The propagation of fermions on curved backgrounds of matrix models

Emmanuele Battista

Department of Physics, University of Vienna

OUTLINE

1.
2. FERMIONS IN IKKT MODEL
3. PARTICLE LIMIT OF THE DIRAC FIELD BY MEANS OF THE JWKB APPROXIMATION
4. SPIN PRECESSION EQUATION AND TRANSLATIONAL MOTION
5. APPLICATION TO THE FLRW COSMIC BACKGROUND
6. SUMIMARY OF THE RESULTS

THE GEOMETRICAL FRAMEWORK (1)

- IKKT matrix model, defined by the action

$$
S[T, \Psi]=\frac{1}{g^{2}} \operatorname{Tr}\left(\left[T^{A}, T^{B}\right]\left[T_{A}, T_{B}\right]+\bar{\Psi} \Gamma_{A}\left[T^{A}, \Psi\right]\right)
$$

where $T^{A} \quad(A=0,1, \ldots, 9)$ are hermitian matrices and Ψ fermionic matrices of $S O(9,1)$

- Propagation of fermions on some given background $\left\{T^{A}\right\}$ in the semiclassical regime, where

$$
\begin{gathered}
T^{A}: \mathscr{M} \hookrightarrow \mathbb{R}^{9,1} \\
{[\cdot, \cdot] \sim i\{\cdot, \cdot\}}
\end{gathered}
$$

- 3+1-dimensional
embedded along the first
3+1 matrix directions labelled by $a=0, \ldots, 3$, setting the remaining matrices to zero (i.e, $T^{a} \neq 0(a=0, \ldots, 3)$ and $T^{A}=0(A=4, \ldots, 9)$)

THE GEOMETRICAL FRAMEWORK (2)

- The effective metric $G^{\mu \nu}$ on $\mathscr{M}^{3,1}$ is defined in terms of an auxiliary metric $\gamma^{\mu \nu}$ in the following way:

$$
\gamma^{\mu \nu}=E^{a \mu} E^{b \nu} \eta_{a b}, \quad G^{\mu \nu}:=\frac{1}{\rho^{2}} \gamma^{\mu \nu}
$$

$\alpha, \beta, \ldots=0, \ldots, 3:$ coordinate indices
$a, b, \ldots=\hat{0}, \ldots, \hat{3}$: tetrad indices
$E^{a \mu}=\left\{T^{a}, y^{\mu}\right\}$: "Poisson" frame in local coordinates y^{μ}
$\rho^{2}=\rho_{M} \sqrt{\left|\gamma^{\mu \nu}\right|}:$ conformal factor or $\quad \rho_{M}$: symplectic density on $\mathscr{M}^{3,1}$

- Effective frame

$$
\mathcal{E}^{a \mu}=\rho^{-1} E^{a \mu} \longrightarrow G^{\mu \nu}=\mathcal{E}^{a \mu} \mathcal{E}^{b \nu} \eta_{a b}
$$

inverse frame

$$
\mathcal{E}^{a}{ }_{\mu} \mathcal{E}_{b}{ }^{\mu}=\delta_{b}^{a}
$$

$$
G_{\mu \nu}=\eta_{a b} \mathcal{E}^{a}{ }_{\mu} \mathcal{E}_{\nu}^{b}
$$

THE GEOMETRICAL FRAMEWORK (3)

- Levi-Civita connection $\Gamma^{(G)}{ }_{\mu \nu}{ }^{\sigma}$ of the effective metric $G_{\mu \nu}$:

$$
\begin{gathered}
\Gamma^{(G)}{ }_{\mu \nu}{ }^{\sigma}=\frac{1}{2} G^{\sigma \rho}\left(\partial_{\mu} G_{\rho \nu}+\partial_{\nu} G_{\rho \mu}-\partial_{\rho} G_{\mu \nu}\right) \\
\nabla_{\mu}^{(G)} V^{\nu}=\partial_{\mu} V^{\nu}+\Gamma^{(G)}{ }_{\mu \rho}{ }^{\nu} V^{\rho}
\end{gathered}
$$

- Weitzenböck connection $\tilde{\Gamma}_{\mu \nu}{ }^{\sigma}$ of the effective frame $\mathcal{E}_{a}{ }^{\mu}$:

$$
\tilde{\nabla}_{\nu} \mathcal{E}_{a}{ }^{\mu}=0
$$

$$
\tilde{\nabla}_{\mu} V^{\sigma}=\nabla_{\mu}^{(G)} V^{\sigma}+\mathcal{K}_{\mu \kappa}{ }^{\sigma} V^{\kappa}
$$

$$
\mathcal{T}_{\mu \nu}{ }^{\sigma}=\tilde{\Gamma}_{\mu \nu}{ }^{\sigma}-\widetilde{\Gamma}_{\nu \mu}{ }^{\sigma}
$$

\square

$$
\Gamma^{(G)}{ }_{\mu \nu}{ }^{\sigma}=\widetilde{\Gamma}_{\mu \nu}{ }^{\sigma}-\mathcal{K}_{\mu \nu}{ }^{\sigma}
$$

$$
\mathcal{K}_{\mu \nu}{ }^{\sigma}=\frac{1}{2}\left(\mathcal{T}_{\mu \nu}{ }^{\sigma}+\mathcal{T}^{\sigma}{ }_{\mu \nu}-\mathcal{T}_{\nu}{ }^{\sigma}{ }_{\mu}\right)
$$

Contorsion tensor
Link between the two connections

FERMIONS IN IKKT MODEL (1)

- Semiclassical Dirac-like action for fermions in the IKKT matrix model on a generic curved background and in arbitrary local coordinates y^{μ} :

$$
S=\operatorname{Tr} \bar{\Psi} \gamma_{a}\left[T^{a}, \Psi\right] \sim \int d^{4} y \rho_{M}(y) \bar{\Psi} i \gamma_{a} E^{a \mu} \partial_{\mu} \Psi
$$

$$
\bar{\Psi}=\Psi^{\dagger} \gamma^{\hat{0}}
$$

$$
\gamma^{a}(a=\hat{0}, \hat{1}, \hat{2}, \hat{3})
$$

flat-space Dirac matrices

- Semiclassical Lagrangian:

$\mathcal{L}=\frac{i}{2} \rho_{M}\left[\bar{\Psi} \gamma^{a} E_{a}{ }^{\mu} \partial_{\mu} \Psi-\left(\partial_{\mu} \bar{\Psi}\right) \gamma^{a} E_{a}{ }^{\mu} \Psi\right]+i \rho \rho_{M} m \bar{\Psi} \Psi$

Mass term from the six "transversal" matrices $T^{A}(A=4,5, \ldots, 9)$

Spin connection is "missing"!

- Rewrite the Lagrangian in terms of the covariant derivative \hat{D}_{μ} for spinors
 $\widehat{D}_{\mu} \Psi=\left(\partial_{\mu}-\frac{i}{2} \widehat{\omega}_{\mu} b c \Sigma_{b c}\right) \Psi$
$\Sigma_{a b}=\frac{i}{4}\left[\gamma_{a}, \gamma_{b}\right]$ associated with $G_{\mu \nu}$

FERMIONS IN IKKT MODEL (2)

we obtain

$\mathcal{L}=\frac{\mathcal{E}}{\rho}\left[\frac{i}{2}\left(\bar{\Psi} \gamma^{\mu} \hat{D}_{\mu} \Psi-\left(\hat{D}_{\mu} \bar{\Psi}\right) \gamma^{\mu} \Psi\right)+i m \bar{\Psi} \Psi-\frac{i}{4} \mathcal{K}_{[\alpha \beta \gamma]} \bar{\Psi} \gamma^{\alpha} \gamma^{\beta} \gamma^{\gamma} \Psi\right]$

$$
\begin{gathered}
\gamma^{\mu}:=\mathcal{E}_{a}{ }^{\mu} \gamma^{a} \\
\mathcal{E}:=\operatorname{det}\left(\mathcal{E}^{a}{ }_{\mu}\right)=\sqrt{-G}=\rho_{M} \rho^{2}
\end{gathered}
$$

The same, up to $1 / \rho$, as the Dirac Lagrangian in Riemann-Cartan spacetime

- Introduce a general frame e_{μ}^{a} via

$$
\eta_{a b} e^{a}{ }_{\mu} e_{\nu}^{b}=G_{\mu \nu}
$$

Ψ is allowed to transform as usual under local Lorentz transformations

- Introduce the
$\widetilde{\omega}_{\mu}^{a b}=e^{a \nu} \widetilde{\nabla}_{\mu} e^{b}{ }_{\nu}=\widehat{\omega}_{\mu}^{a b}-\mathcal{K}_{\mu}{ }^{a b}$
via

Levi-Civita spin connection associated with e_{μ}^{a}
$\mathcal{K}_{\mu}{ }^{a b}$ Contorsion tensor of the Weitzenböck connection $\tilde{\Gamma}_{\mu \nu}{ }^{\sigma}$

Note that $\tilde{\omega}_{\mu}^{a b}=0$ if $e_{\mu}^{a} \rightarrow \mathcal{E}^{a}{ }_{\mu}$

FERMIONS IN IKKT MODEL (3)

- In the general frame e_{μ}^{a}, the

becomes

$$
\begin{aligned}
\mathcal{L} & =\frac{e}{\rho}\left[\frac{i}{2}\left(\bar{\Psi} \gamma^{\mu} \widetilde{D}_{\mu} \Psi-\left(\widetilde{D}_{\mu} \bar{\Psi}\right) \gamma^{\mu} \Psi\right)+i m \bar{\Psi} \Psi\right] \\
& =\frac{e}{\rho}\left[\frac{i}{2}\left(\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi-\left(\partial_{\mu} \bar{\Psi}\right) \gamma^{\mu} \Psi\right)+i m \bar{\Psi} \Psi+\frac{i}{4} \widetilde{\omega}_{[\alpha \beta \gamma]} \bar{\Psi} \gamma^{\alpha} \gamma^{\beta} \gamma^{\gamma} \Psi\right]
\end{aligned} \begin{aligned}
& \gamma^{\mu}:=e_{a}{ }^{\mu} \gamma^{a}, \\
& e:=\operatorname{det}\left(e^{a}{ }_{\mu}\right)=\sqrt{-G}
\end{aligned}
$$

$\widetilde{D}_{\mu} \Psi=\left(\partial_{\mu}-\frac{i}{2} \widetilde{\omega}_{\mu}{ }^{a b} \Sigma_{a b}\right) \Psi=\hat{D}_{\mu} \Psi+\frac{i}{2} \mathcal{K}_{\mu}{ }^{a b} \Sigma_{a b} \Psi$

Dirac equation

$$
\gamma^{\mu} \widehat{D}_{\mu} \Psi+m \Psi-\frac{1}{4} \mathcal{K}_{[\alpha \beta \gamma]} \gamma^{\alpha} \gamma^{\beta} \gamma^{\gamma} \Psi+\frac{\rho}{2}\left(\partial_{\mu} \rho^{-1}\right) \gamma^{\mu} \Psi=0
$$

Local Lorentz invariance is broken on nontrivial background

PARTICLE LIMIT OF THE DIRAC FIELD (1)

- Particle limit of the Dirac field by applying the JWKB approximation

$$
\Psi(x)=\exp \left(-\frac{i}{\hbar} W(x)\right) \sum_{n=0}^{\infty} \hbar^{n} \psi^{(n)}(x)
$$

$$
\begin{array}{|c|l|}
\hline \text { Leading order } \\
\begin{array}{c}
\text { Next-to-leading } \\
\text { order }
\end{array} & \begin{array}{l}
\left(i \gamma^{\mu} \partial_{\mu} W-m\right) \psi^{(0)}=0 \\
\left(i \gamma^{\mu} \partial_{\mu} W-m\right) \psi^{(1)}=\gamma^{\mu} \widehat{D}_{\mu} \psi^{(0)}-\frac{1}{4} \mathcal{K}_{[\alpha \beta \gamma]} \gamma^{\alpha} \gamma^{\beta} \gamma^{\gamma} \psi^{(0)}+\frac{\rho}{2}\left(\partial_{\mu} \rho^{-1}\right) \gamma^{\mu} \psi^{(0)}
\end{array}
\end{array}
$$

PARTICLE LIMIT OF THE DIRAC FIELD (2)

- The leading-order result leads to the Hamilton-Jacobi equation for a relativistic nonspinning particle

$$
G^{\mu \nu} p_{\mu} p_{\nu}=-m^{2}
$$

where

$$
\begin{array}{cc}
p_{\mu}=-\partial_{\mu} W & \text { Four-momentum } \\
u_{\alpha}=\frac{-\partial_{\alpha} W}{\left|G^{\mu \nu} \partial_{\mu} W \partial_{\nu} W\right|^{1 / 2}}=\frac{1}{m} p_{\alpha} & \begin{array}{c}
\text { Four-velocity } \\
G^{\mu \nu} u_{\mu} u_{\nu}=-1 \\
\text { orthogonal to } W=\text { const }
\end{array} \\
\hline
\end{array}
$$

$$
u^{\alpha} \nabla_{\alpha}^{(G)} u^{\beta}=0
$$

Geodesic motion

PARTICLE LIMIT OF THE DIRAC FIELD (3)

The spinor $\psi^{(0)}$ describes the positive-energy solutions of the flatspace Dirac equation

$$
\psi^{(0)}(x)=\beta_{1}(x) u^{(1)}(x)+\beta_{2}(x) u^{(2)}(x), \quad \beta_{1}(x), \beta_{2}(x) \in \mathbb{C}
$$

the and spin-down spinors being

$$
\left.\begin{array}{l}
u^{(1)}=\left(\frac{p^{\hat{0}}+m}{2 m}\right)^{1 / 2}\left[\begin{array}{c}
1 \\
0 \\
p^{\hat{3}} /\left(p^{\hat{0}}+m\right) \\
\left(p^{\hat{1}}+i p^{\hat{2}}\right) /\left(p^{\hat{0}}+m\right)
\end{array}\right], \\
u^{(2)}=\left(\frac{p^{\hat{0}}+m}{2 m}\right)^{1 / 2}\left[\begin{array}{c}
0 \\
1 \\
\left(p^{\hat{1}}-i p^{\hat{2}}\right) /\left(p^{\hat{p}}+m\right) \\
-p^{\hat{3}} /\left(p^{\hat{0}}+m\right)
\end{array}\right]
\end{array}\right] \begin{aligned}
& p^{a}=e^{a}{ }_{\mu} p^{m}
\end{aligned}
$$

PARTICLE LIMIT OF THE DIRAC FIELD (4)

- The next-to-leading-order result implies the following propagation equation for $\psi^{(0)}$:

$$
u^{\alpha} \widetilde{D}_{\alpha} \psi^{(0)}=-\frac{\hat{\theta}^{2}}{2} \psi^{(0)}-\frac{i}{2} \mathcal{K}_{[\alpha \beta] \gamma} \sigma^{\alpha \beta} u^{\gamma} \psi^{(0)}-\frac{\rho}{2}\left(\partial_{\mu} \rho^{-1}\right) u^{\mu} \psi^{(0)}
$$

$\begin{array}{lll}\hat{\theta}=\nabla_{\beta}^{(G)} u^{\beta} & \text { Expansion scalar of the geodesic congruence } & \sigma^{\alpha \beta}=2 \Sigma^{\alpha \beta}\end{array}$
If we introduce the normalized spinor $b^{(0)}(x)$ via the relations

$$
\psi^{(0)}(x)=f(x) b^{(0)}(x) \quad \text { with } \quad f^{2}(x)=\left|\beta_{1}(x)\right|^{2}+\left|\beta_{2}(x)\right|^{2}
$$

then we obtain

$$
u^{\alpha} \widetilde{D}_{\alpha} b^{(0)}=-\frac{i}{2} \mathcal{K}_{[\alpha \beta] \gamma} \sigma^{\alpha \beta} u^{\gamma} b^{(0)}
$$

$$
u^{\alpha} \widetilde{D}_{\alpha} \bar{b}^{(0)}=\frac{2}{2} \mathcal{K}_{[\alpha \beta] \gamma} \bar{b}^{(0)} \sigma^{\alpha \beta} u^{\gamma}
$$

PARTICLE LIMIT OF THE DIRAC FIELD (5)

- It will prove to be useful the introduction of a Let us define the new affinities

$$
\begin{aligned}
& \stackrel{*}{\Gamma}_{\mu \nu}^{\lambda}=\widetilde{\Gamma}_{\mu \nu}^{\lambda}+2 \mathcal{K}_{[\nu \epsilon] \mu} G^{\epsilon \lambda}=\Gamma^{(G)}{ }_{\mu \nu}^{\lambda}+3 \mathcal{K}_{[\mu \nu \epsilon]} G^{\epsilon \lambda}, \\
& \stackrel{*}{\omega}_{\mu}^{a b}=\widetilde{\omega}_{\mu}^{a b}-2 \mathcal{K}^{[a b]}{ }_{\mu}=\widehat{\omega}_{\mu}^{a b}-3 \mathcal{K}^{[a b \epsilon]} G_{\epsilon \mu},
\end{aligned}
$$

$$
\tilde{\sigma}_{\alpha}^{*} G_{\mu \nu}=0
$$

Compatible with the effective metric
$\stackrel{*}{\nabla}_{\alpha} G_{\mu \nu}=0$

Then we obtain

$$
\begin{aligned}
& \stackrel{*}{\Gamma}_{\mu \nu}{ }^{\lambda}=e_{a}{ }^{\lambda} \stackrel{*}{D}_{\mu} e^{a}{ }_{\nu}=e_{a}{ }^{\lambda}\left(\partial_{\mu} e^{a}{ }_{\nu}+\stackrel{*}{\omega}_{\mu}{ }^{a}{ }_{b} e^{b}{ }_{\nu}\right), \\
& \stackrel{*}{\omega}_{\mu}{ }^{b}=e^{a \nu} \stackrel{*}{\nabla}{ }_{\mu} e^{b}{ }_{\nu}=e^{a \nu}\left(\partial_{\mu} e^{b}{ }_{\nu}-\stackrel{*}{\Gamma_{\mu \nu}}{ }^{\lambda} e^{b}{ }_{\lambda}\right)
\end{aligned}
$$

$$
\begin{aligned}
& u^{\alpha} \stackrel{\rightharpoonup}{D}_{\alpha} b^{(0)}=0 \\
& u^{\alpha}{ }^{*} \bar{D}_{\alpha} \bar{b}^{(0)}=0
\end{aligned}
$$

The normalized spinor is parallelly propagated along the geodesic path

SPIN PRECESSION EQUATION (1)

- The spin vector of the Dirac particle can be written via the JWKB approximation as

$$
S^{\alpha}=S_{(0)}^{\alpha}+\mathrm{O}(\hbar)
$$

where
$S_{(0)}^{\alpha}=\frac{1}{2} \varepsilon^{\alpha \beta \gamma \delta} u_{\beta} \bar{b}^{(0)} \sigma_{\gamma \delta} b^{(0)}$
Lowest-order correction
$\varepsilon^{\alpha \beta \gamma \delta}=e_{a}^{\alpha} e_{b}^{\beta} e_{c}^{\gamma} e_{d}^{\delta} \epsilon^{a b c d}$
$\epsilon^{a b c d}:$ Levi-Civita symbol

- $S_{(0)}^{\alpha}$ satisfies

$$
u_{\alpha} S_{(0)}^{\alpha}=0 \quad G_{\alpha \beta} S_{(0)}^{\alpha} S_{(0)}^{\beta}=1
$$

SPIN PRECESSION EQUATION (2)

- $S_{(0)}^{\alpha}$ is characterized by propagation equation

$$
u^{\mu} \nabla_{\mu}^{*} S_{(0)}^{\alpha}=0
$$

The lowest-order spin vector is parallelly transported along the particle's classical geodesic trajectory
in terms of the Levi-Civita connection of $G_{\mu \nu}$

$$
u^{\rho} \nabla_{\rho}^{(G)} S_{(0)}^{\mu}=3 \varepsilon^{\mu \alpha \lambda \epsilon} \mathcal{A}_{\alpha} S_{(0) \lambda} u_{\epsilon}
$$

$$
\mathcal{A}^{\mu}=\frac{1}{6} \varepsilon^{\mu \alpha \beta \gamma} \mathcal{K}_{[\alpha \beta \gamma]}
$$

Axial-vector part of the contorsion tensor

TRANSLATIONAL MOTION (1)

- It follows from the Dirac equation that the effective Dirac current $\rho^{-1} J^{\mu}$ is conserved, i.e.,

$$
\nabla_{\mu}^{(G)}\left(\rho^{-1} J^{\mu}\right)=0
$$

where $J^{\mu}:=\bar{\Psi} \gamma^{\mu} \Psi$
of the effective Dirac current

$$
\rho^{-1} J^{\mu} \equiv \mathcal{J}_{\mathrm{M}}^{\mu}+\mathcal{J}_{\mathrm{C}}^{\mu}
$$

where

$$
\begin{aligned}
& \mathcal{J}_{\mathrm{M}}^{\mu}=\frac{i \hbar}{2 m \rho}\left[\widehat{D}_{\nu}\left(\bar{\Psi} \sigma^{\mu \nu} \Psi\right)+\rho\left(\partial_{\nu} \rho^{-1}\right) \bar{\Psi} \sigma^{\mu \nu} \Psi\right]=\frac{i \hbar}{2 m} \widehat{D}_{\nu}\left(\frac{\bar{\Psi} \sigma^{\mu \nu} \Psi}{\rho}\right), \\
& \mathcal{J}_{\mathrm{C}}^{\mu}=\frac{\hbar}{2 m \rho}\left[\left(\widehat{D}^{\mu} \bar{\Psi}\right) \Psi-\bar{\Psi} \hat{D}^{\mu} \Psi-\frac{3 i}{2} \mathcal{K}_{[\alpha \beta \gamma]} \bar{\Psi} \sigma^{\alpha \beta} G^{\gamma \mu} \Psi\right]=\frac{\hbar}{2 m \rho}\left[\left({ }^{*} D^{\mu} \bar{\Psi}\right) \Psi-\bar{\Psi}{ }^{*}{ }^{\mu} \Psi\right] .
\end{aligned}
$$

TRANSLATIONAL MOTION (2)

Conserved quantities

$$
\begin{aligned}
& \nabla_{\mu}^{(G)} \mathcal{J}_{\mathrm{M}}^{\mu}=0, \\
& \nabla_{\mu}^{(G)} \mathcal{J}_{\mathrm{C}}^{\mu}=0
\end{aligned}
$$

- Four-velocity for the translational motion

$$
v^{\alpha}=\frac{\mathcal{J}_{\mathrm{C}}^{\alpha}}{\sqrt{-G_{\mu \nu} \mathcal{J}_{\mathrm{C}}^{\mu} \mathcal{J}_{\mathrm{C}}^{\nu}}},
$$

$$
v^{\mu}=u^{\mu}+\frac{\hbar}{2 m}\left[\left(\stackrel{*}{D}^{\mu} \bar{b}^{(0)}\right) b^{(0)}-\bar{b}^{(0)} \stackrel{*}{D}^{\mu} b^{(0)}\right]+\mathrm{O}\left(\hbar^{2}\right)
$$

The spin forces the particle to follow a quantum corrected trajectory which deviates from the classical geodesic motion

TRANSLATIONAL MOTION (3)

- Four-acceleration of the translational motion

$$
a_{\alpha}=v^{\beta} \nabla_{\beta}^{(G)} v_{\alpha}=-\frac{i}{2}\left(\frac{\hbar}{2 m}\right) \stackrel{*}{R}_{\alpha \beta \mu \nu} u^{\beta} \bar{b}^{(0)} \sigma^{\mu \nu} b^{(0)}+\mathrm{O}\left(\hbar^{2}\right)
$$

where, in our conventions,

$$
\stackrel{*}{R}_{\mu \nu}^{a b}=\partial_{\mu} \stackrel{*}{\omega}_{\nu}^{a b}-\partial_{\nu} \stackrel{*}{\omega}_{\mu}^{a b}+\stackrel{*}{\omega}_{\mu}^{a c} \stackrel{*}{\omega}_{\nu c}^{b}-\stackrel{*}{\omega}_{\nu}^{a c} \stackrel{*}{\omega}_{\mu c}^{b}
$$

Our model predicts a spin precession equation and having the same form as in standard Einstein-Cartan theory

APPLICATION TO THE FLRW BACKGROUND (1)

- In the FLRW spacetime and adopting Cartesian coordinates x^{μ}, the $S O(3,1)$-invariant effective metric reads as
$d s_{G}^{2}=G_{\mu \nu} d x^{\mu} d x^{\nu}=-R^{2}|\sinh \eta|^{3} d \eta^{2}+R^{2}|\sinh \eta| \cosh ^{2} \eta d \Sigma^{2}=-d t^{2}+a^{2}(t) d \Sigma^{2}$
$d \Sigma^{2}=d \chi^{2}+\sinh ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) \quad$ Invariant length element on the spacelike hyperboloids H^{3}
- Frames

$$
\begin{aligned}
& E_{a}{ }^{\mu}=(\sinh \eta) \delta_{\mu}^{a}, \\
& \mathcal{E}^{a}{ }_{\mu}=\rho E^{a}{ }_{\mu} .
\end{aligned}
$$

- Dilaton

$$
\rho^{2}=|\sinh \eta|^{3}
$$

APPLICATION TO THE FLRW BACKGROUND (2)

- Dirac equation

$$
\gamma^{\mu} \widehat{D}_{\mu} \Psi+m \Psi+\frac{3}{4} \frac{\tau_{\mu}}{\rho^{2} R^{2}} \gamma^{\mu} \Psi=0
$$

where $\tau=a(t) \partial_{t}$ is the $S O(3,1)$-invariant cosmic timelike vector field which is responsible for the

- The analysis of the propagation of fermions is greatly simplified as

$$
\mathcal{K}_{[\alpha \beta \gamma]}=0
$$

SUMMARY (1)

- We have examined the evolution of a Dirac particle on a generic curved 3+1-dimensional background brane within the IKKT matrix model
- The fermionic action resembles the one given in Einstein-Cartan theory and differs from the one given in general relativity only through a coupling to the totally antisymmetric part of the Weitzenböck contorsion
- Both the spin precession and the translation motion assume the same form as in Einstein-Cartan theory
- We have considered the particular case of the FLRW cosmological background

SUMMARY (2)

- Further details can be found in:

Emmanuele Battista and Harold C. Steinacker, "Fermions on curved backgrounds of matrix models", Phys. Rev. D 107, 046021 (2023), arXiv: 2212.08611
...and the best is yet to come!

