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THE GEOMETRICAL FRAMEWORK (1)
• IKKT matrix model, defined by the action 

where  are hermitian matrices and  fermionic 
matrices of  

• Propagation of fermions on some given background  in the 
semiclassical regime, where  

• 3+1-dimensional spacetime brane  embedded along the  first 
3+1 matrix directions labelled by , setting the remaining 
matrices to zero  (i.e,  and  ) 

TA (A = 0,1,…,9) Ψ
SO(9,1)

{TA}

ℳ3,1

a = 0,…,3
Ta ≠ 0 (a = 0,…,3) TA = 0 (A = 4,…,9)
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(respectively, antisymmetrization) procedure, e.g., Apijq “ 1
2pAij `Ajiq (respectively, Arijs “

1
2pAij ´ Ajiq).

II. THE GENERAL GEOMETRIC FRAMEWORK

In this section, we provide the essential details of our geometrical framework.

We consider Yang-Mills matrix models such as the IKKT model [1], defined by an action

of the structure

SrT, s “ 1

g2
Tr

`
rTA, TBsrTA, TBs ` �ArTA, s

˘
. (1)

Here the TA pA “ 0, ..., D´1q are hermitian matrices, and  are fermionic matrices described

below. We want to study the propagation of fermions on some given background tTAu in

the semi-classical regime, where the backgrounds can be described as symplectic manifolds

M embedded in target space via

TA : M ãÑ RD (2)

and all commutators are replaced by Poisson brackets r., .s „ it., .u. Moreover, we restrict

ourselves for simplicity to 3 ` 1-dimensional branes embedded along the first 4 matrix di-

rections labeled by a “ 0, .., 3, setting the remaining matrices to zero. An introduction and

motivation for this framework can be found in Ref. [2, 19], see also e.g. [20–29] for related

work in this context.

In the semi-classical regime, the e↵ective metric on such a background is determined by

the kinetic term for fluctuations in the matrix model, which can be written as1

Sr�s „ ´
ª

M

dy0 . . . dy3 ⇢M �µ⌫Bµ�B⌫� “ ´
ª

M

d4y
b

|Gµ⌫ |Gµ⌫Bµ�B⌫� . (3)

Here

�µ⌫ “ EaµEb⌫⌘ab, Gµ⌫ :“ 1

⇢2
�µ⌫ , (4)

1 This action applies directly to transversal fluctuations TA Ñ T
A `�A for A “ 4, ..., 9 of the background,

which are interpreted as scalar fields on M. However the same metric G
µ⌫ also governs tangential

fluctuations T a Ñ T
a ` Aa of the background, which describe gauge fields on M [2].
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  TA : ℳ ↪ ℝ9,1
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THE GEOMETRICAL FRAMEWORK (2)
• The effective metric  on  is defined in terms of an 

auxiliary metric   in the following way:  

• Effective frame  

Gμν ℳ3,1

γμν
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: “Poisson” frame in local coordinates  Eaμ = {Ta, yμ} yμ

: conformal factor or dilationρ2 = ρM |γμν | : symplectic density on  ρM ℳ3,1

define an auxiliary and the e↵ective metric on M, respectively, in terms of the ”Poisson”

frame

Eaµ “ tT a, yµu (5)

in local coordinates yµ. The conformal factor or dilaton ⇢ is defined by

⇢2 “ ⇢M
a

|�µ⌫ | (6)

where ⇢M is the symplectic density on M. This motivates to define the e↵ective frame Eaµ

by absorbing the dilaton ⇢,

Eaµ “ ⇢´1Eaµ, (7)

Gµ⌫ “ EaµEb⌫⌘ab, (8)

as well as the inverse frames Ea
µ and Ea

µ through

Ea
µE

µ
b “ �ab “ Ea

µE
µ

b (9)

so that

Gµ⌫ “ ⌘abEa
µEb

⌫ , (10)

�µ⌫ “ ⌘abE
a
µE

b
⌫ . (11)

The Weitzenböck connection � µ
⌫⇢ associated to the frame E µ

a is defined by the condition

0 “ r⌫E
µ

a “ B⌫E µ
a ` � µ

⌫⇢ E ⇢
a . (12)

This connection has a vanishing curvature, but a non vanishing torsion and contorsion

tensors, which are given by

T µ
⇢� “ � µ

⇢� ´ � µ
�⇢ , (13)

K �
µ⌫ “ 1

2

`
T �
µ⌫ ` T �

µ⌫ ´ T �
⌫ µ

˘
. (14)

Due to the specific form (5) of the frame, their traces are given by [30]

K µ
µ� “ T µ

µ� “ 2

⇢
B�⇢ . (15)
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:  coordinate indices 
: tetrad indices

α, β, … = 0,…,3
a, b, … = 0̂, …, 3̂



THE GEOMETRICAL FRAMEWORK (3)
• Levi-Civita connection  of the effective metric :  

• Weitzenböck connection  of the effective frame        : 

Γ(G) σ
μν Gμν

Γ̃ σ
μν

5

The Levi-Civita connection �p�q �
µ⌫ for the metric �µ⌫ is

�p�q �
µ⌫ “ 1

2
��⇢ pBµ�⇢⌫ ` B⌫�⇢µ ´ B⇢�µ⌫q “ � �

µ⌫ ´ K �
µ⌫ , (16)

and it permits to write

rµV
⌫ “ rp�q

µ V ⌫ ` K ⌫
µ⇢ V ⇢, (17)

where rp�q
µ V ⌫ “ BµV ⌫ ` �p�q ⌫

µ⇢ V ⇢.

The Levi-Civita connection �pGq �
µ⌫ for the e↵ective metric Gµ⌫ is obtained as

�pGq �
µ⌫ “ 1

2
G�⇢ pBµG⇢⌫ ` B⌫G⇢µ ´ B⇢Gµ⌫q

“ 1

⇢

`
��⌫ Bµ⇢ ` ��µB⌫⇢ ´ �µ⌫�

�⇢B⇢⇢
˘

` 1

2
��⇢ pBµ�⇢⌫ ` B⌫�⇢µ ´ B⇢�µ⌫q , (18)

which together with Eq. (16) gives

�pGq �
µ⌫ “ r� �

µ⌫ ´ K �
µ⌫ . (19)

Here

r� �
µ⌫ :“ � �

µ⌫ ` 1

⇢
��⌫ Bµ⇢ , (20)

T �
µ⌫ “ r� �

µ⌫ ´ r� �
⌫µ “ T �

µ⌫ ` 1

⇢

`
��⌫ Bµ⇢ ´ ��µB⌫⇢

˘
, (21)

K �
µ⌫ “ 1

2

`
T �
µ⌫ ` T �

µ⌫ ´ T �
⌫ µ

˘
“ K �

µ⌫ ` 1

⇢

`
Gµ⌫G

�⇢B⇢⇢ ´ ��µB⌫⇢
˘

“ ´K �
µ ⌫ (22)

are the Weitzenböck connection, the torsion, and the contorsion tensors of the e↵ective

frame, respectively [30]. Hereafter, calligraphic fonts or a tilde indicate quantities related to

the e↵ective frame E µ
a . The Weitzenböck connection associated with the e↵ective frame

rr⌫E µ
a “ 0 (23)

is given explicitly using Eq. (20) by

rrµV
� “ rµV

� `
ˆ
1

⇢
Bµ⇢

˙
V � “ rpGq

µ V � ` K �
µ V  ,

rrµV� “ rµV� ´
ˆ
1

⇢
Bµ⇢

˙
V� “ rpGq

µ V� ´ K 
µ� V , (24)

where rpGq
µ V ⌫ “ BµV ⌫ ` �pGq ⌫

µ⇢ V ⇢.
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Of course, Eq. (28) holds only for the e↵ective frame E underlying the Weitzenböck connec-

tion, and does not allow local Lorentz transformations; the extension to general frames will

be discussed in the next section.

B. The Lagrangian

The semi-classical action for a spinor in Yang-Mills matrix models can be written in

arbitrary local coordinates yµ as (cf. Eq. (1))

S “ Tr �arT a, s „
ª
d4y ⇢Mpyq i�aEaµBµ . (30)

Here T a is the background solution of the matrix model, and the symbol „ indicates the

semi-classical limit, where commutators are replaced by Poisson brackets. Moreover,  is

a matrix-valued spinor of SOpDq (ignoring possible nonabelian gauge fields to simplify the

notation),  “  :�p0 (�p0 being the flat 0-th Dirac matrix, see Appendix A for the conventions

regarding Dirac matrices used in this paper), and ⇢Md4y is the symplectic volume form.

In the special case of the IKKT model with D “ 9 ` 1, the gamma matrices are those

of SOp9, 1q. We can then realize the aforementioned 3 ` 1-dimensional spacetime in terms

of the first 3+1 components T a, setting the remaining TA “ 0 for A “ 4, ..., 9. The matrix

model then reduces to noncommutative N “ 4 SYM on a 3 ` 1-dimensional spacetime

brane M3,1. The transversal directions will accommodate fuzzy extra dimensions, which are

important for introducing mass terms (see Appendix B for further details), as well as an

induced Einstein-Hilbert action for gravity [26].

We note that the action (30) is written in the case of Minkowski signature, whereas

the Euclidean version involves the obvious replacement  Ñ  :. The (semi-classical) La-

grangian in Eq. (30) can also be written as

L “ i

2
⇢M

“
 �aE µ

a Bµ ´ pBµ q�aE µ
a  

‰
` i⇢⇢Mm  , (31)

where we have also introduced a mass term following the line of reasoning of Appendix B.

The most striking feature of this fermionic action is that the spin connection seems to be

“missing” in the matrix Dirac operator

�arT a, s „ i�aE
aµBµ “ i�aE µ

a Bµ . (32)
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Mass term from the 
six “transversal” matrices  

TA (A = 4,5,…,9)

Spin connection is “missing”!

III. FERMIONS IN IKKT MODEL

In this section, we study the semi-classical geometric form of the Dirac-like action for

fermions in the IKKT matrix model on a generic curved background. The discussion applies

to generic noncommutative branes embedded through the first 3`1 matrices as described in

Sec. II2. This setup includes the case of covariant quantum spaces [24, 30], which, in turn,

encompass the special FLRW cosmic background which will be considered in Sec. V.

A. Preliminaries

We first establish the relation between the Cartan formulation of Riemannian geometry

and the present framework based on the Weitzenböck connection. Let p!ab “ p!µab dyµ “
´p!ba be the torsion-free Levi-Civita spin connection associated to the e↵ective metric Gµ⌫ .

Starting from the first Cartan structure equation [31]

dEa “ ´p!a
b ^ Eb, (25)

we obtain

T a
µ⌫ “ p! a

⌫ bEb
µ ´ p! a

µ bEb
⌫ “ p! a

⌫ µ ´ p! a
µ ⌫ , (26)

where we have used the fact that the torsion of the Weitzenböck connection is given by the

exterior derivative of the vielbein, which yields

T a “ 1

2
T a
µ⌫ dyµ ^ dy⌫ “ 1

2

`
BµEa

⌫ ´ B⌫Ea
µ

˘
dyµ ^ dy⌫ . (27)

The above relation represents the torsion two-form of the Weitzenböck connection of the

e↵ective frame. Performing a cyclic permutation of the indices in Eq. (26), we obtain

Kµab “ p!µab, (28)

which provides the relation between the Levi-Civita spin connection and the contorsion ten-

sor of the Weitzenböck connection of the e↵ective frame. This is easily seen to be consistent

with the standard expression for the Levi-Civita spin connection

p! ab
µ “ Ea⌫ rpGq

µ Eb
⌫ . (29)

2 It turns out that the results also apply to 3 ` 1-dimensional branes with generic embedding in matrix

models.
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However, we can rewrite the Lagrangian (31) in terms of the standard covariant derivative

for spinors, which reads as (see e.g. Refs. [6, 31, 32])

pDµ “
ˆ

Bµ ´ i

2
p! bc
µ ⌃bc

˙
 , (33)

where p! bc
µ is the torsion-free Levi-Civita spin connection associated to the e↵ective metric

Gµ⌫ (see Eq. (29)), and

⌃ab “ i

4
r�a, �bs (34)

is the spinor representation of the generators of the Lorentz group. Bearing in mind Eqs.

(7), (28), and (33), we find

�aE µ
a Bµ “ ⇢

ˆ
�aE µ

a
pDµ ` i

2
K bc

µ �aE µ
a ⌃bc 

˙
. (35)

Using this expression, we can rewrite the Lagrangian (31) in the form

L “ E
⇢

„
i

2

´
 �µ pDµ ´ p pDµ q�µ 

¯
` im  ´ 1

4
K bc

µ  t�µ,⌃bcu 
⇢
, (36)

where we have defined

�µ :“ E µ
a �a, (37)

and

E :“ det
`
Ea

µ

˘
“

?
´G “ ⇢M⇢2, (38)

with G :“ detpGµ⌫q. In terms of the Lagrangian (36), the action of the spinor field reads

S “
ª
d4yL. (39)

It is worth noting that the Eq. (36) mirrors, up to the factor 1{⇢, the Dirac Lagrangian in

a Riemann-Cartan spacetime [6]. In fact, upon working out the anticommutator t�µ,⌃bcu,
it can be written as

L “ E
⇢

„
i

2

´
 �µ pDµ ´ p pDµ q�µ 

¯
` im  ´ i

4
Kr↵��s �

↵���� 

⇢
. (40)

Moreover, the totally antisymmetric contorsion term can be written on-shell (i.e., for back-

grounds (2) which satisfy the equations of motion of the matrix model) in terms of a gravi-

tational axion ⇢̃ as [33]

Kr↵��s�
↵���� “ ´1

6
�µ�⌫�"

µ⌫�⇢´2B�⇢̃ . (41)
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r�a, �bs (34)

is the spinor representation of the generators of the Lorentz group. Bearing in mind Eqs.

(7), (28), and (33), we find

�aE µ
a Bµ “ ⇢

ˆ
�aE µ

a
pDµ ` i

2
K bc

µ �aE µ
a ⌃bc 

˙
. (35)

Using this expression, we can rewrite the Lagrangian (31) in the form

L “ E
⇢

„
i

2

´
 �µ pDµ ´ p pDµ q�µ 

¯
` im  ´ 1

4
K bc

µ  t�µ,⌃bcu 
⇢
, (36)

where we have defined

�µ :“ E µ
a �a, (37)

and

E :“ det
`
Ea

µ

˘
“

?
´G “ ⇢M⇢2, (38)

with G :“ detpGµ⌫q. In terms of the Lagrangian (36), the action of the spinor field reads

S “
ª
d4yL. (39)

It is worth noting that the Eq. (36) mirrors, up to the factor 1{⇢, the Dirac Lagrangian in

a Riemann-Cartan spacetime [6]. In fact, upon working out the anticommutator t�µ,⌃bcu,
it can be written as

L “ E
⇢

„
i

2

´
 �µ pDµ ´ p pDµ q�µ 

¯
` im  ´ i
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Kr↵��s �

↵���� 

⇢
. (40)

Moreover, the totally antisymmetric contorsion term can be written on-shell (i.e., for back-

grounds (2) which satisfy the equations of motion of the matrix model) in terms of a gravi-

tational axion ⇢̃ as [33]

Kr↵��s�
↵���� “ ´1

6
�µ�⌫�"

µ⌫�⇢´2B�⇢̃ . (41)
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At this stage, it is useful to admit general (non-parallel) frames eaµ via

⌘abe
a
µe

b
⌫ “ Gµ⌫ (42)

so that the spinor  is allowed to transform as usual under local Lorentz transformations

(we note that this step is only possible in the e↵ective semi-classical description of the

matrix model under consideration here, and allows a more convenient description of the

fermionic action, similar as in teleparallel gravity [34]). Correspondingly, we can introduce

the following spin connection

r! ab
µ “ ea⌫ rrµe

b
⌫ “ p! ab

µ ´ K ab
µ , (43)

where p! ab
µ “ ea⌫rpGq

µ eb⌫ is the Levi-Civita spin connection associated to the general frame

ea⌫ and K ab
µ the contorsion tensor of the Weitzenböck connection r� �

µ⌫ (note that we are

employing for the Levi-Civita spin connection the same symbol as in Eq. (29); this should

not cause confusion, as henceforth we will always refer to the newly introduced p! ab
µ ). The

associated spinor covariant derivative is

rDµ “
ˆ

Bµ ´ i

2
r! ab
µ ⌃ab

˙
 “ pDµ ` i

2
K ab

µ ⌃ab , (44)

where pDµ can be read o↵ from Eq. (33). This is nothing but the extension of the

Weitzenböck connection to arbitrary frames; note that the spin connection (43) vanishes

in the physical frame due to Eq. (23), i.e., when we make the replacement

eaµ Ñ Ea
µ . (45)

By means of the formulae (42)–(44), the Lagrangian function (40) assumes, in the general

frame eaµ, the form

L “ e

⇢

„
i

2

´
 �µ rDµ ´ p rDµ q�µ 

¯
` im  

⇢

“ e

⇢

„
i

2

`
 �µBµ ´ pBµ q�µ 

˘
` im  ` i

4
r!r↵��s �

↵���� 

⇢
, (46)

where, similarly to Eqs. (37) and (38),

�µ :“ e µ
a �a, (47a)

e :“ det
`
eaµ

˘
“

?
´G. (47b)

10
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Contorsion tensor of the Weitzenböck connection  Γ̃ σ
μν

Note that  if  ω̃ ab
μ = 0
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Note that the Lagrangian (46) reduces to Eq. (31) for the parallel frame Ea
µ , where r! ab

µ

vanishes. Furthermore, it is worth pointing out that we have used for the Dirac matrices the

same notation as in Eq. (37); no confusion should arise since from now on we will consider

the matrices defined in Eq. (47a). As a consequence of Eq. (46), the equations of motion

read as

�µ pDµ ` m ´ 1

4
Kr↵��s�

↵���� ` ⇢

2

`
Bµ⇢´1

˘
�µ “ 0 , (48)

where the last terms breaks the local Lorentz invariance on non-trivial backgrounds.

It follows from the Dirac equation (48) and the equality3

pDµ�
↵ “ 0, (49)

that the e↵ective current ⇢´1Jµ is conserved, i.e.,

rpGq
µ

`
⇢´1Jµ

˘
“ 0, (50)

where Jµ :“  �µ .

IV. THE PARTICLE LIMIT OF THE DIRAC FIELD

In this section, we will work out the particle limit of the Dirac field by applying the

JWKB approximation to the quantum-mechanical Dirac equation (48). This means that

we assume the validity of the semi-classical limit, where the particle is characterized by a

world line and its spin by a polarization vector, and the gravitational field is supposed to

be slowly varying.

The classical motion of the fermionic field is dealt with in Sec. IVA, while Sec. IVB is

devoted to the study of the quantum dynamics.

A. The classical trajectory

Following the recipe of the JWKB scheme (see e.g. Refs. [11–15, 35, 36]), we adopt the

ansatz where the solution  of the Dirac equation can be written as a phase factor and a

3 It is worth pointing out that also the relation rDµ�
↵ “ 0 holds.
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˘
“

?
´G. (47b)

10



PARTICLE LIMIT OF THE DIRAC FIELD (1)
• Particle limit of the Dirac field by applying the  
JWKB approximation  

9

spinor amplitude via the following series:

 pxq “ exp

ˆ
´ i

~W pxq
˙ 8ÿ

n“0

~n pnqpxq, (51)

where W pxq is a real-valued function and  pnqpxq a spinor. If we insert the above formula

in Eq. (48) and equate the coe�cients involving the same powers of ~, we obtain at leading
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pi�µBµW ´ mq p0q “ 0, (52a)

pi�µBµW ´ mq p1q “ �µ pDµ 
p0q ´ 1

4
Kr↵��s�

↵���� p0q ` ⇢

2

`
Bµ⇢´1

˘
�µ p0q, (52b)
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where pµ “ ´BµW . The normalized timelike vector

u↵ “ ´B↵W
|Gµ⌫BµWB⌫W |1{2 “ 1

m
p↵, (54a)

Gµ⌫uµu⌫ “ ´1, (54b)

represents the tangent vector (i.e., the four-velocity) to the worldlines orthogonal to the fam-

ily of spacelike hypersurfaces W “ constant having constant phase. By standard arguments

[37], one can prove that these trajectories form a congruence of timelike geodesics

u↵rpGq
↵ u� “ 0, (55)

which is rotation free

⌦↵� :“ rpGq
r� u↵s “ 0. (56)

Therefore, to zero order in ~, we obtain the completely classical result according to which

the motion of the Dirac fermion is not influenced by the spin, i.e., the particle follows a

geodesic trajectory of the background geometry. The remaining kinematical properties of

the geodesic congruence are embodied by

rpGq
� u↵ “ 1

3
p✓P↵� ` p�↵�, (57)
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PARTICLE LIMIT OF THE DIRAC FIELD (2)
• The leading-order result leads to the Hamilton-Jacobi equation for 

a relativistic nonspinning particle 

where
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PARTICLE LIMIT OF THE DIRAC FIELD (3)
The  spinor . describes the positive-energy solutions of the flat-
space Dirac equation 

the spin-up and spin-down spinors being  

ψ(0)

11

where

p�↵� “ rpGq
p� u↵q ´ 1

3
p✓P↵�, (58a)

p✓ “ rpGq
� u�, (58b)

P↵� “ G↵� ` u↵u�, (58c)

represent the shear tensor, the expansion scalar, and the transverse metric (fulfilling the role

of a projector onto the space orthogonal to u↵), respectively.

It follows from Eq. (52a) that the spinor  p0q describes the positive-energy solutions of

the flat-space Dirac equation and hence it assumes the general form

 p0qpxq “ �1pxqup1qpxq ` �2pxqup2qpxq, �1pxq, �2pxq P C, (59)

where the spin-up and spin-down spinors are, in the Dirac basis4, [38]

up1q “
˜
pp0 ` m

2m

¸1{2

»

—————–

1

0

pp3{ppp0 ` mq
ppp1 ` ipp2q{ppp0 ` mq

fi

�����fl
, (60a)

up2q “
˜
pp0 ` m

2m

¸1{2

»

—————–

0

1

ppp1 ´ ipp2q{ppp0 ` mq
´pp3{ppp0 ` mq

fi

�����fl
, (60b)

respectively, and pa “ eaµp
µ.

The condition for the existence of a nontrivial solution  p1q of Eq. (52b) is that all

solutions of the corresponding transposed homogeneous equation are orthogonal to the in-

homogeneity (Fredholm alternative, see Refs. [11, 12, 39] for further details). Therefore, the

solvability conditions of Eq. (52b) yield

up1q
„
�µ pDµ 

p0q ´ 1

4
Kr↵��s�

↵���� p0q ` ⇢

2

`
Bµ⇢´1

˘
�µ p0q

⇢
“ 0, (61a)

up2q
„
�µ pDµ 

p0q ´ 1

4
Kr↵��s�

↵���� p0q ` ⇢

2

`
Bµ⇢´1

˘
�µ p0q

⇢
“ 0, (61b)

4 Here the SOp9, 1q spinors of the matrix model are decomposed in terms of 3+1-dimensional spinors, as

explained in Appendix B.
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PARTICLE LIMIT OF THE DIRAC FIELD (4)
• The next-to-leading-order result implies the following 

propagation equation for :  

If we introduce the normalized spinor  via the relations 

        

then we obtain  

ψ(0)

b(0)(x)
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Moreover, from Eq. (63), (herafter, A,B “ 1, 2)

upAq�µupAq ‹“ ´uµ, (65a)

upAq�µupBq ‹“ 0, pA ‰ Bq, (65b)

and

upAq�µBµupAq ‹“ ´p✓{2, (66a)

upAq�µBµupBq ‹“ 0, pA ‰ Bq. (66b)

Last, owing to Eqs. (64a) and (64b),

u↵ rD↵u
pAq ‹“ ´1

4
u↵K↵���

���upAq, (67)

which leads to the generally valid relation

u↵ pD↵u
pAq “ 0, (68)

upon taking into account Eq. (62c).

B. The quantum dynamics

At this stage, we have all the ingredients to evaluate the quantum corrections to the

fermionic dynamics, i.e., the corrections due to the wave-like nature of the the fermions.

After some preliminary calculations, the spin precession equation and the translation motion

will be worked out in Secs. IVB1 and IVB2, respectively. Last, we evaluate the magnetic

dipole moment of the Dirac particle in Sec. IVB3.

Upon using Eqs. (59), (62c), (65), and (66), the solvability condition (61) leads to

generally valid equations

uµBµ�1 “ ´
p✓
2
�1 ´ 1

4
Kr↵��s

ˆ
up1q�↵�����1u

p1q ` up1q�↵�����2u
p2q

˙
´ ⇢

2

`
Bµ⇢´1

˘
�1u

µ, (69a)

uµBµ�2 “ ´
p✓
2
�2 ´ 1

4
Kr↵��s

ˆ
up2q�↵�����1u

p1q ` up2q�↵�����2u
p2q

˙
´ ⇢

2

`
Bµ⇢´1

˘
�2u

µ, (69b)

describing the propagation of the scalar functions �1, �2 along the geodesic trajectory. There-

fore, the propagation equation for the spinor  p0q can be obtained starting from Eqs. (67)

and (69), and reads as

u↵ rD↵ 
p0q “ ´

p✓
2
 p0q ´ i

2
Kr↵�s��

↵�u� p0q ´ ⇢

2

`
Bµ⇢´1

˘
uµ p0q, (70)
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˚
� �
µ⌫ “ e �

a

˚
Dµe

a
⌫ “ e �

a

`
Bµea⌫ ` !̊ a

µ be
b
⌫

˘
, (80)

!̊ ab
µ “ ea⌫

˚
rµe

b
⌫ “ ea⌫

´
Bµeb⌫ ´ ˚

� �
µ⌫ eb�

¯
. (81)

The new connection is compatible with the e↵ective metric, as
˚
r↵Gµ⌫ “ 0, and satisfies the

following relations

V ✏
˚
r✏V

↵ “ V ✏rpGq
✏ V ↵, (82a)

˚
r↵V

↵ “ rpGq
↵ V ↵, (82b)

˚
Dµ�

↵ “ 0, (82c)

V ↵ being a generic vector.

Bearing in mind Eqs. (70) and (79), we find for the spinor  p0q

u↵
˚
D↵ 

p0q “ ´
p✓
2
 p0q ´ ⇢

2

`
Bµ⇢´1

˘
uµ p0q, (83)

which, in turn, implies that

u↵
˚
D↵b

p0q “ 0 ,

u↵
˚
D↵b

p0q “ 0 , (84)

upon exploiting the propagation equation (76). In other words, the normalized spinors bp0q

and b
p0q

are parallelly propagated along the geodesic path, which represents the trajectory

followed by the particle in the completely classical limit (see Eq. (52a)), provided that we

employ the new connections
˚
� �
µ⌫ and !̊ ab

µ .

The spin vector of the Dirac particle can be written via the JWKB approximation as (see

e.g. Refs. [11, 12] for further details)

S↵ “ S↵
p0q ` O p~q , (85)

the lowest-order correction being

S↵
p0q “ 1

2
"↵���u�b

p0q
���b

p0q, (86)

with

"↵��� “ e ↵
a e �

b e �
c e �

d ✏
abcd, (87)
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:Levi-Civita symbolϵabcd
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↵
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G↵�S
↵
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Aµ “ 1

6
"µ↵��Kr↵��s, (90)

Eq. (89) implies the spin precession equation

u⇢rpGq
⇢ Sµ

p0q “ 3"µ↵�✏A↵Sp0q�u✏. (91)

2. The nongeodesic translational motion

Let us introduce the Gordon decomposition of the e↵ective Dirac current

⇢´1Jµ ” J µ
M ` J µ

C , (92)

where the magnetization and convection currents can be obtained starting from the Dirac

equation (48) and the identity (79). Explicitly, J µ
M and J µ

C read as, respectively,

J µ
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2m⇢

”
pD⌫

`
 �µ⌫ 

˘
` ⇢

`
B⌫⇢´1

˘
 �µ⌫ 

ı
“ i~

2m
pD⌫

ˆ
 �µ⌫ 

⇢

˙
, (93a)

J µ
C “ ~

2m⇢

„´
pDµ 

¯
 ´ pDµ ´ 3i

2
Kr↵��s �

↵�G�µ 

⇢
“ ~
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Dµ 

¯
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Dµ 
ı
.

(93b)

18

where the totally antisymmetric Levi-Civita symbol ✏abcd is such that, in our conventions,

✏0123 “ 1. The spin vector (86) satisfies

u↵S
↵
p0q “ 0,

G↵�S
↵
p0qS

�
p0q “ 1, (88)

and is characterized by the propagation equation

uµ
˚
rµS

↵
p0q “ 0, (89)

which can be established by means of Eqs. (55), (82a), (82c), and (84), jointly with the iden-

tity
˚
rµ"↵��� “ 0. Therefore, through the new connections (78) and (79), the lowest-order

spin vector (86) is parallely transported along the particle’s classical geodesic trajectory. In

terms of the Levi-Civita connection (see Eq. (78)) and the axial-vector part of the contorsion

tensor

Aµ “ 1

6
"µ↵��Kr↵��s, (90)

Eq. (89) implies the spin precession equation

u⇢rpGq
⇢ Sµ

p0q “ 3"µ↵�✏A↵Sp0q�u✏. (91)

2. The nongeodesic translational motion

Let us introduce the Gordon decomposition of the e↵ective Dirac current

⇢´1Jµ ” J µ
M ` J µ

C , (92)

where the magnetization and convection currents can be obtained starting from the Dirac

equation (48) and the identity (79). Explicitly, J µ
M and J µ

C read as, respectively,

J µ
M “ i~

2m⇢

”
pD⌫

`
 �µ⌫ 

˘
` ⇢

`
B⌫⇢´1

˘
 �µ⌫ 

ı
“ i~

2m
pD⌫

ˆ
 �µ⌫ 

⇢

˙
, (93a)

J µ
C “ ~

2m⇢

„´
pDµ 

¯
 ´ pDµ ´ 3i

2
Kr↵��s �

↵�G�µ 

⇢
“ ~

2m⇢

”´ ˚
Dµ 

¯
 ´ ˚

Dµ 
ı
.

(93b)

18

where



SPIN PRECESSION EQUATION (2)
•  is characterized by propagation equation 
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The lowest-order spin vector  is parallelly transported  
along the particle’s classical geodesic trajectory
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Axial-vector part 
of the contorsion tensor
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TRANSLATIONAL MOTION (1)
• It follows from the Dirac equation that the effective Dirac 

current  is conserved, i.e.,  

• Gordon decomposition of the effective Dirac current 

ρ−1Jμ

16

where Jμ := Ψ̄γμΨ

Note that the Lagrangian (46) reduces to Eq. (31) for the parallel frame Ea
µ , where r! ab

µ

vanishes. Furthermore, it is worth pointing out that we have used for the Dirac matrices the

same notation as in Eq. (37); no confusion should arise since from now on we will consider

the matrices defined in Eq. (47a). As a consequence of Eq. (46), the equations of motion

read as

�µ pDµ ` m ´ 1

4
Kr↵��s�

↵���� ` ⇢

2

`
Bµ⇢´1

˘
�µ “ 0 , (48)

where the last terms breaks the local Lorentz invariance on non-trivial backgrounds.

It follows from the Dirac equation (48) and the equality3

pDµ�
↵ “ 0, (49)

that the e↵ective current ⇢´1Jµ is conserved, i.e.,

rpGq
µ

`
⇢´1Jµ

˘
“ 0, (50)

where Jµ :“  �µ .

IV. THE PARTICLE LIMIT OF THE DIRAC FIELD

In this section, we will work out the particle limit of the Dirac field by applying the

JWKB approximation to the quantum-mechanical Dirac equation (48). This means that

we assume the validity of the semi-classical limit, where the particle is characterized by a

world line and its spin by a polarization vector, and the gravitational field is supposed to

be slowly varying.

The classical motion of the fermionic field is dealt with in Sec. IVA, while Sec. IVB is

devoted to the study of the quantum dynamics.

A. The classical trajectory

Following the recipe of the JWKB scheme (see e.g. Refs. [11–15, 35, 36]), we adopt the

ansatz where the solution  of the Dirac equation can be written as a phase factor and a

3 It is worth pointing out that also the relation rDµ�
↵ “ 0 holds.
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By means of the the commutation relations for the covariant derivative operator pDµ and

Eq. (50), it can be shown that these quantities are conserved, i.e., they satisfy

rpGq
µ J µ

M “ 0, (93a)

rpGq
µ J µ

C “ 0. (93b)
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Conserved quantities   

• Four-velocity for the translational motion 

17

By means of the the commutation relations for the covariant derivative operator pDµ and

Eq. (50), it can be shown that these quantities are conserved, i.e., they satisfy

rpGq
µ J µ

M “ 0, (94a)

rpGq
µ J µ

C “ 0. (94b)

In particular, the torsion-free condition featuring the operator pDµ is essential for the eval-

uation of Eq. (94a), as it guarantees that r pDµ, pD⌫s⇢´1 “ 0. Physically, J µ
M represents the

curl of the spin density and can be interpreted as a magnetization current, while J µ
C is a

convection four-current as its spacelike part resembles the three-vector probability current

of Schrödinger theory [11, 12].

Due to its physical interpretation, the convection current J µ
C can be used to define the

particle’s translational motion. Thus, we can define a congruence of timelike curves having

tangent vector v↵, which is given by

v↵ “ J ↵
Ca

´Gµ⌫J µ
CJ ⌫

C

, (95)

which upon exploiting Eqs. (51), (54b), (74), and (84), yields

vµ “ uµ ` ~
2m

”´ ˚
Dµb

p0q¯
bp0q ´ b

p0q ˚
Dµbp0q

ı
` O

`
~2

˘
. (96)

The above formula shows that the spin forces the particle to follow a quantum corrected

trajectory which deviates from the geodesic motion, which is pursued only at classical level

(see Eq. (55)). In fact, we can evaluate the nongeodesic acceleration a↵ of the fermion as

follows. Let us start with the following expression:

a↵ “ v�rpGq
� v↵ “ v�

˚
r�v↵ “ 2v�

˚
rr�v↵s

“ ~
m
u�

”´ ˚
Dr�

˚
D↵sb

p0q¯
bp0q ´ b

p0q ´ ˚
Dr�

˚
D↵sb

p0q
¯ı

´ 2v�
˚
� �

r�↵s u� ` O
`
~2

˘
, (97)

where we have exploited Eqs. (54a), (82a), and (84) jointly with the normalization condition

v↵v↵ “ ´1. The above formula can be further simplified by exploiting Eq. (78) and the

commutation relations

” ˚
Dµ,

˚
D⌫

ı
 “ ´ i

4

˚
R ab

µ⌫ �ab ´ 2
˚
� �

rµ⌫s
˚
D� ,

” ˚
Dµ,

˚
D⌫

ı
 “ i

4

˚
R ab

µ⌫  �ab ´ 2
˚
� �

rµ⌫s
˚
D� , (98)
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Due to its physical interpretation, the convection current J µ
C can be used to define the

particle’s translational motion. Thus, we can define a congruence of timelike curves having

tangent vector v↵, which is given by

v↵ “ J ↵
Ca

´Gµ⌫J µ
CJ ⌫

C

, (95)

which upon exploiting Eqs. (51), (54b), (74), and (84), yields

vµ “ uµ ` ~
2m

”´ ˚
Dµb

p0q¯
bp0q ´ b

p0q ˚
Dµbp0q

ı
` O

`
~2

˘
. (96)

The above formula shows that the spin forces the particle to follow a quantum corrected

trajectory which deviates from the geodesic motion, which is pursued only at classical level

(see Eq. (55)). In fact, we can evaluate the nongeodesic acceleration a↵ of the fermion as

follows. Let us start with the following expression:

a↵ “ v�rpGq
� v↵ “ v�

˚
r�v↵ “ 2v�

˚
rr�v↵s

“ ~
m
u�

”´ ˚
Dr�

˚
D↵sb

p0q¯
bp0q ´ b

p0q ´ ˚
Dr�

˚
D↵sb

p0q
¯ı

´ 2v�
˚
� �

r�↵s u� ` O
`
~2

˘
, (97)

where we have exploited Eqs. (54a), (82a), and (84) jointly with the normalization condition

v↵v↵ “ ´1. The above formula can be further simplified by exploiting Eq. (78) and the

commutation relations

” ˚
Dµ,

˚
D⌫

ı
 “ ´ i

4

˚
R ab

µ⌫ �ab ´ 2
˚
� �

rµ⌫s
˚
D� ,

” ˚
Dµ,

˚
D⌫

ı
 “ i

4

˚
R ab

µ⌫  �ab ´ 2
˚
� �

rµ⌫s
˚
D� , (98)
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The spin forces the particle to follow a quantum corrected trajectory  
which deviates from the classical geodesic motion



TRANSLATIONAL MOTION (3)
• Four-acceleration of the translational motion 

Our model predicts a spin precession equation and translational 
motion having the same form as in standard Einstein-Cartan theory   

18
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˚
R ab

µ⌫ “ Bµ!̊ ab
⌫ ´ B⌫!̊ ab

µ ` !̊ ac
µ !̊ b

⌫c ´ !̊ ac
⌫ !̊ b

µc . (98)

In this way, we end up with the final form of the acceleration vector describing a nongeodesic

motion to first order in ~

a↵ “ v�rpGq
� v↵ “ ´ i

2

ˆ
~
2m

˙
˚
R↵�µ⌫u

� b
p0q
�µ⌫bp0q ` O

`
~2

˘
, (99)
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2

ˆ
~
2m

˙
˚
R↵�µ⌫u

� b
p0q
�µ⌫bp0q ` O

`
~2

˘
, (100)

where, in our conventions,

˚
R �

µ⌫ � “ e �
a eb�

˚
R a

µ⌫ b “ Bµ
˚
� �
⌫� ´ B⌫

˚
� �
µ� ` ˚

� �
µ⇢

˚
� ⇢
⌫� ´ ˚

� �
⌫⇢

˚
� ⇢
µ� . (101)

By means of Eq. (78), we can write

˚
R �

µ⌫ � “ R �
µ⌫ � ` 3G✏�

`
rpGq

µ Kr⌫�✏s ´ rpGq
⌫ Krµ�✏s

˘
` 9G✏�G↵⇢

`
Krµ⇢✏sKr⌫�↵s ´ Kr⌫⇢✏sKrµ�↵s

˘
,

(102)

where R �
µ⌫ � is the Riemann tensor for the Levi-Civita connection associated with the e↵ec-

tive metric Gµ⌫ (cf. Eq. (C.2)). We note that the above equation shows that the relation

between
˚
R �

µ⌫ � and R �
µ⌫ � has the same functional form as the formula relating the Riemann

tensor of Einstein-Cartan theory to the Riemann tensor of general relativity (see e.g. Eq.

(75) in Ref. [42]).

It is important to stress that, despite the presence of a Lorentz violating term in the Dirac

equation (48), our model predicts a spin precession equation (91) and translational motion

(100) having the same form as in standard Einstein-Cartan theory (cf. Ref. [12]). Our

analysis proves that this is true in any background geometry, not only the particular FLRW

model discussed in Sec. V below. In particular, an interesting consequence of Eq. (100) is

that it predicts a gyro-gravitational factor equals to one (as can be seen from the numerical

factor ~
2m on the right hand side of Eq. (100)), as in the ordinary gravity theories [43],

where this result can be ascribed to the fact that the spinor field describes particles having

equal gravitational and inertial masses. This assures that the intrinsic spin behaves as if

the particle was a gyroscope. Standard results can be obtained also for the gyromagnetic

factor, as will be pointed out in the next section.
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APPLICATION TO THE FLRW BACKGROUND (1)
• In the FLRW spacetime and adopting Cartesian coordinates 

, the -invariant effective metric reads as   

• Frames  

• Dilaton 

xμ SO(3,1)
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with pFµ⌫ “ 2rpGq
rµ A⌫s (see Eq. (107)).

Due to the conservation law (50), the proper normalization of the fermions is obtained

by absorbing the factor ⇢´1 in the spinor:

� “ ⇢´1{2 . (109)

Then the interaction with the electromagnetic field takes the standard form

Lint
M

ˇ̌
FLRW

“
?

´G
i~
2m

��µ⌫�

ˆ
1

2
pFµ⌫

˙
, (110)

and hence, upon working out the nonrelativistic limit of the last formula, the magnetic

dipole moment µD of the Dirac particle turns out to be (at tree level)

µD “ ~
2m

, (111)

yielding for the gyromagnetic ratio the same value as in flat spacetime, i.e.,

gD “ 2. (112)

In the case of a generic background, the interaction Lagrangian (106) will include also the

term Krµ⌫✏s and hence the magnetic dipole moment will be influenced by the contributions

coming from the contorsion tensor. This could lead to intriguing implications which might

also permit the detection of torsion e↵ects.

V. A PARTICULAR COSMOLOGICAL BACKGROUND SOLUTION

The analysis of Sec. IV applies to a generic curved background provided by the IKKT

matrix model. In this section, we consider a particular background solution M3,1 of the

matrix model which describes a cosmological FLRW spacetime [24]. It is worth recalling

that we have evaluated the propagation of a scalar field in this setup in Ref. [29].

The frame defined by the FLRW background is, in Cartesian coordinates xµ, (cf. Eqs.

(5) and (7))

E µ
a “ psinh ⌘q �aµ , (113)

Ea
µ “ ⇢Ea

µ . (114)
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Bearing in mind Eq. (4), the e↵ective metric Gµ⌫ can be written in terms of the auxiliary

metric

�µ⌫ “
`
sinh2 ⌘

˘
⌘µ⌫ , (115)

as

Gµ⌫ “ ⇢2 �µ⌫ , (116)

where

⇢2 “ | sinh ⌘|3, (117)

represents the dilaton. The symplectic volume form ⇢Md4y can be written, in Cartesian

coordinates xµ, as (cf. Eq. (6))

⇢M “ 1

| sinh ⌘| . (118)

Explicitly, the SOp3, 1q-invariant FLRW e↵ective metric reads [24]

ds2G “ Gµ⌫dx
µdx⌫ “ ´R2| sinh ⌘|3d⌘2 ` R2| sinh ⌘| cosh2 ⌘ d⌃2 “ ´dt2 ` a2ptqd⌃2, (119)

where aptq is the cosmic scale factor and

d⌃2 “ d�2 ` sinh2 �pd✓2 ` sin2 ✓d'2q, (120)

the invariant length element on the space-like hyperboloids H3 (with ´8 § � † 8, 0 §
✓ † ⇡, 0 § ' † 2⇡).

The Weitzenböck connection � µ
⌫⇢ associated to the frame E µ

a is obtained from Eq. (113)

as

� µ
⌫� “ ´Ea

�B⌫E µ
a “ ´ 1

sinh ⌘
�µ�B⌫ sinh ⌘, (121)

which, in turn, leads to

�↵
�� “ �↵⌫��µ�

µ
⌫� “ 1

⇢2R2
⌧↵G��. (122)

Here we have exploited Eqs. (115)–(117), and we have introduced the SOp3, 1q-invariant
cosmic timelike vector field ⌧ “ aptqBt, satisfying the relations [30, 45, 46]

`
R2 sinh ⌘

˘
Bµ sinh ⌘ “ ´⌘µ⌫⌧

⌫ , (123a)

Gµ⌫⌧
µ⌧ ⌫ “ ´R2 cosh2 ⌘ |sinh ⌘| “ ´a2ptq. (123b)
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Invariant length element on the spacelike hyperboloids H3
Bearing in mind Eq. (4), the e↵ective metric Gµ⌫ can be written in terms of the auxiliary
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APPLICATION TO THE FLRW BACKGROUND (2)
• Dirac equation 

where   is the -invariant cosmic timelike vector 
field which is responsible for the breaking of the local Lorentz 
invariance 

• The analysis of the propagation of fermions is greatly 
simplified as   

τ = a(t)∂t SO(3,1)
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The torsion and contorsion tensors of the Weitzenböck connection (121) are given by, re-

spectively,

T µ
⇢� “ � µ

⇢� ´ � µ
�⇢ “ 1

R2⇢2
`
�µ�⌧⇢ ´ �µ⇢ ⌧�

˘
, (124)

K �
µ⌫ “ 1

2

`
T �
µ⌫ ` T �

µ⌫ ´ T �
⌫ µ

˘
“ ´K �

µ ⌫ “ 1

R2⇢2
pGµ⌫⌧

� ´ ��µ⌧⌫q, (125)

where ⌧⌫ :“ G⌫�⌧�. Further details on the geometry of the cosmological background can be

found in Appendix C.

As a consequence of Eq. (123a), the Dirac equation becomes (cf. Eq. (48))

�µ pDµ ` m ` 3

4

⌧µ
⇢2R2

�µ “ 0, (126)

where we have taken into account that in the FLRW geometry we have

Kr↵��s “ 0, (127)

owing to Eq. (125) (see also Eq. (22)). The term involving the cosmic vector field ⌧µ is

responsible for the breaking of the local Lorentz invariance, which can be attributed to the

dilaton. It is thus clear that the investigation of Sec. IV can be performed also within the

geometrical setup (119). However, in this case the analysis greatly simplifies due to Eq.

(127).

VI. CONCLUSIONS

In this paper, we have examined the evolution of a Dirac particle on a generic curved

3+1-dimensional background brane within the IKKT matrix model. This is non-trivial due

to the non-standard form of the fermionic action and the absence of manifest local Lorentz

invariance. We show that despite the di↵erent origin, the fermionic action di↵ers from

the one in general relativity only through a coupling to the totally antisymmetric part of

the Weitzenböck (con)torsion, which is determined by the e↵ective frame. This extra term

vanishes on a specific cosmological background [24], where the propagation of scalar fields

was studied in [29].

We then examine the coupling of fermions in the present model in more detail by means

of the JWKB approximation scheme. This permits to analyze first-order non-trivial quan-

tum corrections characterizing the dynamics of the fermion. Despite the di↵erent origin of
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SUMMARY (1)
• We have examined the evolution of a Dirac particle on a generic 

curved 3+1-dimensional background brane within the IKKT matrix 
model 

• The fermionic action resembles the one given in Einstein-Cartan 
theory and differs from the one given in general relativity only 
through a coupling to the totally antisymmetric part of the 
Weitzenböck contorsion  

• Both the spin precession and the translation motion assume the 
same form as in Einstein-Cartan theory 

• We have considered the particular case of the FLRW cosmological 
background  
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SUMMARY (2)

• Further details can be found in: 

Emmanuele Battista and Harold C. Steinacker, 

“Fermions on curved backgrounds of matrix models”, 

Phys. Rev. D 107, 046021 (2023), arXiv: 2212.08611 

…and the best is yet to come! 
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