Dirac fields on Kerr spacetime and the Hawking radiation II

Dietrich Häfner (Université Grenoble Alpes)

Spectral Theory and Mathematical Relativity Introductory workshop, June 19-June 23 2023

Part II : Scattering theory for Dirac fields on the Kerr metric (with Jean-Philippe Nicolas)

(commemorative marker in Westminster Abbey)

Dietrich Häfner (Université Grenoble Alpes) Dirac fields on Kerr spacetime and the Hawking radiation II

II.1 Dirac fields on globally hyperbolic manifolds

Spinor bundles A spinor bundle is a vector bundle $\mathcal{S} \xrightarrow{\pi} M$ with the following objects (\mathcal{S}^* is the anti-dual bundle):

• a linear map $\gamma: C^{\infty}(M;TM) \to C^{\infty}(M;\operatorname{End}(\mathcal{S}))$ such that, $\gamma(X)\gamma(Y) + \gamma(Y)\gamma(X) = 2X \cdot gY\mathbf{1}, X, Y \in C^{\infty}(M;TM),$ (1)

and for each $x \in M$, γ_x induces a faithful irreducible representation of the Clifford algebra $Cl(T_xM, g_x)$ in S_x ;

② a section β ∈ C[∞](M; End(S, S^{*})) such that β_x is Hermitian non-degenerate for each x ∈ M and

$$i) \quad \gamma(X)^*\beta=-\beta\gamma(X), \quad \forall X\in C^\infty(M;TM),$$

ii)
$$_{1\beta\gamma(e)} > 0$$
, for *e* a time-like, (2)
future directed vector field on *M*;

 $\kappa\gamma(X) = \gamma(X)\kappa \quad \kappa^2 = \mathbf{1} \cdot (\mathbf{P} \cdot \mathbf{P} \cdot \mathbf{P}$

(a) a section $\kappa \in C^{\infty}(M; \operatorname{End}(\mathcal{S}, \bar{\mathcal{S}}))$ such that

Dietrich Häfner (Université Grenoble Alpes)

Dirac fields on Kerr spacetime and the Hawking radiation II

Connections

A connection ∇^{S} on S, called a spin connection, such that: *i*) $\nabla^{S}_{X}(\gamma(Y)\psi) = \gamma(\nabla_{X}Y)\psi + \gamma(Y)\nabla^{S}_{X}\psi,$ *ii*) $X(\bar{\psi}\cdot\beta\psi) = \overline{\nabla^{S}_{X}\psi}\cdot\beta\psi + \bar{\psi}\cdot\beta\nabla^{S}_{X}\psi,$ (4) *iii*) $\kappa\nabla^{S}_{X}\psi = \nabla^{S}_{X}\kappa\psi,$

for all $X, Y \in C^{\infty}(M; TM)$ and $\psi \in C^{\infty}(M; S)$, where ∇ is the Levi-Civita connection on (M, g). The rank of S is necessarily equal to 4 and if (2) holds for some time-like future directed vector field e, then it holds for all such vector fields.

Remark

A linear map γ as in (1) is called a Clifford representation. A section β as in (2) is called a positive energy Hermitian form (for the Clifford representation γ), while a section κ as in (3) is called a charge conjugation (for the Clifford representation γ). The properties listed in (4) are usually summarized by saying that γ, β, κ are covariantly constant w.r.t. the connection ∇^{S} .

Weyl spinors

Volume element $\eta = \gamma(e_0) \cdots \gamma(e_3)$ (independent on the choice of local oriented orthonormal frame e_0, e_1, e_2, e_3).

$$\eta^2 = -1, \quad \eta \gamma(X) = -\gamma(X)\eta. \tag{5}$$

 $S_x = W_{e,x} \oplus W_{o,x}$, $W_{e,x} = \text{Ker}(\eta(x) - 1)$, $W_{o,x} = \text{Ker}(\eta(x) + 1)$. The bundle S splits as $W_e \oplus W_o$, where $W_{e/o}$ is the bundle of *even/odd Weyl spinors*.

 $\mathcal{W}^{\#}$: dual bundle of $\mathcal{W},\,\mathcal{W}^{*}=\overline{\mathcal{W}^{\#}}.$ Setting $\mathbb{S}:=\mathcal{W}_{e}^{*}$, one identifies \mathcal{S} with $\mathbb{S}^{*}\oplus\mathbb{S}^{\#}$ by the map

$$C^{\infty}(M;\mathcal{S}) \ni \psi \mapsto \psi_{\mathbf{e}} \oplus \kappa \psi_{\mathbf{o}} =: \chi \oplus \phi \in C^{\infty}(M;\mathbb{S}^*) \oplus C^{\infty}(M;\mathbb{S}^{\#}).$$

 ${\mathbb S}$ is equipped with the symplectic form

$$\epsilon := \frac{1}{\sqrt{2}} (\beta \kappa)^{-1} \in C^{\infty}(M; \operatorname{End}(\mathbb{S}, \mathbb{S}^{\#})).$$

伺下 イヨト イヨト

There is an isomorphism

$$\tau: C^{\infty}(M; \mathbb{C}TM) \ni v \mapsto \beta\gamma(v) \in C^{\infty}(M; \mathbb{S} \otimes \bar{\mathbb{S}})$$

If we extend g to $\mathbb{C}TM$ as a bilinear (not sesquilinear) form, one can show that

$$\tau^{\#} \circ (\epsilon \otimes \bar{\epsilon}) \circ \tau = g.$$

A normalized null tetrad (Newman-Penrose tetrad) is a global frame (l, n, m, \overline{m}) of $\mathbb{C}TM$ such that:

$$\begin{array}{ll} l,n \text{ are real}, & l \cdot gl = n \cdot gn = 0, & l \cdot gn = -1 \\ m \cdot gm = l \cdot gm = n \cdot gm = 0, & m \cdot g\bar{m} = 1. \end{array}$$

Spin frames

$$\begin{aligned} & \iota\tau(l) = o \otimes \bar{o}, \quad \iota\tau(n) = \iota \otimes \bar{\imath}, \\ & \iota\tau(m) = o \otimes \bar{\imath}, \quad \iota\tau(\bar{m}) = \iota \otimes \bar{o}, \\ & o \cdot \epsilon \iota = 1. \end{aligned}$$

 $\Gamma(X) = \beta \gamma(X) \in C^{\infty}(M, \operatorname{End}(\mathbb{S}^*, \mathbb{S})), \quad X \in C^{\infty}(M; TM).$ Dietrich Häfner (Université Grenoble Alpes)
Dirac fields on Kerr spacetime and the Hawking radiation II

Dirac operators

If $\mathcal{S} \xrightarrow{\pi} M$ is a spinor bundle, the Dirac operator D acting on $C^{\infty}(M; \mathcal{S})$ is the differential operator defined as:

$$D = g^{\mu\nu}\gamma(e_{\mu})\nabla^{\mathcal{S}}_{e_{\nu}}.$$

where (e_0, \ldots, e_3) is a local frame of TM.

- The advantage of 𝔅 (massless) over 𝔅 + λ with λ ≠ 0 (massive) is conformal invariance: g → c²g corresponds to 𝔅 → c⁻²𝔅.
- **2** Weyl equation (\mathcal{W}_e even Weyl spinors).

$$\mathbb{S} := \mathcal{W}_{\mathrm{e}}^*, \, \Gamma(X) = \beta \gamma(X), \, \mathbb{D} = g^{\mu\nu} \Gamma(e_{\mu}) \nabla_{e_{\nu}}^{\mathcal{S}}, \, \hat{\mathbb{D}} = c^{-3} \mathbb{D}c.$$

Weyl equation $\mathbb{D}\phi = 0 \, (\mathbb{D} : C^{\infty}(M; \mathbb{S}^*) \to C^{\infty}(M; \mathbb{S})).$

In the following we only consider massless Dirac fields (Weyl equation).

$$(\phi|v)_M = \overline{(v|\phi)_M} := \int_M \phi(x) \cdot v(x) \, d\mathrm{vol}_g,$$
 (6)

(M,g) globally hyperbolic spacetime (of dimension 4) with a spin structure and denote by $\mathbb D$ the associated Weyl operator. Space-compact solutions Let $\mathrm{Sol}_{\mathrm{sc}}(M)$ be the space of smooth space-compact solutions of $\mathbb D\phi=0,\ \phi\in C^\infty(M;\mathbb S^*).$ The current $J(\phi_1,\phi_2)\in C^\infty(M;T^*M)$ defined by

$$J(\phi_1, \phi_2) \cdot X := \bar{\phi}_1 \cdot \Gamma(X) \phi_2, \quad X \in C^{\infty}(M; TM), \ \phi_i \in \operatorname{Sol}_{\operatorname{sc}}(M),$$

it satisfies

$$\nabla^a J_a(\phi_1, \phi_2) = 0, \quad \phi_i \in \operatorname{Sol}_{\mathrm{sc}}(M).$$

Stokes :

$$\int_{\partial U} i^*(g^{-1}J(\phi_1,\phi_2) \lrcorner \Omega_g) = 0, \ \phi_i \in \operatorname{Sol}_{\operatorname{sc}}(M).$$

L^2 solutions

Hilbertian scalar product Let now $S \subset M$ be any smooth Cauchy surface.

$$(\phi_1|\phi_2)_{\mathbb{D}} := i \int_S i^* (g^{-1} J(\phi_1, \phi_2) \lrcorner \Omega_g)$$

$$= i \int_S \bar{\phi}_1 \cdot \Gamma(g^{-1} \nu) \phi_2 \quad i_l^* d \mathrm{vol}_g,$$
(7)

where $S = \text{Ker }\nu$, l transverse to S future pointing with $\nu \cdot l = 1$, $i_l^* d \text{vol}_g = |i^*(l \lrcorner \Omega_g)|$. The r.h.s. in (7) is independent on the choice of the Cauchy surface S. If S is space-like, we obtain $(l = n, \nu = -gn)$:

$$(\phi_1|\phi_2)_{\mathbb{D}} = \operatorname{I} \int_S \bar{\phi_1} \cdot \Gamma(n)\phi_2 \, d\mathrm{vol}_h.$$
(8)

By (2) ${}_{1}\Gamma(n)$ is positive definite, which shows that $(\cdot|\cdot)_{\mathbb{D}}$ is a Hilbertian scalar product on $\mathrm{Sol}_{\mathrm{sc}}(M)$.

Definition

The Hilbert space $\operatorname{Sol}_{L^2}(M)$, called the *space of* L^2 *solutions*, is the completion of $\operatorname{Sol}_{\mathrm{sc}}(M)$ for the scalar product $(\cdot|\cdot)_{\mathbb{D}}$.

Let (l, n, m, \overline{m}) be a normalized null tetrad and (o, i) the associated frame of S. For $\phi \in C^{\infty}(M; \mathbb{S}^*)$ one sets then:

$$\phi_0 = \phi \cdot o, \quad \phi_1 = \phi \cdot i, \quad U\phi = \begin{pmatrix} \phi_0 \\ \phi_1 \end{pmatrix} \in C^{\infty}(M; \mathbb{C}^2),$$

so that $\phi = \phi_0 o^* + \phi_1 i^*$ if (o^*, i^*) is the dual frame of \mathbb{S}^* . If the tetrad is chosen such that l + n is normal to a space-like Cauchy surface S, then we obtain

$$(\phi|\phi)_{\mathbb{D}} = \frac{1}{\sqrt{2}} \int_{S} \left(|\phi_0|^2 + |\phi_1|^2 \right) d\mathrm{vol}_h.$$
 (9)

We say that a tetrad is adapted to a foliation if l + n is normal to all slices of the foliation.

II.2 The Cauchy problem for the Weyl equation on Kerr spacetime

Evolutionary form of the Weyl equation in M_{I}

Kinnersley's tetrad The Weyl equation $\mathbb{D}\phi = 0$ can be reduced to an equation of the form $\partial_t \Psi - iH\Psi = 0$ with H a *t*-independent differential operator.

$$l = \frac{1}{\sqrt{2\Delta\rho^2}} \left((r^2 + a^2)\partial_t + \Delta\partial_r + a\partial_\varphi \right),$$

$$n = \frac{1}{\sqrt{2\Delta\rho^2}} \left((r^2 + a^2)\partial_t - \Delta\partial_r + a\partial_\varphi \right),$$

$$m = \frac{1}{\sqrt{2n}} \left(a\sin\theta\partial_t + \partial_\theta + \frac{1}{\sin\theta}\partial_\varphi \right),$$

for $p = r + a \cos \theta$. Note that l, n are up to scaling the principal null directions. We set

$$\phi_0 = \phi \cdot o, \quad \phi_1 = \phi \cdot i.$$

Tetrad adapted to the foliation

A null tetrad $(\mathbf{l}, \mathbf{n}, \mathbf{m}, \bar{\mathbf{m}})$ adapted to the foliation of $M_{\rm I}$ by the hypersurfaces $\Sigma_s = \{t = s\}$ is used for the scattering theory arguments, with the property that

$$\mathbf{l} + \mathbf{n} = 2\mathbf{T}, \, \mathbf{l}, \, \mathbf{n} \in Span\{\mathbf{T}, \, \partial_r\},$$

where ${\bf T}$ is the future directed unit normal vector field to this foliation. Concretely,

$$\mathbf{l} = \frac{\sigma}{\sqrt{2\Delta\rho^2}} \left(\partial_t + \frac{2aMr}{\sigma^2}\partial_\varphi\right) + \sqrt{\frac{\Delta}{2\rho^2}}\partial_r,$$
$$\mathbf{n} = \frac{\sigma}{\sqrt{2\Delta\rho^2}} \left(\partial_t + \frac{2aMr}{\sigma^2}\partial_\varphi\right) - \sqrt{\frac{\Delta}{2\rho^2}}\partial_r,$$
$$\mathbf{m} = \frac{1}{\sqrt{2\rho^2}} \left(\partial_\theta + \frac{\mathrm{i}\rho^2}{\sigma\sin\theta}\partial_\varphi\right).$$

Dietrich Häfner (Université Grenoble Alpes) Dirac fields on Kerr spacetime and the Hawking radiation II

If (\mathbf{o},\mathbf{i}) is the spinor basis associated to $(\mathbf{l},\mathbf{n},\mathbf{m},\bar{\mathbf{m}})$, one sets then:

$$\Psi := \left(\frac{\Delta \rho^2 \sigma^2}{(r^2 + a^2)^2}\right)^{\frac{1}{4}} \left(\begin{array}{c} \phi \cdot \mathbf{o} \\ \phi \cdot \mathbf{i} \end{array}\right) = \left(\begin{array}{c} \Psi_0 \\ \Psi_1 \end{array}\right) =: \mathcal{V}\phi,$$

and uses the coordinates $(t,r_*,\theta,\varphi).$

$$\left(\begin{array}{c} \Psi_0\\ \Psi_1 \end{array}\right) = \left(\frac{\Delta\rho^2\sigma^2}{(r^2+a^2)^2}\right)^{\frac{1}{4}} \mathbf{U} \left(\begin{array}{c} \phi_0\\ \phi_1 \end{array}\right).$$

Finally, one sets

$$D = \mathcal{V}\mathbb{D}\mathcal{V}^{-1}, \quad (\Psi|\Psi)_D = \frac{1}{\sqrt{2}} \int_{\Sigma} \left(|\Psi_0|^2 + |\Psi_1|^2 \right) dx d^2 \omega.$$

The equation $D\Psi = 0$ can be rewritten as

$$\partial_t \Psi - \mathbf{1} H \Psi = 0,$$

which we will call the reduced Weyl equation.

The Cauchy problem

We denote by $Sol_{L^2}(M_I)$ the closure of the space $Sol_{sc}(M_I)$ of space-compact solutions of $D\Psi = 0$ for the scalar product $(\cdot|\cdot)_D$.

 $\mathcal{V}: Sol_{L^2}(M_I) \xrightarrow{\sim} Sol_{L^2}(M_I)$ is unitary.

Cauchy evolution Let \mathcal{H} be the Hilbert space associated to $(\Psi|\Psi)_D$.

Lemma

(H, D(H)) is selfadjoint on \mathcal{H} .

We set

$$\rho_{\Sigma}: Sol_{L^2}(M_I) \ni \psi \mapsto \psi(0) \in \mathcal{H}$$

and denote by $\Psi = U_{\Sigma}f$ the unique solution of the Cauchy problem

$$\begin{cases} D\Psi = 0, \\ \rho_{\Sigma}\Psi = f \in \mathcal{H} \end{cases}$$

II.3 Scattering theory for the Weyl equation on Kerr spacetime

Decomposition of $Sol_{L^2}(M_I)$

Theorem (H-Nicolas '03)

There exists a selfadjoint operator $P^- \in B(\mathcal{H})$, called the past asymptotic velocity such that:

$$\chi(P^{-}) = \mathrm{s} - \lim_{t \to -\infty} \mathrm{e}^{-\mathrm{i}tH} \chi\left(\frac{r_{*}}{t}\right) \mathrm{e}^{\mathrm{i}tH}, \quad \forall \chi \in C^{\infty}_{\mathrm{c}}(\mathbb{R}).$$

We have
$$\sigma(P^{-}) = \{-1, 1\}, [P^{-}, H] = [P^{-}, \partial_{\varphi}] = 0.$$

We set

$$\pi_{\mathscr{H}_{-}} := \mathbf{1}_{\{1\}}(P^{-}), \quad \pi_{\mathscr{I}^{-}} := \mathbf{1}_{\{-1\}}(P^{-}),$$

$$Sol_{L^{2}}(M_{I}) = Sol_{L^{2},\mathscr{H}^{-}}(M_{I}) \oplus Sol_{L^{2},\mathscr{I}^{-}}(M_{I}),$$

where $Sol_{L^2,\mathscr{H}^-/\mathscr{I}^-}(M_I) := U_{\Sigma} \circ \pi_{\mathscr{H}^-/\mathscr{I}^-} \mathcal{H}$. Let $\Pi_{\mathscr{H}^-/\mathscr{I}^-} = U_{\Sigma} \circ \pi_{\mathscr{H}^-/\mathscr{I}^-} \circ \rho_{\Sigma}$ (orthogonal projections on $Sol_{L^2,\mathscr{H}^-/\mathscr{I}^-}(M_I)$). Note : $1^{-1}v_{\mathscr{H}}$, resp. $1^{-1}v_{\mathscr{I}}$ preserves $Sol_{L^2,\mathscr{H}^-}(M_I)$ resp. $Sol_{L^2,\mathscr{I}^-}(M_I)$.

Traces at infinities

Traces on \mathscr{H}^- For $\Psi \in Sol_{sc}(M_I)$, the trace

$$T_{\mathscr{H}^{-}}\Psi:=\Psi_{1|\mathscr{H}^{-}}\in C^{\infty}(\mathscr{H}^{-};\mathbb{C})$$

is well defined.

Proposition (H-Nicolas '03)

 $\begin{array}{l} T_{\mathscr{H}^{-}} \text{ uniquely extends as a bounded operator} \\ T_{\mathscr{H}^{-}} : Sol_{L^{2}}(\mathrm{M}_{\mathrm{I}}) \rightarrow L^{2}(\mathscr{H}^{-}, d\mathrm{vol}_{\mathscr{H}^{-}}), \\ \text{where } \mathscr{H}^{-} \text{ is identified with } \mathbb{R}_{*_{t}} \times \mathbb{S}^{2}_{\theta, *_{\varphi}}, \text{ and} \\ d\mathrm{vol}_{\mathscr{H}^{-}} = \sin \theta d^{*} t d\theta d^{*_{\varphi}}. \text{ One has:} \end{array}$

$$\operatorname{Ker} T_{\mathscr{H}^{-}} = Sol_{L^{2},\mathscr{I}^{-}}(\mathrm{M}_{\mathrm{I}}), \quad \operatorname{Ran} T_{\mathscr{H}^{-}} = L^{2}(\mathscr{H}^{-}, d\mathrm{vol}_{\mathscr{H}^{-}}),$$
$$(\Psi|\Psi)_{D} = \frac{1}{\sqrt{2}} \int_{\mathscr{H}^{-}} |T_{\mathscr{H}^{-}}\Psi|^{2} d\mathrm{vol}_{\mathscr{H}^{-}}, \quad \Psi \in Sol_{L^{2},\mathscr{H}^{-}}(\mathrm{M}_{\mathrm{I}}).$$

Traces on \mathscr{I}^-

For $\Psi\in Sol_{sc}(M_{I}),$ the trace

$$T_{\mathscr{I}^{-}}\Psi := \Psi_{0|\mathscr{I}^{-}} \in C^{\infty}(\mathscr{I}^{-}; \mathbb{C})$$

is well defined.

Proposition (H-Nicolas '03)

 $T_{\mathscr{I}^{-}}$ uniquely extends as a bounded operator

$$T_{\mathscr{I}^{-}}: Sol_{L^2}(\mathcal{M}_{\mathrm{I}}) \to L^2(\mathscr{I}^{-}, d\mathrm{vol}_{\mathscr{I}^{-}}),$$

where \mathscr{I} - is identified with $\mathbb{R}_{t^*} \times \mathbb{S}^2_{\theta,\varphi^*}$ and $d\mathrm{vol}_{\mathscr{I}^-} = \sin\theta \mathrm{d}t^* d\theta d\varphi^*$. One has

$$\operatorname{Ker} T_{\mathscr{I}^{-}} = Sol_{L^{2},\mathscr{H}^{-}}(\mathrm{M}_{\mathrm{I}}), \quad \operatorname{Ran} T_{\mathscr{I}^{-}} = L^{2}(\mathscr{I}^{-}, d\mathrm{vol}_{\mathscr{I}^{-}})$$
$$(\Psi|\Psi)_{D} = \frac{1}{\sqrt{2}} \int_{\mathscr{I}^{-}} |T_{\mathscr{I}^{-}}\Psi|^{2} d\mathrm{vol}_{\mathscr{I}^{-}}, \quad \Psi \in Sol_{L^{2},\mathscr{I}^{-}}(\mathrm{M}_{\mathrm{I}}).$$

Dirac fields on Kerr spacetime and the Hawking radiation II

Killing vector fields

Remark

Note that at \mathscr{H}^- , only the Ψ_1 component is relevant for the trace, whereas at \mathscr{I}^- only the Ψ_0 component is relevant.

Killing vector field on \mathscr{H}^- The Killing vector field $v_{\mathscr{H}}$ is null and tangent to \mathscr{H} . On \mathscr{H}^- it equals $\partial_{*t} + \Omega_{\mathscr{H}} \partial_{*\varphi}$, resp. $-\kappa_+ U \partial_U$ in star-Kerr, resp. KBL coordinates.

If we also denote by $\imath^{-1}v_{\mathscr H}$ its selfadjoint realization on $L^2(\mathscr H^-,d\mathrm{vol}_{\mathscr H^-})$ we have:

$$T_{\mathscr{H}^{-}} \circ (\mathfrak{l}^{-1}v_{\mathscr{H}}) = (\mathfrak{l}^{-1}v_{\mathscr{H}}) \circ T_{\mathscr{H}^{-}} \text{ on } Sol_{L^{2},\mathscr{H}^{-}}(M_{\mathrm{I}}).$$

Killing vector field on \mathscr{I}^- The Killing vector field $v_{\mathscr{I}}$ is null and tangent to \mathscr{I} . On \mathscr{I}^- it equals ∂_{t^*} in Kerr-star coordinates. If we also denote by $1^{-1}v_{\mathscr{I}}$ its selfadjoint realization on $L^2(\mathscr{I}^-, d\mathrm{vol}_{\mathscr{I}^-})$, we have:

$$T_{\mathscr{I}^{-}} \circ (\mathfrak{l}^{-1}v_{\mathscr{I}}) = (\mathfrak{l}^{-1}v_{\mathscr{I}}) \circ T_{\mathscr{I}^{-}} \text{ on } Sol_{L^{2},\mathscr{G}^{-}}(\mathbb{M}_{\mathrm{I}}).$$

Asymptotic completeness

Theorem (H-Nicolas '03)

$$\begin{split} T &= T_{\mathscr{H}^{-}} \oplus T_{\mathscr{I}^{-}} \text{ from} \\ Sol_{L^{2}}(\mathrm{M}_{\mathrm{I}}) &= Sol_{L^{2},\mathscr{H}^{-}}(\mathrm{M}_{\mathrm{I}}) \oplus Sol_{L^{2},\mathscr{I}^{-}}(\mathrm{M}_{\mathrm{I}}) \text{ to} \\ L^{2}(\mathscr{H}^{-}, d\mathrm{vol}_{\mathscr{H}^{-}}) \oplus L^{2}(\mathscr{I}^{-}, d\mathrm{vol}_{\mathscr{I}^{-}}) \text{ is unitary with} \\ T \operatorname{1}^{-1} v_{\mathscr{H}} \Pi_{\mathscr{H}^{-}} &= (\operatorname{1}^{-1} v_{\mathscr{H}} \oplus 0)T, \quad T \operatorname{1}^{-1} v_{\mathscr{I}} \Pi_{\mathscr{I}^{-}} = (0 \oplus \operatorname{1}^{-1} v_{\mathscr{I}})T. \end{split}$$

Scattering theory was formulated for vectors $\Psi\in Sol_{L^2}(M_I)$. We will now re-express these results as the existence of traces on the horizon and infinity for spinors $\phi\in Sol_{L^2}(M_I)$. We will use the decomposition

$$\operatorname{Sol}_{\operatorname{L}^2}(\operatorname{M}_I) = \operatorname{Sol}_{\operatorname{L}^2, \mathscr{H}^-}(\operatorname{M}_I) \oplus \operatorname{Sol}_{\operatorname{L}^2, \mathscr{I}^-}(\operatorname{M}_I),$$

where

$$\operatorname{Sol}_{\operatorname{L}^2,\mathscr{H}^-/\mathscr{I}^-}(\operatorname{M}_{\operatorname{I}}):=\mathcal{V}Sol_{\operatorname{L}^2,\mathscr{H}^-/\mathscr{I}^-}(\operatorname{M}_{\operatorname{I}}).$$

Results for spinors

Traces on \mathscr{H}^- For $\phi\in \mathrm{Sol}_{sc}(M_I)$ we set

$$T_{\mathscr{H}^{-}}\phi = \phi_{|\mathscr{H}^{-}} \in C^{\infty}(\mathscr{H}^{-}; \mathbb{C}^{2}).$$

We denote by $L^2(\mathscr{H}^-)$ the completion of $\mathit{C}^\infty_c(\mathscr{H}^-;\mathbb{C}^2)$ for

$$(\phi|\phi)_{\mathscr{H}^{-}} = -i \int_{\mathscr{H}^{-}} \bar{\phi} \cdot \Gamma(\nabla V) \phi|g|^{\frac{1}{2}} \mathrm{d}U d\theta d\varphi^{\#}.$$

Traces on \mathscr{I}^- Conformal rescaling

$$\hat{g} = c^2 g, \quad c = r^{-1},$$
$$\mathbf{T}_{\mathscr{I}^-} \phi := \hat{\phi}_{|\mathscr{I}^-}, \quad \hat{\phi} = c^{-1} \phi \in \mathrm{Sol}_{\mathrm{sc}}(\hat{\mathbb{D}}).$$

We denote by $L^2(\mathscr{I}^-)$ the completion of $C^{\infty}_c(\mathscr{I}^-; \mathbb{C}^2)$ for the scalar product:

$$(\hat{\phi}|\hat{\phi})_{\mathscr{I}^{-}} = -i \int_{\mathscr{I}^{-}} \bar{\hat{\phi}} \cdot \hat{\Gamma}(\hat{\nabla}c) \hat{\phi}|\hat{g}|^{\frac{1}{2}} \mathrm{d}t^{*} d\theta d\varphi^{*}.$$

Asymptotic completeness for spinors

$$\mathcal{S}_{\mathscr{H}^{-}}\phi = \mathrm{T}_{\mathscr{H}^{-}}\phi \cdot \mathfrak{i}, \quad \mathcal{S}_{\mathscr{I}^{-}}\phi = \mathrm{T}_{\mathscr{I}^{-}}\phi \cdot \hat{o}.$$

 $\iota^{-1}\mathcal{L}_{\mathscr{H}} = \iota^{-1}\mathcal{L}_{v_{\mathscr{H}}} \text{ and } \iota^{-1}\mathcal{L}_{\mathscr{I}} = \iota^{-1}\mathcal{L}_{v_{\mathscr{I}}}$

Proposition

- The map $T_{M_I} = T_{\mathscr{H}^-} \oplus T_{\mathscr{I}^-}$ from $Sol_{L^2}(M_I)$ to $L^2(\mathscr{H}^-) \oplus L^2(\mathscr{I}^-)$ is unitary.
- $\begin{array}{l} \textcircled{O} \quad \text{The map } \mathcal{S}_{M_{I}} = \mathcal{S}_{\mathscr{H}^{-}} \oplus \mathcal{S}_{\mathscr{I}^{-}} \text{ from } \mathrm{Sol}_{L^{2}}(M_{I}) \text{ to } \\ L^{2}(\mathscr{H}^{-};\mathbb{C}) \oplus L^{2}(\mathscr{I}^{-};\mathbb{C}) \text{ is unitary.} \end{array}$
- One has

$$\begin{split} \mathcal{S}_{\mathscr{H}^{-}} \circ \mathbf{1}^{-1} \mathcal{L}_{\mathscr{H}} &= -\mathbf{1}^{-1} \kappa_{+} (U \partial_{U} + \frac{1}{2}) \circ \mathcal{S}_{\mathscr{H}^{-}}, \\ \mathcal{S}_{\mathcal{I}_{-}} \circ \mathbf{1}^{-1} \mathcal{L}_{\mathscr{I}} &= \mathbf{1}^{-1} \partial_{t^{*}} \circ \mathcal{S}_{\mathscr{I}^{-}}, \end{split}$$

in the sense of unitary equivalence of selfadjoint operators.

Elements of the proof

Wave operators

$$P_N = \gamma D_{r_*} - \frac{a}{r^2 + a^2} D_{\varphi}, \ \gamma = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix},$$
$$\mathcal{H}_{out} := \{(\psi_0, 0) \in \mathcal{H}\}, \ \mathcal{H}_{in} = \{(0, \psi_1) \in \mathcal{H}\}.$$

The group e^{itP_N} represents transport along the principal null directions.

Theorem (H-Nicolas '03)

The following strong limits exist:

$$W_{\mathcal{H},pn}^{-} = s - \lim_{t \to -\infty} e^{-itH} e^{itP_N} \mathbf{1}_{\mathcal{H}_{in}},$$

$$\Omega_{\mathcal{H}^{-},pn}^{-} = s - \lim_{t \to -\infty} e^{-itP_N} e^{itH} \pi_{\mathscr{H}^{-}},$$

$$W_{\mathscr{I}^{-},pn}^{-} = s - \lim_{t \to -\infty} e^{-itH} e^{itP_N} \mathbf{1}_{\mathcal{H}_{out}},$$

$$\Omega_{\mathscr{I}^{-},pn}^{-} = s - \lim_{t \to -\infty} e^{-itP_N} e^{itH} \pi_{\mathscr{I}^{-}}.$$

Link with the trace operators Let $\Sigma = \{t = 0\}$ and $\mathcal{F}_{\mathcal{H}^-}$ the diffeomorphism which identifies points on \mathcal{H}^- and Σ by following outgoing principal null geodesics. We define $\mathcal{F}_{\mathscr{I}^-}$ in the same way. Then

$$T_{\mathcal{H}^-} = \mathcal{F}^*_{\mathcal{H}^-} \Omega^-_{\mathcal{H}^-, pn}, \ T_{\mathscr{I}^-} = \mathcal{F}^*_{\mathscr{I}^-} \Omega^-_{\mathscr{I}^-, pn}.$$

Choice of the tetrad If we choose a tetrad adapted to the foliation, then

$$H = hH_0h + V_{\varphi}D_{\varphi} + V,$$

 $h^2 - 1, V_{\varphi}, V$ short range and H_0 spherically symmetric.

The Mourre estimate

Let \mathcal{H} be a Hilbert space and (H, D(H)), (A, D(A)) selfadjoint operators s. t. (M1) e^{isA} preserves D(H)(M2) $|[iH, A](u, v)| \leq ||(H + i)u|| ||v||$ (M3) $|[[H, A], A](u, v)| \leq ||(H + i)u|| ||(H + i)v||$. (M4) $\mathbf{1}_{\Delta}(H)[iH, A]\mathbf{1}_{\Delta}(H) \geq \delta \mathbf{1}_{\Delta}(H) + \mathbf{1}_{\Delta}(H)K\mathbf{1}_{\Delta}(H);$ $\delta > 0, \Delta$ open interval, K compact operator. Then **1** In Δ the point spectrum of H is finite.

② For each closed interval $[a,b] ⊂ Δ ∩ σ_c(H)$ we have for μ > 1/2:

$$\sup_{\operatorname{Re} z \in [a,b], \operatorname{Im} z > 0} \|\langle A \rangle^{-\mu} (H-z)^{-1} \langle A \rangle^{-\mu} \| < \infty$$

$$\langle A \rangle := \sqrt{1 + A^2}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

伺 ト イ ヨ ト イ ヨ ト

Toy model :

$$H=\gamma D_r+e^{\kappa r}D\!\!\!/_{S^2},\,\kappa>0,\,\mathbb{R}_-\times S^2,\,\gamma=Diag(1,-1).$$

- Try $A = \gamma r$. We obtain : $[iH, A] = \mathbf{1} + re^{\kappa r} [\mathcal{D}_{S^2}, \gamma]$.
- Almost nothing of (M1)-(M4) is fulfilled.

Toy model :

$$H=\gamma D_r+e^{\kappa r} D_{S^2},\,\kappa>0,\,\mathbb{R}_-\times S^2,\,\gamma=Diag(1,-1).$$

- Try $A = \gamma r$. We obtain : $[iH, A] = \mathbf{1} + re^{\kappa r} [\not D_{S^2}, \gamma]$.
- Almost nothing of (M1)-(M4) is fulfilled.

•
$$U = e^{\kappa^{-1}iD_r\ln|D_{S^2}|}$$
: $\hat{H} = U^*HU = \gamma D_r + e^{\kappa r}\frac{D_{S^2}}{|D_{S^2}|}.$

Toy model :

- Try $A = \gamma r$. We obtain : $[iH, A] = \mathbf{1} + re^{\kappa r} [\not D_{S^2}, \gamma]$.
- Almost nothing of (M1)-(M4) is fulfilled.

•
$$U = e^{\kappa^{-1}iD_r \ln |D_{S^2}|}$$
 : $\hat{H} = U^*HU = \gamma D_r + e^{\kappa r} \frac{D_{S^2}}{|D_{S^2}|}$.

• Spin weighted spherical harmonics :

$$\hat{H}^{nl} = \gamma D_r + e^{\kappa r} \tau, \quad \tau = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

Toy model :

- $H=\gamma D_r+e^{\kappa r} D\!\!\!/_{S^2},\,\kappa>0,\,\mathbb{R}_-\times S^2,\,\gamma=Diag(1,-1).$
 - Try $A = \gamma r$. We obtain : $[iH, A] = \mathbf{1} + re^{\kappa r} [D \hspace{-1.5mm}/_{S^2}, \gamma]$.
 - Almost nothing of (M1)-(M4) is fulfilled.

•
$$U = e^{\kappa^{-1}iD_r\ln|D_{S^2}|}$$
 : $\hat{H} = U^*HU = \gamma D_r + e^{\kappa r}\frac{D_{S^2}}{|D_{S^2}|}.$

- Spin weighted spherical harmonics : $\hat{H}^{nl} = \gamma D_r + e^{\kappa r} \tau, \quad \tau = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$
- Now A works and the estimates are uniform in n, l because everything is independent of n, l ! Â := UAU*.

伺下 イヨト イヨト

- Spinor bundles : A. Trautman, Connections and the Dirac operator on spinor bundles, J. Geom. Phys. 58, No. 2, 238-252 (2008).
- Scattering theory:
 - J. Dimock and B. S. Kay, *Scattering for massive scalar fields on Coulomb potentials and Schwarzschild metrics*, Classical Quantum Gravity 3, 71-80 (1986).
 - D. Häfner, J.-P. Nicolas, Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys. 16, No. 1, 29-123 (2004).
 - E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys. 78, 391-408 (1981).

・ 同 ト ・ ヨ ト ・ ヨ ト