Fundamental Group of Quantum Field Theory

Jae-Suk Park
Department of Mathematics, POSTECH, Pohang 37673, Republic of Korea

September 2, 2020

- Want to introduce a notion of 'fundamental' group of QFT.
- Motivations? Fantasy?
- Need to have a 'definition' of QFT, a working definition at least.
- Need to construct such a group from such a definition of QFT.

1 Various constructions of fundamental group

Let X be a path connected topological space with some nice properties.

1.1 Definition

Let $p_{1}(X ; x, y)$ be the set of homotopy types of paths from x to $y, x, y \in X$.

- $p_{1}(X ; x, x)$ is a group denoted by $\pi_{1}(X, x)$;
- $\pi_{1}(X, x)$ and $\pi_{1}(X, y)$ are isomorphic, and $p_{1}(X ; x, y)$ is the set of isomorphisms;
- $p_{1}(X ; x, y)$ is a torsor of fundamental group.

1.2 Via fiber functors

Let $\operatorname{Cov}(X)$ be the category of covering spaces over X.

- Taking the fiber over x for each covering space defines a functor, called a fiber functor,

$$
F_{x}: \operatorname{Cov}(X) m>\text { Set. }
$$

- Let $\operatorname{Is} \mathbf{s}\left(F_{x}, F_{y}\right)$ be the set of invertible natural transformaitions from F_{x} to F_{y}.
- There is an isomorphism $\operatorname{Iso}\left(F_{x}, F_{y}\right) \simeq p(X ; x, y)$ and $\operatorname{Aut}\left(F_{x}\right) \simeq \pi_{1}(X ; x)$.

1.3 Via the homotopy category bo Top $_{*}$

Let $h o$ Top $_{*}$ be the homotopy category of based topological spaces, X_{*}, X_{*}^{\prime} etc.

- Objects are based toplogical spaces;
- Morphisms are homotopy types of base point preserving continuous maps:
- $\left[X_{*}^{\prime}, X_{*}\right]$: the set of morphisms from X_{*}^{\prime} to X_{*},

The based loop space $\Omega\left(X_{*}\right)$ defines a contravariant functor from $b o$ Top ${ }_{*}$ to the category Grp of groups:

$$
\mathscr{S}^{X^{*}}:=\left[-, \Omega\left(X_{*}^{*}\right)\right]: \text { ho }^{\circ} \mathbf{T o p}_{*} \rightsquigarrow \operatorname{Grp}
$$

We have $\mathscr{S}^{X *}(p t) \simeq \pi_{1}(X, x)$

$$
\mathscr{S}^{X *}(p t)=\left[p t, \Omega\left(X_{*}\right)\right] \simeq\left[S_{*}^{1}, X_{*}\right] .
$$

In other words $\mathscr{S}^{X *}$ is a presheaf of groups over the homotopy category $h o \mathbf{T o p}_{*}$ that is represented by the based loop space $\Omega\left(X_{*}\right)$.

1.4 Digression I

Let hoccdgC((\mathbb{k}) be the homotopy category of differential graded cocommuative coalgebras over \mathbb{k}, a field of characteristic zero such as $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

- Objects are ccdg-Coalgebras over \mathbb{k};
- Morphisms are homotopy types of morphisms of ccdg-Coalgebra.
- $\operatorname{Hom}_{\text {boccdgC(k) }}\left(C, C^{\prime}\right)$: the set of morphisms from C to C^{\prime}.
- \mathbb{k} is naturally a ccdg-Coalgebra, denoted by \mathbb{k}^{\vee}, with the degree concentrated to zero.

Let C_{*} be a ccdg-Coalgebra with a coagumentation.

- The Adams cobar construction provides us a ccdg-Hopf algebras $\Omega\left(C_{*}\right)$.
- We have a contravariant functor

$$
\hat{\mathscr{S}}_{C_{*}}:=\operatorname{Hom}_{\text {boccdgC(k) }}\left(-, \Omega\left(C_{*}\right)\right): \text { hoccdgC(}(\mathbb{k}) \rightsquigarrow \boldsymbol{G r p}
$$

In other words $\hat{\mathscr{S}} C_{*}$ is a presheaf of groups over the homotopy category ccdg-Coalgebras that is represented by the cobar construct $\Omega\left(C_{*}\right)$ of C_{*}.

We shall use this construction for the would-be fundamental group of QFT.

1.5 Via the rational homotopy category $\mathbb{Q} h o T_{o p}^{*}$

The rational homotopy theory, founded by Quillen and Sullivan, replace $h o$ Top $_{*}$ with something more manageable $\mathbb{Q} h o \mathrm{Top}_{*}$ after forgetting something like torsions.

- For any X_{*} we have an augmented cdg-Algebra $A_{P L}\left(X_{*}\right)_{*}$ over \mathbb{Q} by Sullivan.
- A \mathbb{k}-rational Sullivan model of X_{*} is any augmented cdg-Algebra over \mathbb{k} quasi-isomorphic to $A_{P L}\left(X_{*}\right) \otimes_{\mathbb{Q}} \mathbb{k}$
- The cdg-Algebra of smooth differential forms on a smooth based and connected manifold is a \mathbb{R}-rational Sullivan model.
- A coaugmented ccdg-Coalgebra C_{*} over \mathbb{k} is a \mathbb{k}-rational Quillen model of X_{*} if its dual is a \mathbb{k}-rational Sullivan model of X_{*}
If C_{*} is a \mathbb{R}-rational Quillent model of a smooth based and connected manifold X_{*}, the group

$$
\hat{\mathscr{S}}^{C_{*}}\left(\mathbb{k}^{V}\right)=\operatorname{Hom}_{\text {boccdg }(\mathbb{k})}\left(\mathbb{k}^{V}, \Omega\left(C_{*}\right)\right)
$$

is isomorphic to the pro-unipotent fundamental group $\hat{\pi}_{1}\left(X_{*}\right)$, constructed by Chen via the iterated line integrals in the dual picture.

Let A_{*} be a augmented cdg-Algebra of differential forms on X_{*}, the bar construction gives us a cdgHopf algebra $B\left(A_{*}\right)$, which define a covariant functor

$$
\hat{\mathscr{G}}_{A_{*}}:=\operatorname{Hom}_{\text {bocdg } \mathbf{A}(\mathbb{R})}\left(B\left(A_{*}\right),-\right): \operatorname{bocdgA}(\mathbb{R}) \rightsquigarrow \rightarrow \operatorname{Grp}
$$

such that $\hat{\mathscr{G}}_{A *}(\mathbb{R}) \simeq \hat{\tau}_{1}\left(X_{*}\right)$

1.6 Digression II

Return to the presheaf of groups over the homotopy category ccdg-Coalgebras

$$
\hat{\mathscr{S}}^{C_{*}}:=\operatorname{Hom}_{\text {boccdgC(k) }}\left(-, \Omega\left(C_{*}\right)\right): \text { boccdgC(}(\mathbb{k}) \rightsquigarrow \mathrm{Grp},
$$

that is represented by the cobar construction $\Omega\left(C_{*}\right)$ of a coaugmented ccdg-Colalgebra C_{*}.
We are looking for a sort of (dual of dg) Tannakian picture. [with JH Lee]
We consider linear representations of $\hat{\mathscr{S}}^{C_{*}}$.

- A linear representation is equivalent to a dg-module over the ccdg-Hopf algebra $\Omega\left(C_{*}\right)$ over \mathbb{k}.
- Linear reprentations of $\hat{\mathscr{S}}^{C_{*}}$ form a tensor dg-category, which is equivalent to a tensor dg category $\underline{\operatorname{dgMod}}\left(\Omega\left(C_{*}\right)\right)$ of dg-modules over $\Omega\left(C_{*}\right)$.
- We have the forgetful functor $\boldsymbol{\omega}: \underline{\operatorname{dgMod}}\left(\boldsymbol{\Omega}\left(\mathbf{C}_{*}\right)\right) \rightsquigarrow \underline{\mathbf{C h}}(\mathbb{k})$, which is a tensor dg-functor, to the underlying tensor dg-category $\underline{\mathbf{C h}}(\mathbb{k})$ of chain complexes over \mathbb{k}.
- We have a presehaf of groups over the homotopy category ccdg-Coalgebras

$$
Z_{0} \operatorname{Aut}^{\otimes}(-\otimes \boldsymbol{\sigma}): \operatorname{boccdgC}^{\circ}(\mathbb{k}) \rightsquigarrow \mathrm{Grp}
$$

and an isomorphism $\hat{\mathscr{S}}^{C_{*}} \simeq Z_{0}$ Aut $^{\otimes}(\boldsymbol{\sigma})$.
I claim that a (perturbative) QFT with a corresponds to a linear representations of $\hat{\mathscr{S}}^{C_{*}}$, where the relavant coaugmented ccdg-Colagebra C_{*} is that of homotopy equivariant \hbar-de Rham coalgebra on the space of off-shell quantum observables with an infinitesimal symmetry governed by a unital $s L_{\infty}$-algebra.

2 On perturbative QFT

Let \mathbb{k} be a field of characteristic zero. We regard the Planck constant \hbar as a formal parameter. Let \mathfrak{X} be a \mathbb{Z}-graded vector space over \mathbb{k}, whose grading is specified by the ghost number $g h$.

A perturbative quantum field theory is governed by a morphism

$$
\left(\mathfrak{X}[[\hbar]], 1_{\mathfrak{X}}, \ell\right) \cdots \cdots \cdots(\mathbb{k}[[\hbar]], 1,0)
$$

of topologically-free unital $s L_{\infty}$-algebras over $\mathbb{k}[[\hbar]]$:

- $\mathfrak{X}[[\hbar]]$ is the \mathbb{Z}-graded topologically-free $\mathbb{k}[[\hbar]]$-module of off-shell quantum observables with quantum symmetry encoded by the $s L_{\infty}$-structure $\boldsymbol{\ell}$ whose unit $1_{\mathfrak{X}} \in \mathfrak{X}^{0}$ corresponds to a vacuum.
- $\ell: \bar{S}(\mathfrak{X}[[\hbar]]) \rightarrow \mathfrak{X}[[\hbar]]$ is a $\mathbb{k}[[\hbar]]$-linear map of $g h=1$
- $\mathbf{K}:=\boldsymbol{\ell}_{1}: \mathfrak{X}[[\hbar]] \rightarrow \mathfrak{X}[[\hbar]]$ is the quantum differential, making $\left(\mathfrak{X}[[\hbar]], 1_{\mathfrak{X}}, \mathbf{K}\right)$ a pointed cochain complex, i.e., $\mathbf{K} \circ \mathbf{K}=\mathbf{K} 1_{\mathfrak{X}}=0$, over $\mathbb{k}[[\hbar]]$.
- $\mathbb{k}[[\hbar]]$ with the multicative unit 1 is a unital $s L_{\infty}$-algebra with the the zero $s L_{\infty}$-structure 0 ;
- $\boldsymbol{\kappa}: \bar{S}(\mathcal{X}[[\hbar]]) \rightarrow \mathbb{k}[[\hbar]]$ is a $\mathbb{k}[[\hbar]]$-linear map of $g h=0$ is called quantum cumulant functional.
$-\mathbf{c}:=\kappa_{1}: \mathfrak{X}[[\hbar]] \rightarrow \mathbb{k}[[\hbar]]$ is the quantum expectation, which is a pointed cochain map

$$
\left(\mathfrak{X}[[\hbar]], 1_{\mathfrak{X}}, \mathbf{K}\right) \xrightarrow{\mathbf{c}}(\mathbb{k}[[\hbar]], 1,0) ; \quad \mathbf{c}\left(1_{\mathfrak{X}}\right)=1, \quad \mathbf{c} \circ \mathbf{K}=0 .
$$

$-\boldsymbol{\kappa}_{2}: S^{2} \mathfrak{X}[[\hbar]] \rightarrow \mathbb{k}[[\hbar]]$ is the quantum covariance and etc. etc.
The relation $\mathbf{c} \circ \mathbf{K}=0$ says that \mathbf{K} is an infinitesimal symmetry of quantum expectation \mathbf{c}.

A structure of $s L_{\infty}$-algebra $(\mathfrak{X}[[\hbar]], \boldsymbol{\ell})$ on $\mathfrak{X}[[\hbar]]$ is equivalent to a structure $\left(\bar{S}^{c o}(\mathfrak{X}[[\hbar]]), \boldsymbol{\delta}_{\boldsymbol{\ell}}\right)$ ccdgCoalgebra on the reduced symmetric coalgebra $\bar{S}^{c o}(\mathfrak{X}[[\hbar]])$, such that an $s L_{\infty}$-morphism is equivalent to a ccdg-Coalgbra map.

- From the $s L_{\infty}$-structure $\boldsymbol{\ell}: \bar{S}(\mathfrak{X}[[\hbar]]) \rightarrow \mathfrak{X}[[\hbar]]$, we define $\boldsymbol{\delta}_{\ell}: \bar{S}(\mathfrak{X}[[\hbar]]) \rightarrow \bar{S}(\mathfrak{X}[[\hbar])$ such that, for all $n \geq 1$ and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathfrak{X}[[\hbar]]$,

$$
\boldsymbol{\delta}_{\ell}\left(\mathbf{x}_{1} \odot \ldots \odot \mathbf{x}_{n}\right)=\sum_{S_{1} \sqcup S_{2}} \varepsilon\left(S_{1} \sqcup S_{2}\right) J \mathbf{x}_{S_{1}} \odot \ell\left(\mathbf{x}_{S_{2}}\right) .
$$

Then we have $\boldsymbol{\delta}_{\boldsymbol{\ell}} \circ \boldsymbol{\delta}_{\boldsymbol{\ell}}=0$.

- From the $s L_{\infty}$-morphism $\boldsymbol{\kappa}: \bar{S}(\mathfrak{X}[[\hbar]]) \rightarrow \mathbb{k}[[\hbar]]$, we define $\boldsymbol{\beta}\left(\boldsymbol{\kappa}^{\hbar}\right): \bar{S}(\mathfrak{X}[[\hbar]]) \rightarrow \bar{S}(\mathbb{k}[[\hbar]])$ such that, for all $n \geq 1$ and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathfrak{X}[[\hbar]]$,

$$
\boldsymbol{\beta}(\boldsymbol{\kappa})\left(\mathbf{x}_{1} \odot \ldots \odot \mathbf{x}_{n}\right):=\sum_{r=1}^{n} \frac{1}{r_{S_{1} \sqcup \ldots . \sqcup S_{r}=[n]}} \sum_{(\sqcup S) \boldsymbol{\kappa}\left(\mathbf{x}_{S_{1}}\right) \odot \ldots \odot \boldsymbol{\kappa}\left(\mathbf{x}_{S_{r}}\right)}
$$

Then we have $\boldsymbol{\beta}(\boldsymbol{\kappa}) \circ \boldsymbol{\delta}_{\ell}=0$.
Corollary.

- Define $\boldsymbol{\ell}^{\hbar}: \bar{S}(\mathfrak{X}[[\hbar]]) \rightarrow \mathfrak{X}[[\hbar]]$ such that $\boldsymbol{\delta}_{\ell^{\hbar}}\left(\mathbf{x}_{1} \odot \ldots \odot \mathbf{x}_{n}\right)=(-\hbar)^{n-1} \boldsymbol{\delta}_{\boldsymbol{\ell}}\left(\mathbf{x}_{1} \odot \ldots \odot \mathbf{x}_{n}\right)$. Then we also have $\boldsymbol{\delta}_{\ell^{\hbar}} \circ \boldsymbol{\delta}_{\ell^{\hbar}}=0$.
- Define $\boldsymbol{\kappa}^{\hbar}: \bar{S}(\mathfrak{X}[[\hbar]]) \rightarrow \mathfrak{X}[[\hbar]]$ such that $\boldsymbol{\kappa}^{\hbar}\left(\mathbf{x}_{1} \odot \ldots \odot \mathbf{x}_{n}\right)=(-\hbar)^{n-1} \boldsymbol{\kappa}\left(\mathbf{x}_{1} \odot \ldots \odot \mathbf{x}_{n}\right)$. Then we also have $\boldsymbol{\beta}\left(\boldsymbol{\kappa}^{\hbar}\right) \circ \boldsymbol{\delta}_{\ell^{\hbar}}=0$.

The quantum correlation functional $\mu: S(\mathfrak{X}[[\hbar]]) \rightarrow \mathbb{k}[[\hbar]]$ is defined by

$$
\mu:=\pi^{\mathbb{k}} \circ \boldsymbol{\beta}\left(\boldsymbol{\kappa}^{\hbar}\right)
$$

whrere $\pi^{\mathbb{k}}\left(\mathbf{a}_{1} \odot \ldots \odot \mathbf{a}_{n}\right)=\mathbf{a}_{1} \cdots \mathbf{a}_{n}$ for all $n \geq 1$ and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{k}[[\hbar]$
For example, we have $\mu_{1}=\boldsymbol{\kappa}_{1} \equiv \mathbf{c}$ is the quantum expectation, and

$$
\begin{aligned}
\mu_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & \boldsymbol{\kappa}_{1}\left(\mathbf{x}_{1}\right) \cdot \boldsymbol{\kappa}_{1}\left(\mathbf{x}_{2}\right)-\hbar \boldsymbol{\kappa}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), \\
\mu_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)= & \boldsymbol{\kappa}_{1}\left(\mathbf{x}_{1}\right) \cdot \boldsymbol{\kappa}_{1}\left(\mathbf{x}_{2}\right) \cdot \boldsymbol{\kappa}_{1}\left(\mathbf{x}_{3}\right)-\hbar \boldsymbol{\kappa}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \cdot \boldsymbol{\kappa}_{1}\left(\mathbf{x}_{3}\right)-\hbar \boldsymbol{\kappa}_{1}\left(\mathbf{x}_{1}\right) \cdot \boldsymbol{\kappa}_{2}\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
& -\hbar(-1)^{\left|\mathbf{x}_{1}\right|| |_{\mathbf{2}} \mid} \mid \boldsymbol{\kappa}_{1}\left(\mathbf{x}_{2}\right) \cdot \boldsymbol{\kappa}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right)+\hbar^{2} \boldsymbol{\kappa}_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) .
\end{aligned}
$$

From the condition that $\boldsymbol{\kappa}$ being an unital $s L_{\infty}$-morphism, we have

- $\mu\left(1_{\mathfrak{X}}\right)=1$ and $\mu\left(1_{\mathfrak{X}} \odot \mathbf{x}_{1} \odot \ldots \odot \mathbf{x}_{n}\right)=\mu\left(\mathbf{x}_{1} \odot \ldots \odot \mathbf{x}_{n}\right)$ for all $n \geq 1$;
- $\mu \circ \boldsymbol{\delta}_{\ell^{\hbar}}=0$, which says that $\boldsymbol{\delta}_{\ell^{\hbar}}$ is an infinitesimal symmetry of the quantum correlation μ.

We demand that the quantum corelation functional $\mu: S(\mathfrak{X})[[\hbar]] \rightarrow \mathbb{k}[[\hbar]]$ factors through the quantum expectation $\mathbf{c}: \mathfrak{X}[[\hbar]] \rightarrow \mathbb{k}[[\hbar]]$ via a cochain map $\pi: S(\mathfrak{X})[[\hbar]] \rightarrow \mathfrak{X}[[\hbar]$, called quantum corelator:

Note that $\boldsymbol{\pi}_{1}=\square_{\mathfrak{X}[\hbar \rrbracket]}$ Combining with the definition $\mu:=\boldsymbol{\pi}^{k} \circ \boldsymbol{\beta}\left(\boldsymbol{\kappa}^{\hbar}\right)$, we have $\pi^{k} \circ \boldsymbol{\beta}\left(\boldsymbol{\kappa}^{\hbar}\right)=\mathbf{c} \circ \boldsymbol{\pi}$. If we fix a quantum correlator π, we have

- the $s L_{\infty}$-structure $\boldsymbol{\ell}$ is determined by the quantum differential \mathbf{K} by the formula $\boldsymbol{\pi} \circ \boldsymbol{\delta}_{\boldsymbol{\hbar} \boldsymbol{\ell}}=\mathbf{K} \circ \boldsymbol{\pi}$. For example, we have $\boldsymbol{\ell}_{1}=\mathbf{K}$ and

$$
\begin{aligned}
-\hbar \boldsymbol{\ell}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & \mathbf{K} \boldsymbol{\pi}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-\boldsymbol{\pi}_{2}\left(\mathbf{K} \mathbf{x}_{1}, \mathbf{x}_{2}\right)-\boldsymbol{\pi}_{2}\left(J \mathbf{x}_{1}, \mathbf{K} \mathbf{x}_{2}\right), \\
\hbar^{2} \ell_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)= & \mathbf{K} \boldsymbol{\pi}_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)-\boldsymbol{\pi}_{3}\left(\mathbf{K} \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)-\boldsymbol{\pi}_{3}\left(J \mathbf{x}_{1}, \mathbf{K} \mathbf{x}_{2}, \mathbf{x}_{3}\right)-\boldsymbol{\pi}_{3}\left(J \mathbf{x}_{1}, J \mathbf{x}_{2}, \mathbf{K} \mathbf{x}_{3}\right) \\
& -\hbar \boldsymbol{\pi}_{2}\left(\boldsymbol{\ell}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), \mathbf{x}_{3}\right)-\hbar \boldsymbol{\pi}_{2}\left(J \mathbf{x}_{1}, \boldsymbol{\ell}_{2}\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)\right)-\hbar(-1)^{\left|\mathbf{x}_{1}\right|\left|\mathbf{x}_{2}\right|} \boldsymbol{\pi}_{2}\left(J \mathbf{x}_{2}, \boldsymbol{\ell}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right)\right) .
\end{aligned}
$$

- the quantum cumulant functional $\kappa: S(\mathfrak{X})[\hbar]] \rightarrow \mathbb{k}[[\hbar]]$ is determined by the quantum expectation \mathbf{c} by the formula $\pi^{\mathbb{k}} \circ \boldsymbol{\beta}\left(\kappa^{\hbar}\right)=\mathbf{c} \circ \boldsymbol{\pi}$. For example, we have $\kappa_{1}=\mathbf{c}$ and

$$
\begin{aligned}
-\hbar \boldsymbol{\kappa}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & \mathbf{c}\left(\boldsymbol{\pi}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right)-\mathbf{c}\left(\mathbf{x}_{1}\right) \cdot \mathbf{c}\left(\mathbf{x}_{2}\right), \\
\hbar^{2} \boldsymbol{\kappa}_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & \mathbf{c}\left(\boldsymbol{\pi}_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)\right)-\mathbf{c}\left(\mathbf{x}_{1}\right) \cdot \mathbf{c}\left(\mathbf{x}_{2}\right) \cdot \mathbf{c}\left(\mathbf{x}_{3}\right)+\hbar \boldsymbol{\kappa}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \cdot \mathbf{c}\left(\mathbf{x}_{3}\right)+\hbar \mathbf{c}\left(\mathbf{x}_{1}\right) \cdot \boldsymbol{\kappa}_{2}\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
& +\hbar(-1)^{\left|\mathbf{x}_{1} \| \mathbf{x}_{2}\right|} \mathbf{c}\left(\mathbf{x}_{2}\right) \cdot \boldsymbol{\kappa}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right) .
\end{aligned}
$$

Finally, we impose the following \hbar-condition to a quantum correlator $\pi: S(\mathfrak{X})[\hbar \hbar] \rightarrow \mathfrak{X}[[\hbar]]$:

- There is a family $\mathbf{m}_{2}^{0}, \mathbf{m}_{3}^{0}, \ldots$ of $\mathbb{k}[[\hbar]]$-linear maps

$$
\mathbf{m}_{k+2}^{0}: S^{k} \mathfrak{X}[[\hbar]] \otimes \mathfrak{X}[[\hbar]] \otimes \mathfrak{X}[[\hbar]] \rightarrow \mathfrak{X}[[\hbar]] \quad k=0,1,2, \ldots
$$

such that

$$
\pi_{n+2}\left(x_{1} \odot \ldots \odot x_{n} \odot y \otimes z\right)=\sum_{S_{1} \sqcup S_{2}=[n]}(-\hbar)^{n-\left|S_{1}\right|} \varepsilon\left(S_{1} \sqcup S_{2}\right) \pi_{\left|S_{1}\right|+1}\left(x_{S_{1}} \odot m_{\left|S_{2}\right|+2}^{\circ}\left(x_{S_{2}} \otimes y \otimes z\right)\right)
$$

- For example we have $\mathbf{m}_{2}^{0}=\pi_{2}$ and

$$
\begin{aligned}
\mathbf{m}_{2}^{0} & =\boldsymbol{\pi}_{2}, \\
-\hbar \mathbf{m}_{3}^{0} & =\boldsymbol{\pi}_{3}-\mathbf{m}_{2}^{0} \circ\left(\square \otimes \mathbf{m}_{2}^{0}\right)
\end{aligned}
$$

etc.
Finally we call the resulting tuple $\mathfrak{X}_{Q F T A}=\left(\mathfrak{X}[[\hbar]], 1_{\mathfrak{X}}, \ell, m_{2}^{0}, m_{3}^{0}, \ldots\right)$ a strucuture of (pertubative) QFT algebra on \mathfrak{X} over \mathfrak{k}.

Some examples.

- A QFT algebra is called binary if $m_{k}^{0}=0$ for all $k \geq 3$.
- A binary QFT algebra $\left(\mathfrak{X}\left[[\hbar], 1_{\mathfrak{X}}, \ell, m_{2}^{0}\right)\right.$ is a BV-QFT algebra if m_{2}^{0} does not depends on \hbar and $\boldsymbol{\ell}_{k}=0$ for all $k \geq 3$. For example:

$$
K=-\hbar \Delta_{B V}+(S,-)_{B V}, \quad \ell_{2}=(-,-)_{B V}
$$

where $\Delta_{B V}$ is the BV operator and $(-,-)_{B V}$ is the BV-bracket, and, S is a quantum master action $-\hbar \Delta+\frac{1}{2}(S, S)=0$.

- $\mathbb{k}_{\mathrm{QFTA}}=(\mathbb{k}[\llbracket \hbar], 1,0, \cdot)$ is a QFT algebra.

We have the natural notions of morphisms of QFT algebras and homotopy of morphisms, so that we can form the (homotopy)category ($b o$) QFTA (\mathbb{k}) QFT algebras over \mathbb{k}.
A quantum expectation $\mathbf{c}: \mathfrak{X}[[\hbar]] \rightarrow \mathbb{k}\left[[\hbar]\right.$ is a morphism of QFT algebra from $\mathfrak{X}_{Q F T A}$ to $\mathbb{k}_{Q F T A}$. A QFT is such an arrow $\mathfrak{X}_{\text {QFTA }} \xrightarrow{\mathbf{c}} \mathbb{k}_{\text {QFTA }}$.

There is an ample room as well as computational needs to extend the notion of QFT-algebra to that of homotopy QFT-algebra.

Let $C^{c o}(\mathfrak{X}[[\hbar]])=S^{c o}(\mathfrak{X}[[\hbar]]) \otimes \Lambda^{c o}(\mathfrak{X}[[\hbar]])$ be the tensor product of the symmetric and exterior coalgebras over $\mathbb{k}[[\hbar]]$ generated by $\mathfrak{X}[[\hbar]$.

- bigraded by $(g h, f m)$ where an element in $C_{k}(\mathfrak{X}[[\hbar]]):=\Lambda^{k} \mathfrak{X}[[\hbar]] \otimes S(\mathfrak{X}[[\hbar]])$ is assigned to $f m=-k$.
- Koszul differential $\partial: C_{k}(\mathfrak{X}[[\hbar]]) \rightarrow C_{k-1}\left(\mathfrak{X}[[\hbar])\right.$ of $(g h, f m)=(0,1)$ such that $\left(C^{c o}(\mathfrak{X}[[\hbar])\right.$,一ち $\partial)$ is a ccdg-Coalgebra.

From an $s L_{\infty}$-structure $(\mathfrak{X}[\llbracket \hbar], \ell)$ of on $\mathfrak{X}[[\hbar]]$, we have a ccdg-Coalgebra $\left(S^{c o}(\mathfrak{X}[\llbracket \hbar])\right.$, $\left.\boldsymbol{\delta}_{\boldsymbol{\ell}}\right)$ over $\mathbb{k}[[\hbar]$.
Then the differential $\boldsymbol{\delta}_{\ell}$ on $S(\mathfrak{X}[[\hbar]])$ has a unique extension to a differential \mathfrak{D}_{ℓ} on $C(\mathfrak{X}[[\hbar])$ with $(g h, f m)=(1,0)$ such that

- $\left(C\left(\mathfrak{X}[[\hbar]), \mathfrak{D}_{\ell}\right)\right.$ is a dg-comodule over the ccdg-Coalgebra $\left(S^{c o}(\mathfrak{X}[[\hbar]]), \boldsymbol{\delta}_{\ell}\right)$;
- $\left(C^{c o}(\mathfrak{X}[[\hbar]]),-\hbar \partial+\mathfrak{D}_{\ell}\right)$ is a ccdg-Coalgebra over $\mathbb{k}[[\hbar]]$.

We use the notation

$$
C_{\hbar d R}(\mathfrak{X}[[\hbar]], \ell)=\left(C^{c o}\left(\mathfrak{X}[[\hbar]),-\hbar \partial+\mathfrak{D}_{\ell}\right)\right.
$$

call it the bomotopy equivariant \hbar-de Rham coalgebra cogenerated by the $s L_{\infty}$-algebra $(\mathfrak{X}[\llbracket \hbar], \ell)$.
Restoring a unit $1_{\mathfrak{X}}$, we are led to completed and coaugmented homotopy equivariant \hbar-de Rham Coalgebra $\widehat{C}_{\hbar d R}^{*}\left(\mathfrak{X}[[\hbar]], 1_{\mathfrak{X}}, \ell\right)$, whose coaugmentation is induced from $1_{\mathfrak{X}}$.

A cotwisting coefficient system over $C_{\hbar d R}(\mathcal{X}[[\hbar]], \ell)$ is a tuple $(\mathscr{V}[[\hbar]], \omega)$ where

- $\mathscr{V}[[\hbar]]$ is a cochain complex over $\mathbb{k}[[\hbar]]$ and
- $\boldsymbol{\omega}: C(\mathfrak{X}[[\hbar]) \otimes \mathscr{V}[[\hbar] \rightarrow \mathscr{V}[[\hbar]$ is a cotwisting matrix of the total degree $g h+f m=1$, satisfying the following integrability condition $\mathscr{R}(\boldsymbol{\omega})=0$, where

$$
\mathscr{R}(\boldsymbol{\omega}):=d_{\mathscr{V} \llbracket \hbar \rrbracket} \circ \boldsymbol{\omega}+\boldsymbol{\omega} \circ\left(-\hbar \partial \otimes \mathbb{\square}+\mathfrak{D}_{\ell} \otimes \mathbb{\square}+\mathbb{\square} \otimes d_{\gamma[\llbracket \rrbracket \rrbracket}\right)+\boldsymbol{\omega} \circ(\mathbb{\square} \otimes \boldsymbol{\omega}) \circ(\Delta \otimes \mathbb{\square})
$$

See the diagram

$$
C(\mathfrak{X}[[\hbar]]) \otimes \mathscr{V}[[\hbar] \xrightarrow{\Delta \otimes 0} C(\mathfrak{X}[[\hbar]) \otimes C(\mathfrak{X}[[\hbar]]) \otimes \mathscr{V}[[\hbar]] \xrightarrow{\Delta \otimes \omega} C(\mathfrak{X}[[\hbar]]) \otimes \mathscr{V}[[\hbar] \xrightarrow{\omega} \mathscr{V}[[\hbar]]
$$

Equivalently, we have the cotwisted cofree comodule $\left(C(\mathcal{X}[[\hbar]]) \otimes \mathscr{V}[[\hbar]],{ }^{\hbar} \nabla^{\omega}\right)$ over $C_{\hbar d R}(\mathfrak{X}[[\hbar]], \ell)$ with the cotwisted differential

$$
{ }^{\hbar} \nabla^{\omega}=-\hbar \partial \otimes \mathbb{\square}+\mathfrak{D}_{\ell} \otimes \mathbb{\square}+\mathbb{\square} \otimes d_{\mathscr{V}[\hbar]}+(\mathbb{\square} \otimes \omega) \circ(\Delta \otimes \mathbb{\square})
$$

satisfying ${ }^{\hbar} \nabla^{\omega}{ }^{\circ}{ }^{\hbar} \nabla^{\omega}=0$.
We say such a cotwising coefficient system over $C_{\hbar d R}(\mathfrak{X}[[\hbar]], \ell)$ is tangential if $\mathscr{V}[[\hbar]=\mathfrak{X}[[\hbar]]$.

A homotopy QFT algebra is a tangential cotwisting coefficient system $(\mathcal{X}[[\hbar]], \omega)$ over the completed and coaugmented homotopy equivariant \hbar-de Rham coalgebra $\widehat{C}_{\hbar d R}^{*}\left(\mathcal{X}[[\hbar]], 1_{\mathfrak{X}}, \ell\right)$ cogenerated by a $s L_{\infty}$-algebra $\left.(\mathfrak{X}[\hbar]], \ell\right)$ over $\mathbb{k}[[\hbar]]$.
Note that the total degree of $\boldsymbol{\omega}: \widehat{C}(\mathfrak{X}[[\hbar]]) \hat{\otimes} \mathfrak{X}[[\hbar]] \rightarrow \mathfrak{X}[\llbracket \hbar]]$ is $g h+f m=1$. Decomposing $\widehat{\boldsymbol{\omega}}$ into $\boldsymbol{\omega}_{k}: C_{k}(\mathfrak{X}[[\hbar]]) \otimes \mathfrak{X}[[\hbar]] \rightarrow \mathfrak{X}[[\hbar]]$ of degree $(g h, f m)=(1-k, k)$, we obtain a family $\boldsymbol{\omega}_{0}, \boldsymbol{\omega}_{1}, \widehat{\omega}_{2}, \ldots$. Define $m_{n+k+1}^{1-k}: S^{n} \mathfrak{X}[[\hbar]] \otimes \Lambda^{n} \mathfrak{X}[[\hbar]] \otimes \mathfrak{X}[[\hbar]] \rightarrow \mathfrak{X}[[\hbar]]$ of $g h=1-k$ such that

$$
m_{n+k+1}^{1-k}=\widehat{\omega}_{k}\left(x_{1} \odot \ldots x_{n} \otimes x_{n+1} \wedge \ldots \wedge x_{n+k} \otimes x_{n+k+1}\right)
$$

We obtain the following set of multi-linear operations on $\mathfrak{X}[[\hbar]]$, indexed by the ghost number and arity:

	$g h \backslash$ arity	1	2	3	4	\cdots
$\ell:$	+1	K	ℓ_{2}	ℓ_{3}	ℓ_{4}	\cdots
$\omega_{1}:$	0		m_{2}^{0}	m_{3}^{0}	m_{4}^{0}	\cdots
$\boldsymbol{\omega}_{2}:$	-1			m_{3}^{-1}	m_{4}^{-1}	\cdots
$\boldsymbol{\omega}_{3}:$	-2				m_{4}^{-2}	\cdots
\vdots	\vdots					\ddots

satisfying the set of relations summarized by the integrability ${ }^{\hbar} \nabla^{\omega}{ }^{\omega}{ }^{\hbar} \nabla^{\omega}=0$.
We can form the (homotopy)category $(b o)$ QFTA $_{\infty}(\mathbb{k})$ of homotopy QFT-algebras. Many nice things happen there...

But we have also opened a door to something unknown.

