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A Lie algebroid (E , ρ, [·, ·]) over M is

• a vector bundle E → M

• a bundle map E → TM, called the anchor map or the anchor

• a Lie bracket [·, ·] : Λ2Γ(E )→ Γ(E ) on the space of sections,

such that the following compatibility conditions hold

1. the Leibniz rule [s, fs ′] = ρs(f )s ′ + f [s, s ′]

2. the morphism property ρ[s,s′] = [ρs , ρs′ ]

for all f ∈ F(M), s, s ′ ∈ Γ(E ).



Lie algebroid. Examples

- the standard Lie algebroid E = TM with ρ = IdTM

- a Lie algebra, regarded as a vector bundle over a point

- an action Lie algebroid, uniquely determined for a Lie algebra
g and a g−space M as follows:
• E = g×M
• for any s ∈ g, viewed as a section of E , ρs ∈ Γ(TM) is the

associated infinitesimal generator of the g−action
• the bracket of s, s ′ ∈ g, regarded as sections of E , coincides

with the corresponding bracket in g. The structure maps ρ and
[·, ·] are extended from g to all Γ(E ) by linearity and by use of
the Leibniz rule, respectively.

- the Atiyah algebroid of a principal G−bundle p : P → M:
E = TP/G , the anchor and the Lie bracket are induced by dp
and the Lie bracket of vector fields on P, respectively
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Jet Lie algebroid

Let (E , ρ, [·, ·]) be a Lie algebroid over M. Then Jk(E ) is a vector
bundle over M and it admits a canonical Lie algebroid structure:

the bracket in Jk(E ) is defined such that taking the Lie brackets
commutes with the prolongation of sections,

[s(k), s
′
(k)] = [s, s ′](k)

for all sections s, s ′ ∈ Γ(E ), while the anchor is fixed by the
morphism property to obey ρs(k)

= ρs .

Example

J1(TM) is isomorphic to the Atiyah algebroid of S1(M), the
GL-principal bundle of tangent frames.
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Jet Lie algebroid as a Q-manifold

Let us identify a Lie algebroid (E , ρ, [·, ·]) with the following
Q-manifold (E [1],QE ), F(E [1]) ' Γ(ΛE ∗), where

• 〈QE f , s〉 = ρs f for any f ∈ F(M) = F0(E [1]), s ∈ Γ(E )

• [ιs , [QE , ιs′ ]] = ι[s,s′], for all s, s ′ ∈ Γ(E ).

Here ιs is the contraction with s, viewed as a degree -1 super
derivation of F(E [1])

Functions on E [1] can be regarded as F(M)−valued
F(M)−multilinear cochains on Γ(E ):

ΛrΓ(E )→ F(M)

The corresponding Chevalley-Eilenberg differential equals to QE .
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Jet Lie algebroid as a Q-manifold

Jk(E ) corresponds to the k−jet prolongation of (E [1],QE ), i.e.

• Jk(E )[1] = Jk(π) for π : E [1]→ M, QJk (E) = Q
(k)
E

• The canonical extension of Q
(∞)
E to C[1], which we will denote

by the same letter, anti-commutes with dh

• We have a bi-complex dh + Q
(∞)
E , where the bi-grading is

given by the two ”independent” degrees - the degree of
differential forms and the degree of functions on J∞(π).

• Functions of degree r on Jk(E )[1] can be regarded as
r−multi-linear skew-symmetric differential operators on Γ(E )
with values in F(M): for every degree l function h on Jk(π),
viewed as a section of ΛlJk(π)∗, the associated multi-linear
differential operator acts as follows:

Γ(E ) 3 s1, . . . sl 7→ 〈h, (s1)(k) ∧ . . . ∧ (sl)(k)〉
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Jet Lie algebroid as a Q-manifold

• Similarly, functions on C[1] can be canonically identified with
multi-linear skew-symmetric differential operators on Γ(E )
with values in Ω(M): given a function ϕ on C[1], regarded as
a section of Λ(T ∗M)⊗ ΛlJk(π)∗, the associated multi-linear
differential operator acts as follows:

Γ(E ) 3 s1, . . . sl 7→ 〈ϕ, (s1)(k) ∧ . . . ∧ (sl)(k)〉 ∈ Ω(M)

• Let us combine it with the integration over M (provided it is
well-defined, eg. M is oriented, sections are compactly
supported). We obtain a differential l−cochain cϕ on Γ(E ) .
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Jet Lie algebroid as a Q-manifold

Taking into account that the integral of a differential form ω
depends only on its image in Ωn(M)/dMΩn−1(M) and, moreover,
for all ϕ and s1, . . . , sl as above one has

dM〈ϕ, (s1)(k) ∧ . . . ∧ (sl)(k)〉 = 〈dhϕ, (s1)(k) ∧ . . . ∧ (sl)(k)〉

we immediately conclude that:

• The differential cochains on Γ(E ), considered as a Lie algebra,
are determined by the top-degree cohomology of dh, i.e. the
first term of the spectral sequence, associated to the above
mentioned bi-complex;

• The Chevalley-Eilenberg cohomology of (Γ(E ), [, ]) are
determined by the second term of the same spectral sequence.



More general case: let Q ′ be a homological degree 1 vector field on
C[1] which anti-commutes with dh, i.e. dh + Q ′ is a degree 1
homological vector field again (Q ′ is not necessarily vertical).

In particular, Q ′ can be the infinite jet prolongation of a
homological degree 1 vector field on E (cf. the jet Lie algebroid
example).

Let us split Q ′ into horizontal and vertical (evolutionary) parts

Q ′ = Q ′h + Q ′e

Then

• Q ′e is also homological (and it also anti-commutes with dh as
it is evolutionary)

• there exists a canonical degree 0 vector field ψ, such that
Q ′h = [dh, ψ] and

expψ
(
dh + Q ′

)
exp (−ψ) = dh + Q ′e
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Bott sequence

Every vector bundle π : E → M gives rise to the short exact
sequence

0 −→ Dk−1(π, 1) −→ Dk(π, 1)
symbk−−−−→ Sk(TM)⊗ E ∗ −→ 0

where Dk(π, π′) the bundle whose sections are linear differential
operators of order k acting from Γ(π) to Γ(π′), r is a trivial vector
bundle of rank r , and symbk is the symbol map which associates
to any differential operator of order k its principal symbol.

One has Dk(π, 1) ' Jk(π)∗, where Jk(π) is the bundle of k−jets
of smooth sections of π.
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By dualizing of the above exact sequence, we obtain for all k ≥ 1
the short exact sequence of vector bundles, called the Bott
sequence (R. Bott, 1963)

0 −→ Sk(T ∗M)⊗ E −→ Jk(E ) −→ Jk−1(E ) −→ 0



In particular, k = 1 gives us

0 −→ T ∗M ⊗ E −→ J1(E ) −→ E −→ 0

The embedding of T ∗M ⊗ E into J1(E ) is determined for every
f , h ∈ C∞(M) and s ∈ Γ(E ) by the following formula

f dh ⊗ s 7→ f
(
hs(1) − (hs)(1)

)
where s ∈ Γ(E ), s(1) ∈ Γ(J1(E )) is the first jet-prolongation of s.

Every connection ∇ on E is in one-to-one correspondence with a
splitting σ : E → J1(E ):

σ(s) = s(1) +∇s

where ∇s ∈ Γ(T ∗M ⊗ E ) is identified with its image in Γ(J1(E )).
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Jet Lie algebroid and the Bott sequence

Let (E , ρ, [·, ·]) be a Lie algebroid over M. Now the Bott sequence

0 −→ Sk(T ∗M)⊗ E −→ Jk(E ) −→ Jk−1(E ) −→ 0

becomes an exact sequence of Lie algebroids.



Let E be a Lie algebroid with a vector bundle connection viewed as
a splitting of the Bott sequence:

σ : E → J1(E )

The compatibility of a Lie algebroid structure with a connection is
governed by the vanishing of the compatibility tensor S , the
curvature of the splitting, defined for all s, s ′ ∈ Γ(E ) by the formula

S(s, s ′) = [σ(s), σ(s ′)]− σ
(
[s, s ′]

)
Given that ρ (S(s, s ′)) = 0, it is obvious that S can be identified
with a section of T ∗M ⊗ E ⊗ Λ2E ∗.
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Cartan-Lie algebroid

(E ,∇) is called a Cartan-Lie algebroid (Blaom, 2004) over M, if E
is a Lie algebroid, ∇ a connection in E → M, and its induced
splitting σ : E → J1(E ) is a Lie algebroid morphism, i.e. if S = 0.

Examples

• Let E = M × g be an action Lie algebroid. Then the
canonical flat connection ∇ is compatible. Furthermore, every
Lie algebroid with a flat compatible connection is locally an
action Lie algebroid;

• If E is a bundle of Lie algebras, then ∇ on E is compatible if
and only if it preserves the fiber-wise Lie algebra bracket;
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Cartan-Lie algebroid

Examples

• If E = TM is the standard Lie algebroid, a connection on TM
is compatible if and only if the dual connection is flat.
However, any torsion-free connection on TM gives rise to a
compatible connection on J1(TM).

• Let π : P → M be a principal H-bundle, h be the Lie algebra
of H, g be a Lie algebra, such that h ⊂ g. Consider a Cartan
structure on P, i.e. an H-equivariant 1-form ω : TP → g, the
restriction of which onto the fibers of π is the MC form for H,
such that ω is a linear isomorphism TpP ' g for each p ∈ P.
Then the Atiyah algebroid of P is canonically a Cartan-Lie
algebroid; it is flat if and only if the corresponding Cartan
structure is flat.



Cartan-Lie algebroids via Q-manifolds

The choice of a connection on E gives us the decomposition of
differential forms on E [1] into the product of vertical and
horizontal forms:

Ωm(E [1]) =
⊕

p+q=m

Ωp,q(E [1])

The connection is compatible with the Lie algebroid structure if
and only if LQ preserves the corresponding horizontal distribution
on E [1] (Q = QE ).

This means that LQ = Q̄ + ρ̂, where Q̄ : Ωp,q(E [1])→ Ωp,q(E [1])
and ρ̂ : Ωp,q(E [1])→ Ωp+1,q−1(E [1])
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Observe that the Lie derivative of any tensor field χ along a vector
field depends on the first jet-prolongation of this vector field only,
which allows to introduce a natural Lie algebroid representation of
J1(TM) on arbitrary tensor fields, such that the jet prolongations
of a vector field acts by the Lie derivative. This idea can be
generalized to arbitrary Lie algebroids

The representations of J1(E ) on E and TM, combined with a
Cartan connection ∇ on E , give us representations of E on E and
TM - α∇ and τ∇ on E and TM, respectively, such that for all
s, s ′ ∈ Γ(E ), X ∈ Γ(TM)

α∇ss
′ = [s, s ′] +∇ρs′ s

τ∇sX = [ρs ,X ] + ρ(∇X s) (1)

The anchor map ρ : E → TM obeys the property τ∇ ◦ ρ = ρ ◦ α∇.
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Curved Yang-Mills-Higgs Gauge Theory

Let Σ be a d-dimensional Lorentzian manifold, (M, g) be a
Riemannian manifold, (E , ρ) be a Lie algebroid over M supplied
with a fiber metric κ, and B be an E−valued 2-form on M.

Definition (Fields of the CYMH)

The Higgs field(s) is a smooth map X : Σ→ M, while the gauge
field(s) A is a section of X ∗(E )⊗ T ∗Σ.

The fields (X ,A) together can be viewed as a bundle map
TM → E or, equivalently, to a degree preserving map of the
corresponding graded superspaces φ : T [1]Σ→ E [1].
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corresponding graded superspaces φ : T [1]Σ→ E [1].



Let ∇E be a vector bundle connection on E ; it determines an
E−connection on E by the formula ∇Eρ(s)s ′, the E−torsion of
which is defined for all s, s ′ ∈ Γ(E ) as

t(s, s ′) = [s, s ′]−∇E
ρs s
′ +∇E

ρs′
s

Let us denote by DX the canonical section of X ∗TM ⊗ T ∗Σ
defined as

DX : = dX − ρ(A)

and by F the following section of X ∗E ⊗ Λ2T ∗Σ:

F : = DA + t(A,A)

where D is covariant derivative Ω·(Σ,X ∗E )→ Ω·+1(Σ,X ∗E )
determined by the pull-back of ∇E by the formula

D = d + DX i∇i
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Consider T [1]Σ and E [1] as graded supermanifolds with
homological vector fields QDR and QE provided by the
corresponding Lie algebroid structures.

φ : TΣ→ E is a Lie algebroid morphism if the induced pullback
map Φ: = φ∗ on superfunctions is a chain map, i.e. is satisfies

F = QDRΦ− ΦQE = 0

The l.h.s. of the above equation is a derivation of degree 1 which
covers Φ. As soon as we choose a connection, F splits into two
parts which transform as tensors: DX and F .

Proposition

φ : TΣ→ E is a Lie algebroid morphism if and only if both DX
and F vanish.
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The CYMH action

The coupled (curved) YMH functional is of the form
SCYMH [X ,A] = SCYM [X ,A] + SHiggs [X ,A] where

SHiggs [X ,A] =
1

2

∫
Σ

g(DX , ∗DX )

SCYM [X ,A] =
1

2

∫
Σ

κ(G , ∗G )

Here ∗ is the Hodge operator on Σ determined by the Lorentzian
metric and G is of the form F + B(DX ,DX ).



Example (Yang-Mills-Higgs Theory)

Let g be a Lie algebra, V be a unitary representation of g, and let
E = g× V be the corresponding action Lie algebroid together with
the canonical flat Cartan connection. Then the CYMH reduces to
the usual Yang-Mills-Higgs action (provided B = 0).



Gauge transformations

Let us view bundle maps TΣ→ E as sections of the following
bundle (an ”exact sequence” in the category of Lie algrbroids):
TΣ× E → TΣ. Apparently, (X ,A) is a Lie algebroid morphism if
an only if so is the corresponding section.

Denote by Ẽ the pull-back of E , i.e. Ẽ = E ×Σ. The jet algebroid
J1(Ẽ ) acts on the space of bundle maps as follows:

given ε ∈ Γ(Ẽ ), h ∈ C∞(Σ×M) one has

δε(1)
Φ : = Φ ◦ Lε

δdh⊗εΦ : = F(h)Φ ◦ ιε
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Proposition

1. For any λ ∈ Γ
(
J1(Ẽ )

)
, δλ is an infinitesimal symmetry of the

Lie algebroid morphism equation F = 0;

2. For any λ, λ ∈ Γ
(
J1(Ẽ )

)
one has [δλ, δλ′ ] = δ[λ,λ′].



Let ∇ be a connection on E . Let us trivially extend it to a
connection on Ẽ → Σ×M.

The induced splitting of the Bott
sequence σ : Ẽ → J1(Ẽ ) allows to define the following gauge
transformation for any ε ∈ Γ(Ẽ ):

δε : = δσ(ε)

Let us choose a local system of coordinates {X i}ni=1 and a local
frame {ea}ra=1 of E , in which

∇(ea) : = ωb
ai (X )dX i ⊗ eb

ρ(ea) : = ρia(X )∂X i

[ea, eb] : = C c
ab(X )ec

A : = Aa(x ,dx)ea

ε : = εa(x ,X )ea

where x ∈ Σ.
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Then

δεX
i = ρiaε

a

δεA
a = dεa + C c

abA
bεc + ωa

biε
bDX i

where DX i = dX i − ρia(X )Aa.

Using the same local data, we have

F a : = dAa + ωbi (X )DX i ∧ Ab +
1

2
tabc(X )Ab ∧ Ac

where tabc : = C a
bc − 2ρi[bω

a
c]i are the torsion coefficients.

Remark

If ∇ is a Cartan connection then the above defined gauge
transformations are closed off-shell, i.e. for any ε, ε′ ∈ Γ(Ẽ ) one has

[δε, δε′ ] = δ[ε,ε′]
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Theorem (A.K., T. Strobl, 2015)

SCYMH is gauge invariant if and only if the following conditions
hold:

1. ∇E - Cartan connection, i.e. S = 0

2. τ∇(g) = 0

3. α∇(κ) = 0

4. R∇ + [∇E , ρ](B) + 〈t,B〉 = 0, where ρ is viewed as an
operator acting from E to TM naturally extended to
Λ·T ∗M ⊗ E by the Leibniz property.

Remark

The auxiliary 2-form B is not explicitly defined yet: we only know
that it must satisfy the 3d equation.
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The compatibility condition for B

The choice of a connection on E gives us the decomposition of
differential forms on E [1] into the product of vertical and
horizontal forms:

Ωm(E [1]) =
⊕

p+q=m

Ωp,q(E [1])

The connection is compatible with the Lie algebroid structure if
and only if LQ preserves the corresponding horizontal distribution
on E [1] (Q = QE ).

This means that LQ = Q̄ + ρ̂, where Q̄ : Ωp,q(E [1])→ Ωp,q(E [1])
and ρ̂ : Ωp,q(E [1])→ Ωp+1,q−1(E [1])
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The compatibility condition for B

The de Rham differential splits into the vertical, horizontal and
curvature parts, where the latter R̂ acts as follows

R̂ : Ωp,q(E [1])→ Ωp−1,q+2(E [1])

The compatibility between the Q-field and the de Ram operator

[LQ ,d] = 0

implies

Q̄(R̂) : = [Q̄, R̂] = 0

Thus the curvature of the connection is a Q̄−cocycle.
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The compatibility condition for B

Now the the compatibility condition for B reads as

R̂ = Q̄(B̂)

where B̂ : Ωp,q(E [1])→ Ωp−1,q+2(E [1]) is induced by B.

This idea can generalized to more arbitrary N-graded Q-manifolds
with compatible splittings of differential forms, which gives new
higher Yang-Mills type gauge theories (T. Strobl, 2016 and 2018
and A.K., T.Strobl, 2018)

Thank you for your attention!
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