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To begin, recall that the classical Sutherland Hamiltonian, with coupling constant x2,

Htrig−Suth(q, p) ≡
1

2

n∑
k=1

p2k +
1

8

∑
j ̸=k

x2

sin2((qj − qk)/2)
,

admits two kinds of spin extensions. The first one contains Lie algebraic (‘collective’)
spin variables,

Hspin−Suth(q, p, ξ) =
1

2

n∑
k=1

p2k +
1

8

∑
j ̸=k

|ξjk|2

sin2((qj − qk)/2)
,

where ξ ∈ u(n)∗, with zero diagonal part. These models exist for all simple Lie
algebras,

Hspin−Suth(q, p, ξ) =
1

2
⟨p, p⟩+

1

8

∑
α∈R

2

|α|2
|ξα|2

sin2(α(q)/2)
,

and arise from Hamiltonian reduction of the cotangent bundle T ∗G of a compact Lie
group G. The ‘spin variables’ ξα ∈ C (ξ−α = ξ∗α) matter up to gauge transformation
by the maximal torus G0 < G and q, p ∈ iG0 with G0 = Lie(G0). Here, we use the
Killing form and the set of roots R = {α} of the complexified Lie algebra GC.
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The second kind of generalization is the Gibbons–Hermsen (1984) model

HG−H =
1

2

n∑
j=1

p2j +
1

8

∑
j ̸=k

|(SjS†k)|2

sin2((qj − qk)/2)
.

The complex row-vector Sj := [Sj1, . . . , Sjd] ∈ Cd, d ≥ 2, is attached to the particle
with coordinate qj, representing internal degrees of freedom. The overall phases of
the spin vectors Sj can be changed by gauge transformations. This model descends
from the extended cotangent bundle T ∗U(n)× Cn×d.

The purpose of lecture 2 is to explain that generalizations of these models arise if
one replaces the cotangent bundles by the so-called Heisenberg doubles, which are
their Poisson–Lie analogues. We shall mainly focus on the first kind of models.

The lecture is based on the following papers:

• LF, Poisson–Lie analogues of spin Sutherland models, Nucl. Phys. B 949,
114807 (2019)

• LF, Poisson reductions of master integrable systems on doubles of compact Lie
groups, Ann. Henri Poincaré 24, 1823-1876 (2023)

• LF, Poisson–Lie analogues of spin Sutherland models revisited, J. Phys A: Math.
Theor. 57, 205202 (2024)
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Reminder on the general picture

Let G be a (connected and simply connected) compact Lie group with simple Lie
algebra G. Denote GC and GC the complexifications, and define P := exp(iG) ⊂ GC.
Example: G = SU(n), GC = SL(n,C), P = {X ∈ SL(n,C) | X† = X, X positive}.

One has the following 3 ‘classical doubles’ of G:

Cotangent bundle T ∗G ≃ G× G∗ ≃ G× G =:M1

Heisenberg double GC
R ≃ G×G∗ ≃ G×P =:M2

Internally fused quasi-Poisson double G×G =:M3

The pull-backs of the relevant rings of invariants

C∞(G)G, C∞(G)G, C∞(P)G

give rise to two ‘master integrable systems’ on each double.

The group G acts on these phase spaces by ‘diagonal conjugations’, i.e., by the
diffeomorphisms

Aiη : (x, y) 7→ (ηxη−1, ηyη−1), ∀(x, y) ∈Mi (i = 1,2,3), η ∈ G.
The G-invariant functions form closed Poisson algebras, and thus the quotient space
Mred

i ≡ Mi/G becomes a (singular) Poisson space, which carries the corresponding
reduced integrable systems.
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Recall of degenerate integrability on symplectic and Poisson manifolds

Definition 1. Suppose that M is a symplectic manifold of dimension 2m with
associated Poisson bracket {−,−} and two distinguished subrings H and F of C∞(M)
satisfying the following conditions:

1. The ring H has functional dimension r and F has functional dimension s such
that r+ s = dim(M) and r < m.

2. Both H and F form Poisson subalgebras of C∞(M), satisfying H ⊂ F and {F ,H} =
0 for all F ∈ F, H ∈ H.

3. The Hamiltonian vector fields of the elements of H are complete.

Then, (M, {−,−},H,F) is called a degenerate integrable system of rank r. The
rings H and F are referred to as the ring of Hamiltonians and constants of motion,
respectively. (If r = 1, then this is the same as ‘maximal superintegrability’ of a
single Hamiltonian.)

Definition 2. Consider a Poisson manifold (M, {−,−}) whose Poisson tensor has
maximal rank 2m ≤ dim(M) on a dense open subset. Then, (M, {−,−},H,F) is called
a degenerate integrable system of rank r if conditions (1), (2), (3) of Definition 1
hold, and the Hamiltonian vector fields of the elements of H span an r-dimensional
subspace of the tangent space over a dense open subset of M.
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The example of the cotangent bundle: complement to lecture 1

The canonical Poisson bracket on the cotangent bundle

M≡M1 = G× G = {(g, J) | g ∈ G, J ∈ G} has the form

{F ,H}(g, J) = ⟨∇1F , d2H⟩ − ⟨∇1H, d2F⟩+ ⟨J, [d2F , d2H]⟩,
where the G-valued derivatives are taken at (g, J). Here, ⟨X,Y ⟩ is the Killing form
on G. The derivative d2F ∈ G w.r.t. the second variable J ∈ G is the usual gradient,
while the derivative ∇1F ∈ G w.r.t. first variable g ∈ G is defined by

d

dt

∣∣∣∣
t=0

F(etXg, J) =: ⟨X,∇1F(g, J)⟩, ∀X ∈ G.

The equations of motion generated by the Hamiltonians H of the form H(g, J) = φ(J)
with φ ∈ C∞(G)G read

ġ = (dφ(J))g, J̇ = 0 =⇒ (g(t), J(t)) = (exp(tdφ(J(0)))g(0), J(0)).

The constants of motions are arbitrary functions of J and g−1Jg.

We reduce by going to the orbit space of M w.r.t. the conjugation action of G.
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We characterize the reduced system using a ‘partial gauge fixing’. Define

Mreg := {(g, J) ∈M | g ∈ Greg}, Mreg
0 := {(Q, J) ∈M | Q ∈ Greg

0 }.
Here, Greg contains the group elements whose centralizer is a maximal torus, and
G0 is a fixed maximal torus. Let N denote the normalizer of G0 < G, which is the
‘group of residual gauge transformations’.

Then, Mreg/G ≡Mreg
0 /N, and the restriction of functions yields the isomorphism

C∞(Mreg)G ⇐⇒ C∞(Mreg
0 )N,

By transferring the Poisson bracket from C∞(Mreg)G to C∞(Mreg
0 )N, we get

{F,H}red(Q, J) = ⟨∇1F, d2H⟩ − ⟨∇1H, d2F ⟩+ ⟨J, [d2F, d2H]R(Q)⟩,
with [X,Y ]R ≡ [RX,Y ] + [X,RY ]. The ‘reduced evolution equations’ generated by
the invariant functions φ ∈ C∞(G)G can be written on Mreg

0 as

Q̇ = (dφ(J))0Q, J̇ = [R(Q)dφ(J), J].

Here, the subscript zero refers to the decomposition G = G0+G⊥, and R(Q) ∈ End(G)
is the basic trigonometric solution of the modified classical dynamical Yang–Baxter
equation. R(Q) vanishes on G0 and, writing Q = exp(iq) with iq ∈ G0, is given on G⊥
by R(Q) = 1

2
coth( i

2
adq). (G⊥ is the orthogonal complement of G0.)
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The (well known) spin Sutherland interpretation

Parametrize J ∈ G according to

J = −ip+
∑
α∈∆+

(
ξα

e−iα(q) − 1
Eα −

ξ∗α
eiα(q) − 1

E−α

)
, p ∈ iG0, ,

and take φ(J) = −1
2
⟨J, J⟩. Then (using ⟨Eα, E−α⟩ = 2/|α|2) we get

−
1

2
⟨J, J⟩ =

1

2
⟨p, p⟩+

1

8

∑
α∈∆

2

|α|2
|ξα|2

sin2(α(q)/2)
,

which is a standard spin Sutherland Hamiltonian Hspin−Suth(q, p, ξ). Here, we use the
Killing form and the root space decomposition of the complexified Lie algebra GC,
with the set of roots ∆ = {α} and corresponding root vectors Eα.

The ‘spin variable’ ξ =
∑

α∈∆+
(ξαEα − ξ∗αE−α) matters up to conjugations by the

maximal torus G0. After dividing by G0, there remains a residual gauge symmetry
under the Weyl group W = N/G0. The pertinent dense open subset of the reduced
phase space can be identified as

(
T ∗Greg

0 × (G∗//0G0)
)
/W , with Darboux variables

(q, p) on T ∗Greg
0 ≃ Greg

0 × G0 and spin variable [ξ] ∈ G∗//0G0.
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Plan of the rest of the lecture

• Integrable ‘master system’ on the Heisenberg double

• Poisson reduction of the master system: reduced integrability

• Two descriptions of the reduced Poisson brackets

• Connection to the spin Sutherland models

• The dual system in a nutshell

• Conclusion
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Preparations. Fix a maximal Abelian subalgebra, G0 < G. A choice of positive roots
with respect to the Cartan subalgebra GC0 < GC leads to the triangular decomposition

GC = GC−+ GC0 + GC+.

Equip the realification GCR of GC with bilinear form ⟨X,Y ⟩I := ℑ⟨X,Y ⟩, where ⟨−,−⟩ is
the Killing form of GC. Then one obtains the decomposition (a Manin triple)

GCR = G + B with B := iG0 + GC+ =: B0 + B+.

Let GC
R a connected and simply connected Lie group with Lie algebra GCR. We may

write any X ∈ GCR as X = XG + XB or as X = X+ + X0 + X− or as X = Y1 + iY2
(Y1, Y2 ∈ G). The complex conjugation θ with respect to G is a Cartan involution and
it lifts to the involution Θ of GC

R. We have the anti-automorphisms

Z 7→ Z† := −θ(Z), K 7→ K† := Θ(K−1), ∀Z ∈ GCR, ∀K ∈ GC
R.

By using the subgroups G < GC
R and B := exp(B) < GC

R, every element K ∈ GC
R admits

the unique (Iwasawa) decompositions:

K = gLb
−1
R = bLg

−1
R with gL, gR ∈ G, bL, bR ∈ B,

which yield the ‘Iwasawa maps’ ΞL,ΞR : GC
R → G and ΛL,ΛR : GC

R → B,

ΞL(K) := gL, ΞR(K) := gR, ΛL(K) := bL, ΛR(K) := bR.

We have the diffeomorphic manifolds M := GC
R, M := G×B and M := G×P.

Shall use the diffeomorphisms m1 := (ΞR,ΛR) : M → M, that is, m1(K) = (gR, bR),
and m2 : M→ M, m2(g, b) := (g, bb†).

The map ν : B ∋ b 7→ bb† ∈ P = exp(iG) ⊂ GC
R is a G-equivariant diffeomorphism if G

acts on P by conjugations and on B by ‘dressing’: Dressη(b) := ΛL(ηb), ∀η ∈ G, b ∈ B.
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The group manifold M = GC
R carries the following two Poisson brackets:

{Φ1,Φ2}± := ⟨∇Φ1, ρ∇Φ2⟩I ± ⟨∇′Φ1, ρ∇′Φ2⟩I, ∀Φ1,Φ2 ∈ C∞(M).

Here, ρ := 1
2 (πG − πB) with πG and πB denoting the projections from GCR onto G and B,

which correspond to the direct sum GCR = G + B. For any real function Φ ∈ C∞(M),
the GCR-valued ‘left- and right-derivatives’ are defined by

⟨X,∇Φ(K)⟩I + ⟨X ′,∇′Φ(K)⟩I :=
d

dt

∣∣∣∣
t=0

Φ(etXKetX
′
), ∀K ∈M, X,X ′ ∈ GCR.

The minus bracket makes M into a Poisson–Lie group, of which G and B are Poisson–
Lie subgroups, i.e., (embedded) Lie subgroups and Poisson submanifolds. Their
inherited Poisson brackets take the form

{χ1, χ2}G(g) = −⟨D′χ1(g), g
−1(Dχ2(g))g⟩I,

{φ1, φ2}B(b) = ⟨D′φ1(b), b
−1(Dφ2(b))b⟩I.

The derivatives are B-valued for χi ∈ C∞(G) and G-valued for φi ∈ C∞(B). The Pois-
son manifolds (M, {−,−}−) and (M, {−,−}+) are known, respectively, as the Drinfeld
double and the Heisenberg double associated with the standard Poisson structures of
G and B. The Poisson bracket {−,−}+ is non-degenerate, its symplectic form reads

Ω+ =
1

2

〈
dbLb

−1
L
∧, dgLg

−1
L

〉
I +

1

2

〈
dbRb

−1
R
∧, dgRg

−1
R

〉
I .

The maps

(ΛL,ΛR) :M → B ×B and (ΞL,ΞR) :M → G×G
are Poisson maps with respect to (M, {−,−}+) and the direct product Poisson struc-
tures on the targets obtained from (B, {−,−}B) and from (G, {−,−}G), respectively.
(References: Semenov-Tian-Shansky [1985] and Alekseev–Malkin [1994]).
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‘Master system’ on M. For any real function ϕ ∈ C∞(P), define its GCR-valued
derivative Dϕ as follows:

⟨X,Dϕ(L)⟩I :=
d

dt

∣∣∣∣
t=0

ϕ(etXLetX
†
), ⟨Y,Dϕ(L)⟩I :=

d

dt

∣∣∣∣
t=0

ϕ(etYLe−tY ), ∀X ∈ B, Y ∈ G.

Using the diffeomorphism m := m2 ◦m1 :M → M = G×P, we transfer the Heisenberg
double Poisson bracket to M = G×P. This gives

{F ,H}M(g, L) = ⟨D2F , (D2H)G⟩I −
〈
gD′1Fg−1,D1H

〉
I + ⟨D1F ,D2H⟩I − ⟨D1H,D2F⟩I ,

where the derivatives of F ,H ∈ C∞(M) are evaluated at (g, L) ∈ M; and D1F ∈ B.

Define the map Ψ : M→ P×P by Ψ(g, L) := (g−1Lg, L), which in terms of the model
M reads (ν ◦ (ΛL)−1, ν ◦ ΛR); remember ν(b) = bb†.

Proposition 1. The two subrings of C∞(M) defined by

H := π∗2
(
C∞(P)G

)
and F := Ψ∗ (C∞(P×P))

engender a degenerate integrable system on the symplectic manifold (M, {−,−}M).
The rank of this integrable system is equal to the rank r = dim(G0) of Lie algebra G.

Proof. One calculates that any Hamiltonian H = π∗2(ϕ) with a function ϕ ∈ C∞(P)G

has the integral curves

(g(t), L(t)) = (exp (tDϕ(L(0))) g(0), L(0)) .
Since the derivative Dϕ : P→ G is G-equivariant, Ψ is constant along these curves,
and it is a Poisson map for the ν-transferred Poisson bracket on P−×P. One can
verify that the derivative DΨ has constant rank, equal to dim(M)− r, at every point
of G × Preg. This implies that F has functional dimension dim(M) − r. It is obvious
that H ⊂ F, and its functional dimension is r, which completes the proof.

11



Reduction. Define the ‘conjugation action’ A : G×M by Aη(g, L) := (ηgη−1, ηLη−1).
All H ∈ H and their Hamiltonian vector fields are G-invariant, and the invariant
functions, C∞(M)G, form a Poisson subalgebra. Therefore, we may take the Poisson
quotient

Mred := M/G, C∞(Mred) := C∞(M)G.

We have H ⊂ FG := Ψ∗(C∞(P− ×P)G) ⊂ C∞(M)G.

For Mred is a not a smooth manifold, we restrict to its dense open subset Mred
∗ = M∗/G,

where M∗ ⊂ M is the submanifold of principal orbit type:

M∗ := {(g, L) ∈ M | G(g,L) = Z(G)}. Note: M∗ is stable w.r.t. the flows of C∞(M)G.

The‘ space of constants of motion’ C := Ψ(M) ⊂ P×P is also not a smooth manifold,
but Creg := {L̃, L) ∈ C | L ∈ Preg is a smooth, embedded submanifold of Preg × Preg.
Here, Preg consists of the points of P whose isotropy group in G is a maximal torus.

A key technical point is to consider

C∗ := {(L̃, L) ∈ Creg | G(L̃,L) = Z(G)} and M∗∗ := Ψ−1(C∗).

The restriction of Ψ yields the G-equivariant submersion ψ : M∗∗ → C∗, and we get
the diagram of smooth Poisson submersions (where Mred

∗∗ = M∗∗/G and Cred
∗ = C∗/G):

M∗∗ C∗

Mred
∗∗ Cred

∗

ψ

p2p1

ψred
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The rings H and FG yield the subrings Hred and Fred of C∞(Mred), and we denote their
restrictions on Mred

∗ and Mred
∗∗ by H∗red, H∗∗red and F∗red, F∗∗red, respectively. Moreover, we

define the restricted reduced Poisson manifold by

(C∞(Mred
∗∗ ), {−,−}red∗∗ ) ≃ (C∞(M∗∗)G, {−,−}M∗∗).

Theorem 2. Suppose that r := dim(G0) ̸= 1. Then, the ‘restricted reduced system’
(C∞(Mred

∗∗ ), {−,−}red∗∗ ),H∗∗red) is a degenerate integrable system of rank r with constants
of motion provided by the ring of functions

F♯red := ψ∗red
(
C∞(Cred

∗ )
)
.

That is, the quadruple (Mred
∗∗ , {−,−}red∗∗ ,H∗∗red,F

♯
red) satisfies Definition 2, with the co-

dimension of the generic symplectic leaves being equal to r. The reduced Hamiltonian
vector fields associated with H∗∗red span an r-dimensional subspace of the tangent space

at every point of Mred
∗∗ , and the differentials of the elements of F♯red span a co-dimension

r subspace of the cotangent space.

The symplectic leaves in Mred
∗ as well as in Mred

∗∗ are (the connected components of)
the joint level surfaces of the Casimir functions, which are obtained from

Λ∗(C∞(B)G) with the Poisson–Lie moment map Λ : M→ B.

The map Λ is defined by transferring to M the moment map Λ := ΛLΛR : GC
R → B.

The conjugation action of G is orbit-equivalent to the Poisson–Lie action generated
by the moment map.

Corollary 3. The restriction of the system (Mred
∗∗ , {−,−}red∗∗ ,H∗∗red,F

♯
red) of Theorem 2

to any symplectic leaf of Mred
∗∗ of co-dimension r is a degenerate integrable system in

the sense of Definition 1.

Remark: The r = 1 case arises for G = SU(2), and in this case we obtain ‘only’
Liouville integrability.

13



The integrability statement can be extended to Mred
∗ by using that at each y ∈ Mred

∗∗
the differentials of the elements of F∗∗red ⊂ F♯red span the same subspace of TyMred

∗∗ as do

the differentials of the elements of F♯red. This can be shown utilizing the fact that for
any smooth action of a compact Lie group on a connected manifold the dimension
of the differentials of the smooth invariant functions at a point of principal orbit type
is equal to the co-dimension of the principal orbits. (We apply this to C∞(P− ×P)G

and use pull-back.) The point is that the elements of Fred belong to C∞(Mred) and
their restrictions give smooth function on Mred

∗ .

Theorem 4. Suppose that r = rank(G) > 1 and consider the restriction of the
master system of free motion on the dense, open submanifold M∗ ⊂ M of principal
orbit type with respect to the G-action. Then, this system descends to the degenerate
integrable system (Mred

∗ , {−,−}red∗ ,H∗red,F
∗
red) on the Poisson manifold Mred

∗ = M∗/G,
where the Poisson subalgebras H∗red and F∗red of C∞(Mred

∗ ) = C∞(M∗)G arise from the
restrictions of H and Fred ≃ Ψ∗(C∞(P− ×P)G) on M∗ ⊂ M, respectively.
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Dynamical r-matrix formula for reduced Poisson brackets. Restrict to the dense,
open, G-invariant submanifold π−11 (Greg) = Greg × P ⊂ M. Every G-orbit in this
submanifold intersects M0 := {(Q,L) ∈ M | Q ∈ Greg

0 }. The intersection happens in
orbits of the normalizer N := NG(G0), and we obtain the identifications

(Greg ×P)/G ≃ M0/N and C∞(Greg ×P)G ⇐⇒ C∞(M0)
N.

Let F̄ , H̄ ∈ C∞(M0)N be the restrictions of F ,H ∈ C∞(Greg × P)G. Then, we define
their ‘reduced Poisson bracket’ by

{F̄ , H̄}redM0
(Q,L) := {F ,H}M(Q,L), ∀(Q,L) ∈ M0.

Its explicit form contains the dynamical r-matrix R(Q) ∈ End(GCR):

R(Q)(X) :=
1

2
(AdQ + id) ◦ (AdQ − id)−1|GC

⊥
(X⊥), ∀Q ∈ Greg

0 , X = (X0 +X⊥) ∈ GCR,

where X0 ∈ GC0 and X⊥ ∈ GC⊥, in correspondence with GC = GC0 + GC⊥.

Theorem 5. For F̄ , H̄ ∈ C∞(M0)N, the definition implies the formula

{F̄ , H̄}redM0
(Q,L) = ⟨D1F̄ ,D2H̄⟩I − ⟨D1H̄,D2F̄⟩I + ⟨R(Q)D2H̄,D2F̄⟩I,

where the derivatives D1F̄ ∈ B0 and D2F̄ ∈ GCR are taken at (Q,L). The Hamiltonian
H̄(Q,L) = ϕ(L) with ϕ ∈ C∞(P)G induces the evolution equations

Q̇ = (Dϕ(L))0Q, L̇ = [R(Q)Dϕ(L), L] (up to residual gauge transformations).

The formula defines a Poisson algebra structure on C∞(M0)G0 as well. For some
purposes, it is advantageous to use, instead of M0 = Greg

0 ×P, the equivalent model
M0 := Greg

0 ×B. Then, the reduced Poisson bracket becomes

{f̄ , h̄}redM0
(Q, b) = ⟨D1f̄ , D2h̄⟩I − ⟨D1h̄, D2f̄⟩I,+⟨R(Q)(bD′2h̄b

−1), bD′2f̄ b
−1⟩I.

Here, the derivatives are evaluated at (Q, b), with D1f̄ ∈ B0 and D2f̄ , D′2f̄ ∈ G.
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Canonically conjugate pairs and ‘spin’ variables. Let B0 and B+ be the sub-
groups of B associated with the subalgebras in B = B0 + B+. Any b ∈ B is uniquely
decomposed as b = epb+ with p ∈ B0, b+ ∈ B+. Then, we introduce new variables by
means of the map

ζ : M0 = Greg
0 ×B → Greg

0 × B0 ×B+

ζ : (Q, epb+) 7→ (Q, p, λ) with λ := b−1+ Q−1b+Q.

The map ζ is a diffeomorphism. It is equivariant with respect to the G0-actions for
which η0 ∈ G0 sends (Q, b) to (Q, η0bη

−1
0 ) and (Q, p, λ) to (Q, p, η0λη

−1
0 ). Consequently,

ζ induces an isomorphism: C∞(M0)G0 ⇐⇒ C∞(Greg
0 × B0 ×B+)G0.

Any two functions F,H ∈ C∞(Greg
0 ×B0×B+)G0 are related to unique f̄ , h̄ ∈ C∞(M0)G0

by F ◦ ζ = f̄ , H ◦ ζ = h̄. Thus, we can define {F,H}red0 ∈ C∞(Greg
0 × B0 ×B+)G0 by

{F,H}red0 ◦ ζ := {f̄ , h̄}redM0
.

Theorem 6. In terms of the new variables introduced via the map ζ, the reduced
Poisson bracket acquires the following ‘decoupled form’:

{F,H}red0 (Q, p, λ) = ⟨DQF, dpH⟩I − ⟨DQH, dpF ⟩I + ⟨λD′λFλ−1, DλH⟩I,
where the derivatives of F,H ∈ C∞(Greg

0 × B0 ×B+)G0 are taken at (Q, p, λ).

Using the identification (B+)∗ ≃ G⊥, the derivatives DλF,D
′
λF ∈ G⊥ are defined by

⟨X+, DλF (Q, p, λ)⟩I + ⟨X ′+, D′λF (Q, p, λ)⟩I =
d

dt

∣∣∣∣
t=0

F (Q, p, etX+λetX
′
+), ∀X+, X

′
+ ∈ B+.
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Comparison with the reduction of T ∗G. The ‘linear analogue’ of the Poisson
algebra (C∞(Greg

0 × B0 ×B+)G0, {−,−}red0 ),

{F,H}red0 (Q, p, λ) = ⟨DQF, dpH⟩I − ⟨DQH, dpF ⟩I + ⟨λD′λFλ−1, DλH⟩I,
is given by (C∞(Greg

0 × B0 × B+)G0, {−,−}lin) with

{f, h}lin(Q, p,X) := ⟨DQf, dph⟩I − ⟨DQh, dpf⟩I + ⟨X, [dXf, dXh]⟩I,

where the derivatives are taken at (Q, p,X), and dXf ∈ G⊥ ≃ (B+)∗ denotes the
differential of f with respect to its third variable. An interpretation of these brackets
comes by observing that B ≃ G∗ and B ≃ G∗, and the reductions of (B, {−,−}B) and
(G∗, {−,−}G∗) with respect to the Hamiltonian actions of G0, at the zero value of
the G∗0-valued moment map, give precisely the third term of the respective Poisson
brackets, i.e., they represent G∗//G0 and G∗//G0, respectively. [Beware, previously (on
page 7) we used the model G∗ ≃ G. Thus, ξ ∈ G⊥ used before is now replaced by X ∈ B+.]

The Poisson algebra (C∞(Greg
0 ×B0 ×B+)G0, {−,−}lin) arises from the Poisson reduction of the cotan-

gent bundle T ∗G by the obvious conjugation action, whereby the kinetic energy of the bi-invariant
Riemannian metric of G reduces to the spin Sutherland Hamiltonian:

Hspin−Suth(e
iq, p,X) =

1

2
⟨p, p⟩+

1

8

∑
α∈R+

1

|α|2
|Xα|2

sin2(α(q)/2)
with X =

∑
α∈R+

XαEα ∈ B+.

Proposition 7. For any real ϵ > 0, let us define the G0-equivariant diffeomorphism

µϵ : G
reg
0 × B0 × B+ → Greg

0 × B0 ×B+, µϵ : (Q, p,X) 7→ (Q, ϵp, exp(ϵX)).

Then, {−,−}lin is the ‘scaling limit’ of {−,−}red0 according to the formula

{f, h}lin = lim
ϵ→0

ϵ{f ◦ µ−1ϵ , h ◦ µ−1ϵ }red0 ◦ µϵ.
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Interpretation as spin RS model: Consider the new variable λ = b−1+ Q−1b+Q using

λ = eσ, b+ = eβ, σ =
∑
α>0

σαEα, β =
∑
α>0

βαEα, Q = eiq.

The Baker-Campbell-Hausdorff formula gives

exp(−β+Q−1βQ+
1

2
[Q−1βQ, β] + · · · ) = exp(σ).

As a consequence, βα can be expressed in terms of σ and eiq:

βα =
σα

e−iα(q) − 1
+
∑
k≥2

∑
φ1,...,φk

fφ1,...,φk
(eiq)σφ1 . . . σφk

,

where α = φ1+· · ·+φk and fφ1,...,φk
depends rationally on eiq. This gives a construction

of the inverse of the map ζ : (Q, epb+)→ (Q, p, λ).

Take any finite dimensional irreducible representation ρ : GC → SL(V ). Introduce an
inner product on V so that the dagger, K† = Θ(K−1), becomes the usual adjoint.
Then, the (normalized) character ϕρ(L) = trρ(L) := cρtrρ(L) gives an element of
C∞(P)G. (Here, cρ is a constant, so that trρ(XY ) := cρtr(ρ(X)ρ(Y )) = ⟨X,Y ⟩, ∀X,Y ∈ GC.)

Using the ‘decoupled variables’ (Q, p, σ), Hρ := trρ(epb+b
†
+e

p) can be expanded as

Hρ(eiq, p, σ) = cρtr

(
e2p

(
1ρ +

1

4

∑
α>0

|σα|2ρ(Eα)ρ(E−α)
sin2(α(q)/2)

+ o2(σ, σ
∗)

))
.

I call this a spin Ruijsenaars–Schneider (RS) type Hamiltonian.
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By expanding e2p,

Hρ(eiq, p, σ) = cρdimρ +2trρ(p
2) +

1

2

∑
α>0

1

|α|2
|σα|2

sin2(α(q)/2)
+ o2(σ, σ

∗, p).

Leading term of 1
4
(Hρ−cρdimρ) matches the Hamiltonian Hspin−Suth(eiq, p,X). In other

words, with the ‘scaling map’ µϵ, we have

Hspin−Suth = lim
ϵ→0

1

4ϵ2
(Hρ ◦ µϵ − cρdimρ).

The Poisson brackets of the functions of the ‘spin variables’ X and σ follow from

{Xi, Xj}G∗(X) = ⟨[Y i, Y j], X⟩I, {σi, σj}B(eσ) = ⟨[Y i, Y j], σ⟩I +o(σ),

where Xi = ⟨X,Y i⟩I for a basis {Y i} of G⊥ ⊂ G = G0 + G⊥, and similarly for σ.
Proposition 7 is a consequence of the latter expansion.

The elements of C∞(P)G yield G-invariant functions of ‘Lax matrix’ L(eiq, p, σ) :=
epb+b

†
+e

p, where b+ = b+(eiq, σ) expresses the inverse of our map ζ. In any represen-
tation,

L(eiq, p, σ) = 1+2p+
∑
α>0

(
σα

e−iα(q) − 1
Eα +

σ∗α
eiα(q) − 1

E−α

)
+o(σ, σ∗, p).

This matches the standard, G-valued, spin Sutherland Lax matrix.

In conclusion, our models are ‘deformations’ of the spin Sutherland models, which
can be recovered in the ‘scaling limit’.
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Explicit formulas for GC = SL(n,C): Now parametrize b+ ∈ B by its

matrix elements. We have b = epb+, and can find b+ from the relation

Q−1b+Q = b+λ,

where Q = diag(Q1, . . . , Qn) ∈ Greg
0 , λ ∈ B+ is the constrained ‘spin’

variable and b+ is an upper triangular matrix with unit diagonal.

Introducing Ia,a+j := 1
Qa+jQ

−1
a −1

, we have (b+)a,a+1 = Ia,a+1λa,a+1,

and, for k = 2, . . . , n− a, the matrix element (b+)a,a+k equals

Ia,a+kλa,a+k +
∑

m=2,...,k
(i1,...,im)∈Nm
i1+···+im=k

m∏
α=1

Ia,a+i1+···+iαλa+i1+···+iα−1,a+i1+···+iα.

Then H = tr(bb†) gives

H(eiq, p, λ) =
n∑

a=1

e2pa +
1

4

n−1∑
a=1

e2pa
n−a∑
k=1

|λa,a+k|2

sin2((qa+k − qa)/2)
+ o2(λ, λ

†).

Next, we explain that restricting λ to a minimal dressing orbit of SU(n) results in the

standard (spinless) real, trigonometric Ruijsenaars–Schneider model.
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Taking G = SU(n), let us go back to

{F,H}red0 (Q, p, λ) = ⟨DQF, dpH⟩I − ⟨DQH, dpF ⟩I + ⟨λD′λFλ−1, DλH⟩I,
and restrict λ to a minimal dressing orbit. This is the orbit O(y) ⊂ B(n) through

∆(y) := exp (diag((n− 1)y/2,−y/2, · · · ,−y/2)) , for some y ∈ R∗.
It turns out that

O(y) ∩B(n)+ = {Tν(y)T−1 | T ∈ G0},
with the matrix ν(y) ∈ B(n)+ given by ν(y)jk = (1 − e−y) exp((k − j)y/2), ∀j < k.
Therefore the G0-reduced orbit now consist of a single point, and the reduced Poisson
(symplectic) structure is encoded by

{F,H}red0 (Q, p) = ⟨DQF, dpH⟩I − ⟨DQH, dpF ⟩I.
For fixed λ = ν(y) and Q, the equation b−1+ Q−1b+Q = ν(y) determines b+. We find

(b+)kl = QkQ̄l

l−k∏
m=1

e
y

2Q̄k − e−
y

2Q̄k+m−1

Q̄k − Q̄k+m
, 1 ≤ k < l ≤ n, Q̄k = Q−1k = e−iqk.

Then, after the canonical transformation (q, p)→ (q, θ) with

θk = pk −
1

4

∑
m<k

ln

[
1+

sinh2(y/2)

sin2((qk − qm)/2)

]
+

1

4

∑
m>k

ln

[
1+

sinh2(y/2)

sin2((qk − qm)/2)

]
,

we obtain the trigonometric Ruijsenaars–Schneider Hamiltonian from b = epb+:

HRS(q, θ) :=
n∑

k=1

cosh(2θk)
∏
m ̸=k

[
1+

sinh2(y/2)

sin2((qk − qm)/2)

]1

2

=
1

2
tr(bb†) + (bb†)−1).

The symplectic leaf is T ∗Greg
0 /Sn and (q, θ) parametrizes T ∗Greg

0 , which motivated the transformation.
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The dual system in a nutshell

We have the following 3 models of the Heisenberg double

GC
R ≃ G×B ≃ G×P.

To study the ‘dual master system’, the first model, M = GC
R, is convenient.

Recall that K ∈ GC
R admits the Iwasawa decompositions

K = gLb
−1
R = bLg

−1
R with gL, gR ∈ G, bL, bR ∈ B,

which yield the ‘Iwasawa maps’ ΞL,ΞR : GC
R → G and ΛL,ΛR : GC

R → B,

ΞL(K) := gL, ΞR(K) := gR, ΛL(K) := bL, ΛR(K) := bR.

The Abelian Poisson algebra of the ‘dual system’ is H̃ := Ξ∗R(C
∞(G)G). To describe

the integral curve of Ξ∗R(χ) ∈ H̃ through K(0) ∈ GC
R, we need the decomposition

exp(it∇χ(gR(0))) = β(t)−1γ(t) with β(t) ∈ B, γ(t) = G.

For the class function χ ∈ (C∞(G)G), we use the G-valued derivative ∇χ defined by
⟨X,∇χ(g)⟩ := d

dt

∣∣
t=0

χ(etXg), ∀g ∈ G, X ∈ G. Then, the integral curve is

K(t) = K(0)β(t)−1 ←→ bR(t) = β(t)bR(0), bL(t) = bL(0)β(t)
−1, gL(t) = gL(0),

and gR(t) = γ(t)gR(0)γ(t)−1. Since L(t) = bR(t)bR(t)† = β(t)L(0)β(t)†, we also have
the integral curve in terms of the model G×P.
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In this case, we have the map of constants of motion

Ψ̃ : GC
R → GC

R defined by Ψ̃(K) := bLbRg
−1
L ≡ bLgRb

−1
L .

This is equivariant with respect to the conjugation action of G on the target space
GC

R and the action of G on the Heisenberg double that is induced by the Poisson-Lie
moment map Λ = ΛLΛR. The Ψ̃-pullback of the ring of invariants

C∞(GC
R)

G := {F ∈ C∞(GC
R) | F (ηKη−1) ∀η ∈ G, K ∈ GC

R}
yield constants of motion that descend to the reduced phase space. These guarantee
the degenerate integrability of the dual master system and its Poisson reduction.

Let me finish by mentioning the example of dual Ruijsenaars–Schneider system,
given by the ‘main Hamiltonian’

H̃RS :=
n∑

k=1

cos(2θ̂k)
∏
m ̸=k

[
1−

sinh2(y/2)

sinh2((q̂k − q̂m)/2)

]1

2

.

To interpret this, we consider G = SU(n) and pick the same symplectic leaf as
before, which belongs to the specific moment map value ν(y).

In fact, [LF-Klimcik 2011], H̃RS descends from the class function χ(g) := 1
2
ℜ(tr(g)).

The ‘dual position variables q̂k arise from the eigenvalues of L = bRb
†
R. This formula of

the reduced Hamiltonian is valid on a dense open subset. It was shown by Ruijsenaars
in 1995 that H̃RS is Liouville integrable on its complete(d) phase space, and this result
received a natural interpretation in the reduction approach.

This exemplifies the so-called Ruijsenaars duality (or action-position duality) between
two integrable many-body systems.
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Conclusion and open questions

1. I constructed ‘Poisson–Lie deformations’ of trigonometric spin Sutherland models.

2. I proved their degenerate integrability after restriction on the honest Poisson
manifold Mred

∗ ⊂ Mred as well as on the maximal symplectic leaves of the open dense
subset Mred

∗∗ ⊂ Mred
∗ .

3. For lack of time, I did not present it, but recently I also proved integrability on
arbitrary symplectic leaves of Mred

∗∗ (by a different method). What about integrability
on arbitrary symplectic leaves of M∗/G and of the full reduced phase phase M/G?

4. I also studied the ‘dual systems’ but details of their reductions are still to be
explored.

5. Quantization by quantum Hamiltonian reduction?

6. An old open question: Can one derive the spinless (real, repulsive) hyperbolic RS
model by Hamiltonian reduction of a real master integrable system?

7. Elliptic generalization?
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