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Spectral Theory and Mathematical Relativity
Introductory workshop, June 19-June 23 2023
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II.1 Dirac fields on globally hyperbolic manifolds

Spinor bundles A spinor bundle is a vector bundle S π−→M with the
following objects (S∗ is the anti-dual bundle):

1 a linear map γ : C∞(M ;TM)→ C∞(M ; End(S)) such that,

γ(X)γ(Y ) + γ(Y )γ(X) = 2X ·gY 1, X, Y ∈ C∞(M ;TM),
(1)

and for each x ∈M , γx induces a faithful irreducible
representation of the Clifford algebra Cl(TxM, gx) in Sx;

2 a section β ∈ C∞(M ; End(S,S∗)) such that βx is Hermitian
non-degenerate for each x ∈M and

i) γ(X)∗β = −βγ(X), ∀X ∈ C∞(M ;TM),

ii) ıβγ(e) > 0, for e a time-like,
future directed vector field on M ;

(2)

3 a section κ ∈ C∞(M ; End(S, S̄)) such that

κγ(X) = γ(X)κ, κ2 = 1; (3)
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Connections

A connection ∇S on S, called a spin connection, such that:

i) ∇SX(γ(Y )ψ) = γ(∇XY )ψ + γ(Y )∇SXψ,

ii) X(ψ̄ ·βψ) = ∇SXψ ·βψ + ψ̄ ·β∇SXψ,

iii) κ∇SXψ = ∇SXκψ,

(4)

for all X,Y ∈ C∞(M ;TM) and ψ ∈ C∞(M ;S), where ∇ is the
Levi-Civita connection on (M, g). The rank of S is necessarily
equal to 4 and if (2) holds for some time-like future directed vector
field e, then it holds for all such vector fields.

Remark

A linear map γ as in (1) is called a Clifford representation. A section β as
in (2) is called a positive energy Hermitian form (for the Clifford
representation γ), while a section κ as in (3) is called a charge
conjugation (for the Clifford representation γ). The properties listed in
(4) are usually summarized by saying that γ, β, κ are covariantly constant
w.r.t. the connection ∇S .
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Weyl spinors

Volume element η = γ(e0) · · · γ(e3) (independent on the choice of local
oriented orthonormal frame e0, e1, e2, e3).

η2 = −1, ηγ(X) = −γ(X)η. (5)

Sx =We,x ⊕Wo,x, We,x = Ker(ıη(x)− 1), Wo,x = Ker(ıη(x) + 1).
The bundle S splits as We ⊕Wo, where We/o is the bundle of even/odd
Weyl spinors.
W# : dual bundle of W, W∗ =W#. Setting S :=W∗e , one identifies S
with S∗ ⊕ S# by the map

C∞(M ;S) 3 ψ 7→ ψe ⊕ κψo =: χ⊕ φ ∈ C∞(M ;S∗)⊕ C∞(M ;S#).

S is equipped with the symplectic form

ε :=
1√
2

(βκ)−1 ∈ C∞(M ; End(S,S#)).
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Null tetrads and associated frames

There is an isomorphism

τ : C∞(M ;CTM) 3 v 7→ βγ(v) ∈ C∞(M ;S⊗ S̄)

If we extend g to CTM as a bilinear (not sesquilinear) form, one
can show that

τ# ◦ (ε⊗ ε̄) ◦ τ = g.

A normalized null tetrad (Newman-Penrose tetrad) is a global
frame (l, n,m, m̄) of CTM such that:

l, n are real, l·gl = n·gn = 0, l·gn = −1
m·gm = l·gm = n·gm = 0, m·gm̄ = 1.

Spin frames
ıτ(l) = o ⊗ ō, ıτ(n) = ı⊗ ı̄,

ıτ(m) = o ⊗ ı̄, ıτ(m̄) = ı⊗ ō,

o ·εı = 1.

Γ(X) = βγ(X) ∈ C∞(M,End(S∗, S)), X ∈ C∞(M ;TM).
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Dirac operators

If S π−→M is a spinor bundle, the Dirac operator /D acting on
C∞(M ;S) is the differential operator defined as:

/D = gµνγ(eµ)∇Seν .

where (e0, . . . , e3) is a local frame of TM .

1 The advantage of /D (massless) over /D + λ with λ 6= 0
(massive) is conformal invariance: g → c2g corresponds to
/D → c−2 /Dc.

2 Weyl equation (We even Weyl spinors).

S :=W∗e , Γ(X) = βγ(X),D = gµνΓ(eµ)∇Seν , D̂ = c−3Dc.

Weyl equation Dφ = 0 (D : C∞(M ; S∗)→ C∞(M ;S)).

3 In the following we only consider massless Dirac fields (Weyl
equation).
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Conserved current

(φ|v)M = (v|φ)M :=

∫
M

¯φ(x)·v(x) dvolg, (6)

(M, g) globally hyperbolic spacetime (of dimension 4) with a spin
structure and denote by D the associated Weyl operator.
Space-compact solutions Let Solsc(M) be the space of smooth
space-compact solutions of Dφ = 0, φ ∈ C∞(M ; S∗).
The current J(φ1, φ2) ∈ C∞(M ;T ∗M) defined by

J(φ1, φ2)·X := φ̄1 ·Γ(X)φ2, X ∈ C∞(M ;TM), φi ∈ Solsc(M),

it satisfies
∇aJa(φ1, φ2) = 0, φi ∈ Solsc(M).

Stokes : ∫
∂U
i∗(g−1J(φ1, φ2)yΩg) = 0, φi ∈ Solsc(M).
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L2 solutions

Hilbertian scalar product Let now S ⊂M be any smooth Cauchy surface.

(φ1|φ2)D := ı

∫
S

i∗(g−1J(φ1, φ2)yΩg)

= ı

∫
S

φ̄1 ·Γ(g−1ν)φ2 i∗l dvolg,

(7)

where S = Ker ν, l transverse to S future pointing with ν ·l = 1,
i∗l dvolg = |i∗(lyΩg)|. The r.h.s. in (7) is independent on the choice of
the Cauchy surface S. If S is space-like, we obtain (l = n, ν = −gn):

(φ1|φ2)D = ı

∫
S

φ̄1 ·Γ(n)φ2 dvolh. (8)

By (2) ıΓ(n) is positive definite, which shows that (·|·)D is a Hilbertian
scalar product on Solsc(M).

Definition

The Hilbert space SolL2(M), called the space of L2 solutions, is the
completion of Solsc(M) for the scalar product (·|·)D.
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Use of null tetrads

Let (l, n,m, m̄) be a normalized null tetrad and (o, ı) the
associated frame of S. For φ ∈ C∞(M ; S∗) one sets then:

φ0 = φ·o, φ1 = φ·ı, Uφ =

(
φ0

φ1

)
∈ C∞(M ;C2),

so that φ = φ0o
∗ + φ1ı

∗ if (o∗, ı∗) is the dual frame of S∗. If the
tetrad is chosen such that l + n is normal to a space-like Cauchy
surface S , then we obtain

(φ|φ)D =
1√
2

∫
S

(
|φ0|2 + |φ1|2

)
dvolh. (9)

We say that a tetrad is adapted to a foliation if l + n is normal to
all slices of the foliation.
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II.2 The Cauchy problem for the Weyl equation on Kerr spacetime
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Evolutionary form of the Weyl equation in MI

Kinnersley’s tetrad The Weyl equation Dφ = 0 can be reduced to
an equation of the form ∂tΨ− ıHΨ = 0 with H a t-independent
differential operator.

l =
1√

2∆ρ2

(
(r2 + a2)∂t + ∆∂r + a∂ϕ

)
,

n =
1√

2∆ρ2

(
(r2 + a2)∂t −∆∂r + a∂ϕ

)
,

m =
1√
2p

(
ıa sin θ∂t + ∂θ +

ı

sin θ
∂ϕ

)
,

for p = r + ıa cos θ. Note that l, n are up to scaling the principal
null directions. We set

φ0 = φ·o, φ1 = φ·ı.
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Tetrad adapted to the foliation

A null tetrad (l,n,m, m̄) adapted to the foliation of MI by the
hypersurfaces Σs = {t = s} is used for the scattering theory
arguments, with the property that

l + n = 2T, l, n ∈ Span{T, ∂r},

where T is the future directed unit normal vector field to this
foliation. Concretely,

l =
σ√

2∆ρ2

(
∂t +

2aMr

σ2
∂ϕ

)
+

√
∆

2ρ2
∂r,

n =
σ√

2∆ρ2

(
∂t +

2aMr

σ2
∂ϕ

)
−

√
∆

2ρ2
∂r,

m =
1√
2ρ2

(
∂θ +

ıρ2

σ sin θ
∂ϕ

)
.
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If (o, i) is the spinor basis associated to (l,n,m, m̄), one sets then:

Ψ :=

(
∆ρ2σ2

(r2 + a2)2

) 1
4
(
φ·o
φ·i

)
=

(
Ψ0

Ψ1

)
=: Vφ,

and uses the coordinates (t, r∗, θ, ϕ).(
Ψ0

Ψ1

)
=

(
∆ρ2σ2

(r2 + a2)2

) 1
4

U

(
φ0

φ1

)
.

Finally, one sets

D = VDV−1, (Ψ|Ψ)D =
1√
2

∫
Σ

(
|Ψ0|2 + |Ψ1|2

)
dxd2ω.

The equation DΨ = 0 can be rewritten as

∂tΨ− ıHΨ = 0,

which we will call the reduced Weyl equation.
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The Cauchy problem

We denote by SolL2(MI) the closure of the space Sol sc(MI) of
space-compact solutions of DΨ = 0 for the scalar product (·|·)D.

V : SolL2(MI)
∼−→ SolL2(MI) is unitary.

Cauchy evolution Let H be the Hilbert space associated to
(Ψ|Ψ)D.

Lemma

(H,D(H)) is selfadjoint on H.

We set
ρΣ : SolL2(MI) 3 ψ 7→ ψ(0) ∈ H

and denote by Ψ = UΣf the unique solution of the Cauchy problem{
DΨ = 0,

ρΣΨ = f ∈ H.
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II.3 Scattering theory for the Weyl equation on Kerr spacetime
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Decomposition of SolL2(MI)

Theorem (H-Nicolas ’03)

There exists a selfadjoint operator P− ∈ B(H), called the past
asymptotic velocity such that:

χ(P−) = s− lim
t→−∞

e−ıtHχ
(r∗
t

)
eıtH , ∀χ ∈ C∞c (R).

We have σ(P−) = {−1, 1}, [P−, H] = [P−, ∂ϕ] = 0.

We set

πH −:= 1{1}(P
−), πI − := 1{−1}(P

−),

SolL2(MI) = SolL2,H −(MI)⊕ SolL2,I −(MI),

where SolL2,H −/I −(MI) := UΣ ◦ πH −/I −H.
Let ΠH −/I − = UΣ ◦ πH −/I − ◦ ρΣ (orthogonal projections on
SolL2,H −/I−(MI)). Note : ı−1vH , resp. ı−1vI preserves
SolL2,H −(MI) resp. SolL2,I −(MI).
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Traces at infinities

Traces on H − For Ψ ∈ Sol sc(MI), the trace

TH −Ψ := Ψ1|H − ∈ C∞(H −;C)

is well defined.

Proposition (H-Nicolas ’03)

TH − uniquely extends as a bounded operator
TH − : SolL2(MI)→ L2(H −, dvolH −),
where H − is identified with R∗t × S2

θ,∗ϕ, and
dvolH − = sin θd∗tdθd∗ϕ. One has:

KerTH − = SolL2,I −(MI), RanTH − = L2(H −, dvolH −),

(Ψ|Ψ)D = 1√
2

∫
H − |TH −Ψ|2 dvolH − , Ψ ∈ SolL2,H −(MI).
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Traces on I −

For Ψ ∈ Sol sc(MI), the trace

TI −Ψ := Ψ0|I − ∈ C∞(I −;C)

is well defined.

Proposition (H-Nicolas ’03)

TI − uniquely extends as a bounded operator

TI − : SolL2(MI)→ L2(I −, dvolI −),

where I− is identified with Rt∗ × S2
θ,ϕ∗ and

dvolI − = sin θdt∗dθdϕ∗. One has

KerTI − = SolL2,H −(MI), RanTI − = L2(I −, dvolI−)

(Ψ|Ψ)D = 1√
2

∫
I − |TI −Ψ|2 dvolI − , Ψ ∈ SolL2,I −(MI).
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Killing vector fields

Remark

Note that at H −, only the Ψ1 component is relevant for the
trace, whereas at I − only the Ψ0 component is relevant.

Killing vector field on H − The Killing vector field vH is null and
tangent to H . On H − it equals ∂∗t + ΩH ∂∗ϕ, resp. −κ+U∂U in
star-Kerr, resp. KBL coordinates.
If we also denote by ı−1vH its selfadjoint realization on
L2(H −, dvolH −) we have:

TH − ◦ (ı−1vH ) = (ı−1vH ) ◦ TH − on SolL2,H −(MI).

Killing vector field on I − The Killing vector field vI is null and
tangent to I . On I − it equals ∂t∗ in Kerr-star coordinates. If we
also denote by ı−1vI its selfadjoint realization on
L2(I −, dvolI −), we have:

TI − ◦ (ı−1vI ) = (ı−1vI ) ◦ TI − on SolL2,I −(MI).
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Asymptotic completeness

Theorem (H-Nicolas ’03)

T = TH − ⊕ TI − from
SolL2(MI) = SolL2,H −(MI)⊕ SolL2,I −(MI) to
L2(H −, dvolH −)⊕ L2(I −, dvolI−) is unitary with

T ı−1vH ΠH − = (ı−1vH ⊕ 0)T, T ı−1vI ΠI − = (0⊕ ı−1vI )T.

Scattering theory was formulated for vectors Ψ ∈ SolL2(MI). We
will now re-express these results as the existence of traces on the
horizon and infinity for spinors φ ∈ SolL2(MI). We will use the
decomposition

SolL2(MI) = SolL2,H −(MI)⊕ SolL2,I −(MI),

where
SolL2,H −/I −(MI) := VSolL2,H −/I −(MI).
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Results for spinors

Traces on H − For φ ∈ Solsc(MI) we set

TH −φ = φ|H − ∈ C∞(H −;C2).

We denote by L2(H −) the completion of C∞c (H −;C2) for

(φ|φ)H − = −ı

∫
H −

φ̄·Γ(∇V )φ|g|
1
2 dUdθdϕ#.

Traces on I − Conformal rescaling

ĝ = c2g, c = r−1,

TI −φ := φ̂|I − , φ̂ = c−1φ ∈ Solsc(D̂).

We denote by L2(I −) the completion of C∞c (I −;C2) for the
scalar product:

(φ̂|φ̂)I − = −ı

∫
I −

¯̂
φ·Γ̂(∇̂c)φ̂|ĝ|

1
2 dt∗dθdϕ∗.
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Asymptotic completeness for spinors

SH −φ = TH −φ·i, SI −φ = TI −φ·ô.
ı−1LH = ı−1LvH and ı−1LI = ı−1LvI

Proposition

1 The map TMI
= TH − ⊕ TI − from SolL2(MI) to

L2(H −)⊕ L2(I −) is unitary.

2 The map SMI
= SH − ⊕ SI − from SolL2(MI) to

L2(H −;C)⊕ L2(I −;C) is unitary.

3 One has

SH − ◦ ı−1LH = −ı−1κ+(U∂U + 1
2) ◦ SH − ,

SI− ◦ ı−1LI = ı−1∂t∗ ◦ SI−,

in the sense of unitary equivalence of selfadjoint operators.
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Elements of the proof

Wave operators

PN = γDr∗ −
a

r2 + a2
Dϕ, γ =

(
1 0
0 −1

)
,

Hout := {(ψ0, 0) ∈ H}, Hin = {(0, ψ1) ∈ H}.
The group eitPN represents transport along the principal null directions.

Theorem (H-Nicolas ’03)

The following strong limits exist:

W−H,pn = s− lim
t→−∞

e−itHeitPN1Hin
,

Ω−H−,pn = s− lim
t→−∞

e−itPN eitHπH − ,

W−I −,pn = s− lim
t→−∞

e−itHeitPN1Hout
,

Ω−I −,pn = s− lim
t→−∞

e−itPN eitHπI − .
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Link with the trace operators and choice of the tetrad

Link with the trace operators Let Σ = {t = 0} and FH− the
diffeomorphism which identifies points on H− and Σ by following
outgoing principal null geodesics. We define FI − in the same way.
Then

TH− = F∗H−Ω−H−,pn, TI − = F∗I −Ω−I −,pn.

Choice of the tetrad If we choose a tetrad adapted to the foliation,
then

H = hH0h+ VϕDϕ + V,

h2 − 1, Vϕ, V short range and H0 spherically symmetric.
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The Mourre estimate

Let H be a Hilbert space and (H,D(H)), (A,D(A)) selfadjoint
operators s. t.
(M1) eisA preserves D(H)
(M2) |[iH,A](u, v)| . ‖(H + i)u‖‖v‖
(M3) |[[H,A], A](u, v)| . ‖(H + i)u‖‖(H + i)v‖.
(M4) 1∆(H)[iH,A]1∆(H) ≥ δ1∆(H) + 1∆(H)K1∆(H);
δ > 0, ∆ open interval, K compact operator. Then

1 In ∆ the point spectrum of H is finite.

2 For each closed interval [a, b] ⊂ ∆ ∩ σc(H) we have for
µ > 1/2:

sup
Re z∈[a,b],Im z>0

‖〈A〉−µ(H − z)−1〈A〉−µ‖ <∞

〈A〉 :=
√

1 +A2.
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Toy model near the horizon

Toy model :
H = γDr + eκr /DS2 , κ > 0, R− × S2, γ = Diag(1,−1).

Try A = γr. We obtain : [iH,A] = 1 + reκr[ /DS2 , γ].

Almost nothing of (M1)-(M4) is fulfilled.

U = eκ
−1iDr ln | /DS2 | : Ĥ = U∗HU = γDr + eκr

/DS2
| /DS2 |

.

Spin weighted spherical harmonics :

Ĥnl = γDr + eκrτ, τ =

(
0 −1
−1 0

)
.

Now A works and the estimates are uniform in n, l because
everything is independent of n, l ! Â := UAU∗.
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D. Häfner, J.-P. Nicolas, Scattering of massless Dirac fields by
a Kerr black hole, Rev. Math. Phys. 16, No. 1, 29-123 (2004).
E. Mourre, Absence of singular continuous spectrum for
certain self-adjoint operators, Commun. Math. Phys. 78,
391-408 (1981).
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