Fundamental Group of Quantum Field Theory

Jae-Suk Park Department of Mathematics, POSTECH, Pohang 37673, Republic of Korea

September 2, 2020

- Want to introduce a notion of 'fundamental' group of QFT.
- Motivations? Fantasy?
- Need to have a 'definition' of QFT, a working definition at least.
- Need to construct such a group from such a definition of QFT.

1 Various constructions of fundamental group

Let X be a path connected topological space with some nice properties.

1.1 Definition

Let $p_1(X; x, y)$ be the set of homotopy types of paths from x to $y, x, y \in X$.

- $p_1(X; x, x)$ is a group denoted by $\pi_1(X, x)$;
- $\pi_1(X, x)$ and $\pi_1(X, y)$ are isomorphic, and $p_1(X; x, y)$ is the set of isomorphisms;
- $p_1(X; x, y)$ is a torsor of fundamental group.

1.2 Via fiber functors

Let Cov(X) be the category of covering spaces over X.

• Taking the fiber over x for each covering space defines a functor, called a fiber functor,

 F_x : **Cov**(X) \rightsquigarrow **Set**.

- Let $Iso(F_x, F_y)$ be the set of invertible natural transformations from F_x to F_y .
- There is an isomorphism $\mathbf{Iso}(F_x, F_y) \simeq p(X; x, y)$ and $\mathbf{Aut}(F_x) \simeq \pi_1(X; x)$.

1.3 Via the homotopy category *ho*Top_{*}

Let ho**Top**_{*} be the homotopy category of based topological spaces, X_*, X'_* etc.

- Objects are based toplogical spaces;
- Morphisms are homotopy types of base point preserving continuous maps:
- $[X'_*, X_*]$: the set of morphisms from X'_* to X_* ,

The based loop space $\Omega(X_*)$ defines a contravariant functor from hoTop $_*$ to the category Grp of groups:

$$\mathscr{S}^{X*} := [-, \Omega(X_*)] : ho \mathring{\operatorname{Top}}_* \rightsquigarrow \operatorname{Grp}$$

We have $\mathscr{S}^{X*}(pt) \simeq \pi_1(X, x)$

$$\mathscr{S}^{X*}(pt) = [pt, \Omega(X_*)] \simeq [S_*^1, X_*].$$

In other words \mathscr{S}^{X*} is a presheaf of groups over the homotopy category *ho***Top**_{*} that is represented by the based loop space $\Omega(X_*)$.

1.4 Digression I

Let $hoccdgC(\Bbbk)$ be the homotopy category of differential graded cocommutive coalgebras over \Bbbk , a field of characteristic zero such as \mathbb{Q} , \mathbb{R} , \mathbb{C} .

- Objects are ccdg-Coalgebras over k;
- Morphisms are homotopy types of morphisms of ccdg-Coalgebra.
- $\operatorname{Hom}_{\operatorname{hoccdgC}(\Bbbk)}(C, C')$: the set of morphisms from C to C'.
- k is naturally a ccdg-Coalgebra, denoted by k^{\vee} , with the degree concentrated to zero.

Let C_* be a ccdg-Coalgebra with a coagumentation.

- The Adams cobar construction provides us a ccdg-Hopf algebras $\Omega(C_*)$.
- We have a contravariant functor

$$\hat{\mathscr{S}}^{C_*} := \operatorname{Hom}_{hoccdgC(\Bbbk)} (-, \Omega(C_*)) : hoccdgC(\Bbbk) \rightsquigarrow \operatorname{Grp}$$

• We call the group $\hat{\mathscr{S}}^{C_*}(\Bbbk^{\vee}) = \operatorname{Hom}_{\operatorname{hoccdgC}(\Bbbk)}(\Bbbk^{\vee}, \Omega(C_*))$ the fundamental group of C_* .

In other words $\hat{\mathscr{S}}^{C_*}$ is a presheaf of groups over the homotopy category ccdg-Coalgebras that is represented by the cobar construct $\Omega(C_*)$ of C_* .

We shall use this construction for the would-be fundamental group of QFT.

1.5 Via the rational homotopy category $QboTop_*$

The rational homotopy theory, founded by Quillen and Sullivan, replace ho Top_{*} with something more manageable Qho Top_{*} after forgetting something like torsions.

- For any X_* we have an augmented cdg-Algebra $A_{PL}(X_*)_*$ over \mathbb{Q} by Sullivan.
- A k-rational Sullivan model of X_* is any augmented cdg-Algebra over k quasi-isomorphic to $A_{PL}(X_*) \otimes_{\mathbb{Q}} k$
- The cdg-Algebra of smooth differential forms on a smooth based and connected manifold is a R-rational Sullivan model.
- A coaugmented ccdg-Coalgebra C_* over \Bbbk is a \Bbbk -rational Quillen model of X_* if its dual is a \Bbbk -rational Sullivan model of X_*

If C_* is a \mathbb{R} -rational Quillent model of a smooth based and connected manifold X_* , the group

.

$$\mathscr{G}^{C_*}(\Bbbk^{\vee}) = \operatorname{Hom}_{boccdgC(\Bbbk)}(\Bbbk^{\vee}, \Omega(C_*))$$

is isomorphic to the pro-unipotent fundamental group $\hat{\pi}_1(X_*)$, constructed by Chen via the iterated line integrals in the dual picture.

Let A_* be a augmented cdg-Algebra of differential forms on X_* , the bar construction gives us a cdg-Hopf algebra $B(A_*)$, which define a covariant functor

$$\mathscr{G}_{A_*} := \operatorname{Hom}_{\operatorname{hocdgA}(\mathbb{R})}(B(A_*), -) : \operatorname{hocdgA}(\mathbb{R}) \rightsquigarrow \operatorname{Grp}$$

such that $\hat{\mathscr{G}}_{A*}(\mathbb{R}) \simeq \hat{\pi}_1(X_*)$

1.6 Digression II

Return to the presheaf of groups over the homotopy category ccdg-Coalgebras

$$\hat{\mathscr{G}}^{C_*} := \operatorname{Hom}_{boccdgC(\Bbbk)} (-, \Omega(C_*)) : boccdgC(\Bbbk) \rightsquigarrow \operatorname{Grp},$$

that is represented by the cobar construction $\Omega(C_*)$ of a coaugmented ccdg-Colalgebra C_* .

We are looking for a sort of (dual of dg) Tannakian picture. [with JH Lee]

We consider linear representations of $\hat{\mathscr{S}}^{C_*}$.

- A linear representation is equivalent to a dg-module over the ccdg-Hopf algebra $\Omega(C_*)$ over \Bbbk .
- Linear reprentations of β^C* form a tensor dg-category, which is equivalent to a tensor dg-category dgMod(Ω(C*)) of dg-modules over Ω(C*).
- We have the forgetful functor *σ* : dgMod(Ω(C_{*})) → Ch(k), which is a tensor dg-functor, to the underlying tensor dg-category Ch(k) of chain complexes over k.
- We have a presehaf of groups over the homotopy category ccdg-Coalgebras

$$Z_0 \operatorname{Aut}^{\otimes}(-\otimes \boldsymbol{\varpi}) : \operatorname{hoccdgC}(\Bbbk) \rightsquigarrow \operatorname{Grp}$$

and an isomorphism $\hat{\mathscr{S}}^{C_*} \simeq Z_0 \operatorname{Aut}^{\otimes}(\boldsymbol{\varpi}).$

I claim that a (perturbative) QFT with a corresponds to a linear representations of $\hat{\mathscr{S}}^{C_*}$, where the relavant coaugmented ccdg-Colagebra C_* is that of homotopy equivariant \hbar -de Rham coalgebra on the space of off-shell quantum observables with an infinitesimal symmetry governed by a unital sL_{∞} -algebra.

2 On perturbative QFT

Let \Bbbk be a field of characteristic zero. We regard the Planck constant \hbar as a formal parameter. Let \mathfrak{X} be a \mathbb{Z} -graded vector space over \Bbbk , whose grading is specified by the ghost number *gh*.

A perturbative quantum field theory is governed by a morphism

$$\left(\mathfrak{X}[[\![\hbar]]\!], 1_{\mathfrak{X}}, \boldsymbol{\ell}\right) \xrightarrow{\kappa} \left(\Bbbk[[\![\hbar]]\!], 1, 0 \right)$$

of topologically-free unital sL_{∞} -algebras over $k[[\hbar]]$:

- $\mathfrak{X}[[\hbar]]$ is the \mathbb{Z} -graded topologically-free $\Bbbk[[\hbar]]$ -module of off-shell quantum observables with quantum symmetry encoded by the sL_{∞} -structure ℓ whose unit $1_{\mathfrak{X}} \in \mathfrak{X}^{0}$ corresponds to a vacuum.
 - $\boldsymbol{\ell}: \overline{S}(\mathfrak{X}[[\hbar]]) \to \mathfrak{X}[[\hbar]]$ is a $\Bbbk[[\hbar]]$ -linear map of gh = 1
 - K := ℓ₁: X[[ħ]] → X[[ħ]] is the quantum differential, making (X[[ħ]], 1_X, K) a pointed cochain complex, i.e., K ∘ K = K1_X = 0, over k[[ħ]].
- $k[[\hbar]]$ with the multicative unit 1 is a unital sL_{∞} -algebra with the the zero sL_{∞} -structure 0;
- $\kappa : \overline{S}(\mathfrak{X}[[\hbar]]) \to \Bbbk[[\hbar]]$ is a $\Bbbk[[\hbar]]$ -linear map of gh = 0 is called *quantum cumulant functional*.
 - $\mathbf{c} := \kappa_1 : \mathfrak{X}[[\hbar]] \to \Bbbk[[\hbar]]$ is the *quantum expectation*, which is a pointed cochain map

 $\left(\mathfrak{X}[[\, \frac{\hbar}{2}\,]], 1_{\mathfrak{X}}, \mathbf{K} \right) \xrightarrow{\mathbf{c}} \left(\Bbbk[[\, \frac{\hbar}{2}\,]], 1, \mathbf{0} \right); \qquad \mathbf{c}(1_{\mathfrak{X}}) = 1, \quad \mathbf{c} \circ \mathbf{K} = \mathbf{0}.$

- $\kappa_2: S^2 \mathfrak{X}[[\hbar]] \to \Bbbk[[\hbar]]$ is the quantum covariance and etc. etc.

The relation $\mathbf{c} \circ \mathbf{K} = 0$ says that \mathbf{K} is an infinitesimal symmetry of quantum expectation \mathbf{c} .

A structure of sL_{∞} -algebra $(\mathfrak{X}[[\hbar]], \ell)$ on $\mathfrak{X}[[\hbar]]$ is equivalent to a structure $(\overline{S}^{co}(\mathfrak{X}[[\hbar]]), \delta_{\ell})$ ccdg-Coalgebra on the reduced symmetric coalgebra $\overline{S}^{co}(\mathfrak{X}[[\hbar]])$, such that an sL_{∞} -morphism is equivalent to a ccdg-Coalgbra map.

• From the sL_{∞} -structure $\boldsymbol{\ell}: \overline{S}(\mathfrak{X}[[\hbar]]) \to \mathfrak{X}[[\hbar]]$, we define $\boldsymbol{\delta}_{\boldsymbol{\ell}}: \overline{S}(\mathfrak{X}[[\hbar]]) \to \overline{S}(\mathfrak{X}[[\hbar]])$ such that, for all $n \ge 1$ and $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathfrak{X}[[\hbar]]$,

$$\boldsymbol{\delta}_{\boldsymbol{\ell}}(\mathbf{x}_1 \odot \ldots \odot \mathbf{x}_n) = \sum_{S_1 \sqcup S_2} \varepsilon(S_1 \sqcup S_2) J \mathbf{x}_{S_1} \odot \boldsymbol{\ell}(\mathbf{x}_{S_2}).$$

Then we have $\delta_{\ell} \circ \delta_{\ell} = 0$.

• From the sL_{∞} -morphism $\kappa : \overline{S}(\mathfrak{X}[[\hbar]]) \to \Bbbk[[\hbar]]$, we define $\beta(\kappa^{\hbar}) : \overline{S}(\mathfrak{X}[[\hbar]]) \to \overline{S}(\Bbbk[[\hbar]])$ such that, for all $n \ge 1$ and $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathfrak{X}[[\hbar]]$,

$$\boldsymbol{\beta}(\boldsymbol{\kappa})(\mathbf{x}_1 \odot \ldots \odot \mathbf{x}_n) := \sum_{r=1}^n \frac{1}{r_{S_1 \sqcup \ldots \sqcup S_r}!} \varepsilon(\sqcup S) \boldsymbol{\kappa}(\mathbf{x}_{S_1}) \odot \ldots \odot \boldsymbol{\kappa}(\mathbf{x}_{S_r}).$$

Then we have $\boldsymbol{\beta}(\boldsymbol{\kappa}) \circ \boldsymbol{\delta}_{\boldsymbol{\ell}} = 0$.

Corollary.

- Define $\boldsymbol{\ell}^{\,\hbar}: \overline{S}(\mathfrak{X}[[\,\hbar]]) \to \mathfrak{X}[[\,\hbar]]$ such that $\boldsymbol{\delta}_{\boldsymbol{\ell}^{\,\hbar}}(\mathbf{x}_1 \odot \ldots \odot \mathbf{x}_n) = (-\hbar)^{n-1} \boldsymbol{\delta}_{\boldsymbol{\ell}}(\mathbf{x}_1 \odot \ldots \odot \mathbf{x}_n)$. Then we also have $\boldsymbol{\delta}_{\boldsymbol{\ell}^{\,\hbar}} \circ \boldsymbol{\delta}_{\boldsymbol{\ell}^{\,\hbar}} = 0$.
- Define $\kappa^{\dagger} : \overline{S}(\mathfrak{X}[[\dagger]) \to \mathfrak{X}[[\dagger]]$ such that $\kappa^{\dagger}(\mathbf{x}_1 \odot \ldots \odot \mathbf{x}_n) = (-\dagger)^{n-1} \kappa(\mathbf{x}_1 \odot \ldots \odot \mathbf{x}_n)$. Then we also have $\beta(\kappa^{\dagger}) \circ \delta_{\ell^{\dagger}} = 0$.

The quantum correlation functional $\mu : S(\mathfrak{X}[[\hbar]]) \to \Bbbk[[\hbar]]$ is defined by

$$\mu := \pi^{\Bbbk} \circ \mathbf{eta}(\kappa^{\,\hbar}),$$

where $\pi^{\Bbbk}(\mathbf{a}_1 \odot \ldots \odot \mathbf{a}_n) = \mathbf{a}_1 \cdots \mathbf{a}_n$ for all $n \ge 1$ and $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \Bbbk[[\hbar]]$ For example, we have $\mu_1 = \kappa_1 \equiv \mathbf{c}$ is the quantum expectation, and

$$\mu_{2}(\mathbf{x}_{1},\mathbf{x}_{2}) = \kappa_{1}(\mathbf{x}_{1}) \cdot \kappa_{1}(\mathbf{x}_{2}) - \hbar \kappa_{2}(\mathbf{x}_{1},\mathbf{x}_{2}),$$

$$\mu_{3}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}) = \kappa_{1}(\mathbf{x}_{1}) \cdot \kappa_{1}(\mathbf{x}_{2}) \cdot \kappa_{1}(\mathbf{x}_{3}) - \hbar \kappa_{2}(\mathbf{x}_{1},\mathbf{x}_{2}) \cdot \kappa_{1}(\mathbf{x}_{3}) - \hbar \kappa_{1}(\mathbf{x}_{1}) \cdot \kappa_{2}(\mathbf{x}_{2},\mathbf{x}_{3})$$

$$- \hbar (-1)^{|\mathbf{x}_{1}||\mathbf{x}_{2}|} \kappa_{1}(\mathbf{x}_{2}) \cdot \kappa_{2}(\mathbf{x}_{1},\mathbf{x}_{3}) + \hbar^{2} \kappa_{3}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}).$$

From the condition that $\pmb{\kappa}$ being an unital $sL_\infty\text{-morphism},$ we have

- $\mu(1_{\mathfrak{X}}) = 1$ and $\mu(1_{\mathfrak{X}} \odot \mathbf{x}_1 \odot \ldots \odot \mathbf{x}_n) = \mu(\mathbf{x}_1 \odot \ldots \odot \mathbf{x}_n)$ for all $n \ge 1$;
- $\mu \circ \delta_{\ell^{\dagger}} = 0$, which says that $\delta_{\ell^{\dagger}}$ is an infinitesimal symmetry of the quantum correlation μ .

We demand that the quantum corelation functional $\mu : S(\mathfrak{X})[[\hbar]] \to \Bbbk[[\hbar]]$ factors through the quantum expectation $\mathbf{c} : \mathfrak{X}[[\hbar]] \to \Bbbk[[\hbar]]$ via a cochain map $\pi : S(\mathfrak{X})[[\hbar]] \to \mathfrak{X}[[\hbar]]$, called quantum corelator:

$$S(\mathfrak{X}[[\hbar]]) \xrightarrow{\mu} \Bbbk[[\hbar]], \qquad \mu = \mathbf{c} \circ \pi, \qquad \pi \circ \mathbf{\delta}_{b\ell} = \mathbf{K} \circ \pi.$$
(1)
$$\downarrow^{\pi} \qquad \mathbf{c}$$

$$\mathfrak{X}[[\hbar]]$$

Note that $\pi_1 = \mathbb{I}_{\mathfrak{X}[[\hbar]]}$ Combining with the definition $\mu := \pi^{\Bbbk} \circ \beta(\kappa^{\hbar})$, we have $\pi^{\Bbbk} \circ \beta(\kappa^{\hbar}) = \mathbf{c} \circ \pi$. If we fix a quantum correlator π , we have

• the sL_{∞} -structure $\boldsymbol{\ell}$ is determined by the quantum differential **K** by the formula $\pi \circ \delta_{\boldsymbol{\vartheta} \boldsymbol{\ell}} = \mathbf{K} \circ \pi$. For example, we have $\boldsymbol{\ell}_1 = \mathbf{K}$ and

$$\begin{split} &-\hbar \, \boldsymbol{\ell}_{2} \left(\mathbf{x}_{1},\mathbf{x}_{2}\right) = \mathbf{K} \, \boldsymbol{\pi}_{2}(\mathbf{x}_{1},\mathbf{x}_{2}) - \boldsymbol{\pi}_{2} \Big(\mathbf{K} \mathbf{x}_{1},\mathbf{x}_{2}\Big) - \boldsymbol{\pi}_{2} \Big(J \mathbf{x}_{1},\mathbf{K} \mathbf{x}_{2}\Big), \\ &\hbar^{2} \, \boldsymbol{\ell}_{3} \left(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}\right) = \mathbf{K} \, \boldsymbol{\pi}_{3}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}) - \boldsymbol{\pi}_{3} \Big(\mathbf{K} \mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}\Big) - \boldsymbol{\pi}_{3} \Big(J \mathbf{x}_{1},\mathbf{K} \mathbf{x}_{2},\mathbf{x}_{3}\Big) - \boldsymbol{\pi}_{3} \Big(J \mathbf{x}_{1},J \mathbf{x}_{2},\mathbf{K} \mathbf{x}_{3}\Big) \\ &- \, \hbar \, \boldsymbol{\pi}_{2} \Big(\, \boldsymbol{\ell}_{2} \left(\mathbf{x}_{1},\mathbf{x}_{2}\right),\mathbf{x}_{3}\Big) - \, \hbar \, \boldsymbol{\pi}_{2} \Big(J \mathbf{x}_{1},\boldsymbol{\ell}_{2}(\mathbf{x}_{2},\mathbf{x}_{3})\Big) - \, \hbar (-1)^{|\mathbf{x}_{1}||\mathbf{x}_{2}|} \, \boldsymbol{\pi}_{2} \Big(J \mathbf{x}_{2},\boldsymbol{\ell}_{2}(\mathbf{x}_{1},\mathbf{x}_{3})\Big). \end{split}$$

the quantum cumulant functional κ : S(𝔅)[[𝑘]] → k[[𝑘]] is determined by the quantum expectation c by the formula π^k ∘ β(κ^𝑘) = c ∘ π. For example, we have κ₁ = c and

$$\begin{split} &-\hbar\kappa_{2}(\mathbf{x}_{1},\mathbf{x}_{2}) = \mathbf{c}\big(\pi_{2}(\mathbf{x}_{1},\mathbf{x}_{2})\big) - \mathbf{c}(\mathbf{x}_{1}) \cdot \mathbf{c}(\mathbf{x}_{2}), \\ &\hbar^{2}\kappa_{3}(\mathbf{x}_{1},\mathbf{x}_{2}) = \mathbf{c}\big(\pi_{3}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3})\big) - \mathbf{c}(\mathbf{x}_{1}) \cdot \mathbf{c}(\mathbf{x}_{2}) \cdot \mathbf{c}(\mathbf{x}_{3}) + \hbar\kappa_{2}(\mathbf{x}_{1},\mathbf{x}_{2}) \cdot \mathbf{c}(\mathbf{x}_{3}) + \hbar\mathbf{c}(\mathbf{x}_{1}) \cdot \kappa_{2}(\mathbf{x}_{2},\mathbf{x}_{3}) \\ &+ \hbar(-1)^{|\mathbf{x}_{1}||\mathbf{x}_{2}|} \mathbf{c}(\mathbf{x}_{2}) \cdot \kappa_{2}(\mathbf{x}_{1},\mathbf{x}_{3}). \end{split}$$

Finally, we impose the following \hbar -condition to a quantum correlator $\pi : S(\mathfrak{X})[[\hbar]] \to \mathfrak{X}[[\hbar]]$:

• There is a family $\mathbf{m}_2^0, \mathbf{m}_3^0, \dots$ of $\Bbbk[[\hbar]]$ -linear maps

$$\mathbf{m}_{k+2}^{0}: S^{k} \mathfrak{X}[[\hbar]] \otimes \mathfrak{X}[[\hbar]] \otimes \mathfrak{X}[[\hbar]] \to \mathfrak{X}[[\hbar]] \qquad k = 0, 1, 2, \dots$$

such that

$$\boldsymbol{\pi}_{n+2}(\boldsymbol{x}_1 \odot \ldots \odot \boldsymbol{x}_n \odot \boldsymbol{y} \otimes \boldsymbol{z}) = \sum_{S_1 \sqcup S_2 = [n]} (-\boldsymbol{b})^{n-|S_1|} \varepsilon(S_1 \sqcup S_2) \ \boldsymbol{\pi}_{|S_1|+1}(\boldsymbol{x}_{S_1} \odot \boldsymbol{m}_{|S_2|+2}^{\circ}(\boldsymbol{x}_{S_2} \otimes \boldsymbol{y} \otimes \boldsymbol{z}))$$

• For example we have $\mathbf{m}_2^0 = \boldsymbol{\pi}_2$ and

$$\mathbf{m}_{2}^{\circ} = \boldsymbol{\pi}_{2},$$

$$-\boldsymbol{\hbar}\mathbf{m}_{3}^{\circ} = \boldsymbol{\pi}_{3} - \mathbf{m}_{2}^{\circ} \circ \left(\mathbb{I} \otimes \mathbf{m}_{2}^{\circ} \right)$$

etc.

Finally we call the resulting tuple $\mathfrak{X}_{QFTA} = (\mathfrak{X}[[\hbar]], 1_{\mathfrak{X}}, \ell, m_2^0, m_3^0, ...)$ a strucuture of (pertubative) QFT algebra on \mathfrak{X} over \Bbbk .

Some examples.

- A QFT algebra is called binary if $m_k^0 = 0$ for all $k \ge 3$.
- A binary QFT algebra (X[[ħ]], 1_x, ℓ, m⁰₂) is a BV-QFT algebra if m⁰₂ does not depends on ħ and ℓ_k = 0 for all k ≥ 3. For example:

$$K = -\frac{\hbar}{\Delta}\Delta_{BV} + (S, -)_{BV}, \qquad \ell_2 = (-, -)_{BV}$$

where Δ_{BV} is the BV operator and $(-, -)_{BV}$ is the BV-bracket, and, S is a quantum master action $-\hbar\Delta + \frac{1}{2}(S, S) = 0$.

• $\mathbb{k}_{QFTA} = (\mathbb{k}[[\hbar]], 1, 0, \cdot)$ is a QFT algebra.

We have the natural notions of morphisms of QFT algebras and homotopy of morphisms, so that we can form the (homotopy)category (*ho*)**QFTA**(\Bbbk) QFT algebras over \Bbbk .

A quantum expectation $\mathbf{c}: \mathfrak{X}[[\hbar]] \to \Bbbk[[\hbar]]$ is a morphism of QFT algebra from \mathfrak{X}_{QFTA} to \Bbbk_{QFTA} . A QFT is such an arrow $\mathfrak{X}_{QFTA} \xrightarrow{\mathbf{c}} \Bbbk_{QFTA}$.

There is an ample room as well as computational needs to extend the notion of QFT-algebra to that of homotopy QFT-algebra.

Let $C^{co}(\mathfrak{X}[[\hbar]]) = S^{co}(\mathfrak{X}[[\hbar]]) \otimes \Lambda^{co}(\mathfrak{X}[[\hbar]])$ be the tensor product of the symmetric and exterior coalgebras over $\Bbbk[[\hbar]]$ generated by $\mathfrak{X}[[\hbar]]$.

- bigraded by (gh, fm) where an element in $C_k(\mathfrak{X}[[\hbar]]) := \Lambda^k \mathfrak{X}[[\hbar]] \otimes S(\mathfrak{X}[[\hbar]])$ is assigned to fm = -k.
- Koszul differential ∂ : C_k(𝔅[[ħ]]) → C_{k-1}(𝔅[[ħ]]) of (gh, fm) = (0, 1) such that (C^{co}(𝔅[[ħ]]), -ħ∂) is a ccdg-Coalgebra.

From an sL_{∞} -structure $(\mathfrak{X}[[\hbar]], \ell)$ of on $\mathfrak{X}[[\hbar]]$, we have a ccdg-Coalgebra $(S^{co}(\mathfrak{X}[[\hbar]]), \delta_{\ell})$ over $\Bbbk[[\hbar]]$.

Then the differential δ_{ℓ} on $S(\mathfrak{X}[[\hbar]])$ has a unique extension to a differential \mathfrak{D}_{ℓ} on $C(\mathfrak{X}[[\hbar]])$ with (gh, fm) = (1, 0) such that

- $(C(\mathfrak{X}[[\hbar]]), \mathfrak{D}_{\ell})$ is a dg-comodule over the ccdg-Coalgebra $(S^{co}(\mathfrak{X}[[\hbar]]), \delta_{\ell});$
- $(C^{co}(\mathfrak{X}[[\hbar]]), -\hbar\partial + \mathfrak{D}_{\ell})$ is a ccdg-Coalgebra over $\Bbbk[[\hbar]]$.

We use the notation

$$C_{\hbar dR}(\mathfrak{X}[[\hbar]], \boldsymbol{\ell}) = (C^{co}(\mathfrak{X}[[\hbar]]), -\hbar \partial + \mathfrak{D}_{\boldsymbol{\ell}})$$

call it the homotopy equivariant \hbar -de Rham coalgebra cogenerated by the sL_{∞} -algebra $(\mathfrak{X}[[\hbar]], \ell)$.

Restoring a unit $1_{\mathfrak{X}}$, we are led to completed and coaugmented homotopy equivariant \hbar -de Rham Coalgebra $\widehat{C}^*_{\hbar dR}(\mathfrak{X}[[\hbar]], 1_{\mathfrak{X}}, \ell)$, whose coaugmentation is induced from $1_{\mathfrak{X}}$.

A cotwisting coefficient system over $C_{\hbar dR}(\mathfrak{X}[[\hbar]], \boldsymbol{\ell})$ is a tuple $(\mathscr{V}[[\hbar]], \boldsymbol{\omega})$ where

- $\mathscr{V}[[\![\hbar]\!]$ is a cochain complex over $\Bbbk[\![\hbar]\!]$ and
- $\boldsymbol{\omega} : C(\mathfrak{X}[[\hbar]]) \otimes \mathscr{V}[[\hbar]] \to \mathscr{V}[[\hbar]]$ is a cotwisting matrix of the total degree gh + fm = 1, satisfying the following integrability condition $\mathscr{R}(\boldsymbol{\omega}) = 0$, where

$$\mathscr{R}(\boldsymbol{\omega}) := d_{\mathscr{V}[[\hbar]]} \circ \boldsymbol{\omega} + \boldsymbol{\omega} \circ \left(-\hbar \partial \otimes \mathbb{I} + \mathfrak{D}_{\boldsymbol{\ell}} \otimes \mathbb{I} + \mathbb{I} \otimes d_{\mathscr{V}[[\hbar]]}\right) + \boldsymbol{\omega} \circ (\mathbb{I} \otimes \boldsymbol{\omega}) \circ (\Delta \otimes \mathbb{I})$$

See the diagram

$$C(\mathfrak{X}[[\hbar]]) \otimes \mathscr{V}[[\hbar]] \xrightarrow{\Delta \otimes \mathbb{I}} C(\mathfrak{X}[[\hbar]]) \otimes C(\mathfrak{X}[[\hbar]]) \otimes \mathscr{V}[[\hbar]] \xrightarrow{\mathbb{I} \otimes \mathbf{\omega}} C(\mathfrak{X}[[\hbar]]) \otimes \mathscr{V}[[\hbar]] \xrightarrow{\mathbf{\omega}} \mathscr{V}[[\hbar]]$$

Equivalently, we have the cotwisted cofree comodule $(C(\mathfrak{X}[[\hbar]]) \otimes \mathscr{V}[[\hbar]], {}^{\hbar}\nabla^{\omega})$ over $C_{\hbar dR}(\mathfrak{X}[[\hbar]], \ell)$ with the cotwisted differential

$${}^{\hbar}\!\nabla^{\omega} = - {}^{\hbar}\!\partial \otimes \mathbb{I} + \mathfrak{D}_{\boldsymbol{\ell}} \otimes \mathbb{I} + \mathbb{I} \otimes d_{\mathscr{V}[[\hbar]]} + (\mathbb{I} \otimes \boldsymbol{\omega}) \circ (\bigtriangleup \otimes \mathbb{I})$$

satisfying ${}^{\hbar}\nabla^{\omega} \circ {}^{\hbar}\nabla^{\omega} = 0.$

We say such a cotwising coefficient system over $C_{\hbar dR}(\mathfrak{X}[[\hbar]], \ell)$ is tangential if $\mathscr{V}[[\hbar]] = \mathfrak{X}[[\hbar]]$.

A homotopy QFT algebra is a tangential cotwisting coefficient system $(\mathfrak{X}[[\hbar]], \boldsymbol{\omega})$ over the completed and coaugmented homotopy equivariant \hbar -de Rham coalgebra $\widehat{C}^*_{\hbar dR}(\mathfrak{X}[[\hbar]], \mathfrak{l}_{\mathfrak{X}}, \boldsymbol{\ell})$ cogenerated by a sL_{∞} -algebra $(\mathfrak{X}[\hbar], \boldsymbol{\ell})$ over $\Bbbk[[\hbar]]$.

Note that the total degree of $\boldsymbol{\omega}: \widehat{C}(\mathfrak{X}[[\hbar]]) \otimes \mathfrak{X}[[\hbar]] \to \mathfrak{X}[[\hbar]]$ is gh + fm = 1. Decomposing $\widehat{\boldsymbol{\omega}}$ into $\boldsymbol{\omega}_k: C_k(\mathfrak{X}[[\hbar]]) \otimes \mathfrak{X}[[\hbar]] \to \mathfrak{X}[[\hbar]]$ of degree (gh, fm) = (1-k, k), we obtain a family $\boldsymbol{\omega}_0, \boldsymbol{\omega}_1, \widehat{\boldsymbol{\omega}}_2, \dots$ Define $\boldsymbol{m}_{n+k+1}^{1-k}: S^n \mathfrak{X}[[\hbar]] \otimes \Lambda^n \mathfrak{X}[[\hbar]] \otimes \mathfrak{X}[[\hbar]] \to \mathfrak{X}[[\hbar]] \to \mathfrak{X}[[\hbar]]$ of gh = 1-k such that

$$\boldsymbol{m}_{n+k+1}^{1-k} = \widehat{\boldsymbol{\omega}}_k \big(\boldsymbol{x}_1 \odot \dots \boldsymbol{x}_n \otimes \boldsymbol{x}_{n+1} \wedge \dots \wedge \boldsymbol{x}_{n+k} \otimes \boldsymbol{x}_{n+k+1} \big)$$

We obtain the following set of multi-linear operations on $\mathfrak{X}[[\hbar]]$, indexed by the ghost number and arity:

	gh\arity	1	2	3	4	•••
l :	+1	K	ℓ_2	ℓ_3	ℓ_4	
ω ₁ :	0		m_2^0	m_3^0	m_4^0	
ω ₂ :	—1			m_{3}^{-1}	m_{4}^{-1}	
ω3:	—2				m_{4}^{-2}	
÷	÷					·

satisfying the set of relations summarized by the integrability ${}^{\hbar}\nabla^{\omega} \circ {}^{\hbar}\nabla^{\omega} = 0$.

We can form the (homotopy)category (*ho*)QFTA_{∞}(\Bbbk) of homotopy QFT-algebras. Many nice things happen there...

But we have also opened a door to something unknown.