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THE GEOMETRICAL FRAMEWORK (1)

e |KKT matrix model, defined by the action

S[T, V] = %Tr([TA,TB][TA,TB] + W4 [T, ¥))

where 7% (A = 0,1,...,9) are hermitian matrices and ¥ fermionic
matrices of SO(9,1)

e Propagation of fermions on some given background {77} in the
semiclassical regime, where

T4 - W < R
[, ]~i{-,-}

e 3+1-dimensional embedded along the first
3+1 matrix directions labelled by a = 0,...,3, setting the remaining

matrices to zero (i.e, 7°# 0 (a=0,....3)and T = 0 (A = 4,....9))
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THE GEOMETRICAL FRAMEWORK (2)

e The effective metric G¥ on /> is defined in terms of an
auxiliary metric y** in the following way:

1 .
v __ 1a bv vVo.__ 1% a,pf,...=0,...,3: coordinate indices
VY = B E"n 0, GHY . — 2,7/# p

4, ab, ... 6, e, 3: tetrad indices

E = {T“ y"}: “Poisson” frame in local coordinates y*

p* = py/ 17" | : conformal factor or pr: sSymplectic density on /!

o Effective frame
gak _ p—lEa,u G gaugbl/nabl

- a B ga _ a ¢b
inverse frame E Mé’b = 0y G = Nap€ ME 9




THE GEOMETRICAL FRAMEWORK (3)

e Levi-Civita connection I''® .~ of the effective metric G,

H

o 1 o
F(G)uu - §G *(OuGpv + 0G o = 0pGuv)

Vi vY =9,V + T, v

« Weitzenbock connection fﬂy” of the effective frame £ *:

V,E M =0

~Y

V.V =VOvVI L K, V"

Contorsion tensor

~Y

G) o o
r 7=r,-K

Uv

o
1%

Link between the
two connections




FERMIONS IN IKKT MODEL (1)

e Semiclassical Dirac-like action for fermions in the IKKT matrix
model on a generic curved background and in arbitrary local

coordinates y*:

P = Pino

y*(a=0,1,2,3)

flat-space Dirac matrices

S = TrWny, [T, U] ~ J dy pr(y) Vi B0, ¥

* Semiclassical Lagrangian:

1 _ _ _ Mass term from the
L = — M I:\Ij/yaEa:uﬁluJ\Ij _ (@N\I;),yaEau\Ij] + z'ppMm\If\If six “transversal” matrices
2 T4 (A =45,....9)

Spin connection is “missing”!

 Rewrite the Lagrangian in terms of the covariant derivative DM
for spinors 5, = gvv@eb

associated with Guv

~ R .
DWVYV=|70 — — be 3 be | W 2 Spinor representation of the generators
H H ) H c ab = 4 [7a, ] of the Lorentz group
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FERMIONS IN IKKT MODEL (2)

we obtain

L =

&

0

i = . o _
[5 <\Iffy“DM\IJ - (DH\If)fy“\If) + imU¥ — ZIC[QM] Wy fyﬁfﬂ\lf]

A= £ oyl

a

E = det (S“M) =/ —G = pup’

The same, up to 1/p, as the Dirac Lagrangian in Riemann-Cartan spacetime

o Introduce a general frame ¢“ via

H

a b
Nave” €, = G

e Introduce the

Y is allowed to transform as usual under
local Lorentz transformations

via

7

= G . e : : : :
o, = e‘“’Vﬁb )eb,, Levi-Civita spin connection associated with ¢“

U

~Y

7

ab _ _avvw _b N ab ab
=e"Vye', =w, K,

Kab

o

Contorsion tensor of the Weitzenbo6ck connection f’ﬂf

~ ab __ - a _, ca
Notethata)ﬂ“ =0if e, > &%
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FERMIONS IN IKKT MODEL (3)

e In the general frame e‘/’p the becomes

L (T D, — (D, Ty w) + zmm]

7 _ - 7 - _—
5 (\I!’y“&u\lf — (@W)w“@) + imUW¥ + Zw[(wﬂ Wy 7577\11]

i S
& bzab) ¥ =D,V + K, T

I

Dirac equation

A 1 Py -
V' D+ m¥ — 2 Kjasy) (Cup™") YT =0

Local Lorentz invariance is broken on nontrivial background
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PARTICLE LIMIT OF THE DIRAC FIELD (1)

e Particle limit of the Dirac field by applying the
JWKB approximation

Leading order

Next-to-leading
order

(iv" 0 W — m) ! =0,

. A 1 o Py _ |
(iv"0,W — m) p) = W“pr(o) _ Z’C[aﬁvw By 7hO) 5 (5”/0 1) ) O)




PARTICLE LIMIT OF THE DIRAC FIELD (2)

* The leading-order result leads to the Hamilton-Jacobi equation for
a relativistic nonspinning particle

2

G'uyp,upu = — M

where

py=—0,W Four-momentum

— 0 W 1

TGO W, W|E T m' e

Uq,

Four-velocity
Gy . — —1 orthogonal to W = const
w Yy

Geodesic motion




PARTICLE LIMIT OF THE DIRAC FIELD (3)

The spinor z//(o).describes the positive-energy solutions of the flat-
space Dirac equation

VO(x) = Bi(2)ulV (2) + Ba(x)u®(2),  Bi(x), Ba(a) € C,

and spin-down spinors being

5 1/2
U —

2m
)1/2




PARTICLE LIMIT OF THE DIRAC FIELD (4)

* The next-to-leading-order result implies the following
propagation equation for 1//(0):

( a p _
@ — §K[a5h‘7 Burp® — 5 (@WO 1) uteh©)

9
2

u*D ) = —

0 =v{’u’| | Expansion scalar of the geodesic congruence g = 2528

If we introduce the normalized spinor b(o)(x) via the relations

PO®) = f(@)pO)  |[8%© =1  with [f2(2) = |6(@)]? + |Ba(2)?

then we obtain

~ ) ~ —(0 )
uaDab(O) — —%K[(whaﬂﬁuvb(@) UaDab( ) — §K[a5hb )




PARTICLE LIMIT OF THE DIRAC FIELD (5)

* It will prove to be useful the introduction of a
Let us define the new affinities

Compatible with the
effective metric

Then we obtain

The normalized spinor is
parallelly propagated
along the geodesic path




SPIN PRECESSION EQUATION (1)

* The spin vector of the Dirac particle can be written via the
JWKB approximation as

where

1 —(0
So) = 550‘57%517( .50\ Lowest-order correction

804575 — e, ebﬂe ’Y€d5€abcd

e?bcd-| eyi-Civita symbol

C

a ™ -
- S(O) satisfies




SPIN PRECESSION EQUATION (2)

. (‘6) is characterized by propagation equation

K

'V, S = 0

The lowest-order spin vector is parallelly transported
along the particle’s classical geodesic trajectory

in terms of the Levi-Civita connection of G,

o= 36/“)\6./4&3(0))\166

1 (87
AF = Egu mlc[aﬁv]

Axial-vector part
of the contorsion tensor

i)



TRANSLATIONAL MOTION (1)

e |t follows from the Dirac equation that the effective Dirac
current p‘lﬂ" is conserved, i.e.,

\VASS) (p_lJ“) = (

U

where J# .= Yy*¥Y

of the effective Dirac current

p It =T+ ¢

current

D, (W0 W) + p (") Wo W | = -2 D,

h ~ (EO“V \ Magnetization

0
i Convection
2mp current

S
(D) w - TDrw gic[aﬁﬂxpaaﬂaw\p] _
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TRANSLATIONAL MOTION (2)

Conserved quantities

VAT =0,

Vg =0

 Four-velocity for the translational motion

. T8
\/_G/wj(ébjcy7

|

v =+ S (DY) 00 =5 DO |+ O ()

2m

(V)

The spin forces the particle to follow a quantum corrected trajectory
which deviates from the classical geodesic motion




TRANSLATIONAL MOTION (3)

e Four-acceleration of the translational motion

(@) i ho\ x =0)
Ay = UBVB Vo = —5 <%> Raﬁwuﬁ b b + O (hQ)

where, in our conventions,

Our model predicts a spin precession equation and
having the same form as in standard Einstein-Cartan theory




APPLICATION TO THE FLRW BACKGROUND (1)

 |In the FLRW spacetime and adopting Cartesian coordinates
x#, the SO(3,1)-invariant effective metric reads as

dsg, = G datdz” = —R?|sinhn|*dn® + R?|sinhn|cosh® ndX? = —dt* + a®(t)d%?

dy? = dy? + sinh? X(d92 + sin? 9dg02)| Invariant length element on the spacelike hyperboloids H .

e Frames

e Dilaton




APPLICATION TO THE FLRW BACKGROUND (2)

 Dirac equation

where 7 = a(?)d, is the SO(3,1)-invariant cosmic timelike vector
field which is responsible for the

* The analysis of the propagation of fermions is greatly
simplified as

Kiagy) =0




SUMMARY (1)

We have examined the evolution of a Dirac particle on a generic
curved 3+1-dimensional background brane within the IKKT matrix
model

The fermionic action resembles the one given in Einstein-Cartan
theory and differs from the one given in general relativity only
through a coupling to the totally antisymmetric part of the
Weitzenbock contorsion

Both the spin precession and the translation motion assume the
same form as in Einstein-Cartan theory

We have considered the particular case of the FLRW cosmological
background




SUMMARY (2)

e Further details can be found in:

Emmanuele Battista and Harold C. Steinacker,
“Fermions on curved backgrounds of matrix models”,
Phys. Rev. D 107, 046021 (2023), arXiv: 2212.08611

...and the best is yet to come!




