Then

65X = ple
0A° = deé® + C5AP€ + wpe" DX’

where DX = dX' — pi(X)A?.



Then

65X = ple
0A° = deé® + C5AP€ + wpe" DX’

where DX/ = dX' — p;(X)Aa.
Using the same local data, we have
. 1
F?: = dA? 4 wyi(X)DX' A AP + Eth(X)Ab A AC

where t7_: = Cj_ — 2be“’?]/ are the torsion coefficients.



Then

65X = ple
0A° = deé® + C5AP€ + wpe" DX’

where DX’ = dX' — pl(X)A?.
Using the same local data, we have
; 1
F?: = dA? 4 wyi(X)DX' A AP + Eth(X)Ab A AC
where t7_: = Cj_ — 2be“’?]/ are the torsion coefficients.

REMARK

If V is a Cartan connection then the above defined gauge
transformations are closed off-shell, i.e. for any ¢,¢ € ['(E) one has

[(56, (56'] = 5[6,5’]



THEOREM (A.K., T. STROBL, 2015)

Scymn Is gauge invariant if and only if the following conditions
hold:

1.
2
St
4. Ry +[VE, pl(B) + (t, B) = 0, where p is viewed as an

VE - Cartan connection, i.e. S =0
- "V(g)=0
*V(k)=0

operator acting from E to TM naturally extended to
N T*M ® E by the Leibniz property.



THEOREM (A.K., T. STROBL, 2015)

Scymn Is gauge invariant if and only if the following conditions

hold:
1. VE - Cartan connection, i.e. S =0
2. "V(g)=0
3. *V(k) =0
4. Ry +[VE, pl(B) + (t,B) = 0, where p is viewed as an
operator acting from E to TM naturally extended to
N T*M ® E by the Leibniz property.
REMARK

The auxiliary 2-form B is not explicitly defined yet: we only know
that it must satisfy the 3d equation.
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The connection is compatible with the Lie algebroid structure if
and only if Ly preserves the corresponding horizontal distribution
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THE COMPATIBILITY CONDITION FOR B

The de Rham differential splits into the vertical, horizontal and
curvature parts, where the latter R acts as follows

R: QP9(E[1]) — QP~L9+2(E[1))
The compatibility between the Q-field and the de Ram operator
[LQa d =0
implies

QR): =[Q.R1=0

Thus the curvature of the connection is a Q—cocycle.
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THE COMPATIBILITY CONDITION FOR B

Now the the compatibility condition for B reads as
R=Q(B)
where B: QP9(E[1]) — QP~192(E[1]) is induced by B.

This idea can generalized to more arbitrary N-graded Q-manifolds
with compatible splittings of differential forms, which gives new
higher Yang-Mills type gauge theories (T. Strobl, 2016 and 2018
and A.K., T.Strobl, 2018)

Thank you for your attention!



