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II.1 Dirac fields on globally hyperbolic manifolds

Spinor bundles A spinor bundle is a vector bundle S = M with the
following objects (S* is the anti-dual bundle):
@ alinear map v : C*°(M;TM) — C*°(M;End(S)) such that,
VX)) +v(YV)y(X) =2XgY1, X, Y € CF(M; TM),
(1)

and for each x € M, ~, induces a faithful irreducible
representation of the Clifford algebra CI(T, M, g,) in Sy;

@ a section 5 € C*°(M;End(S,S%)) such that (3, is Hermitian
non-degenerate for each x € M and

i) V(X)) B =—=By(X), VX eCO®(M;TM),

i) 18v(e) > 0, for e a time-like, (2)
future directed vector field on M

© a section k € C°°(M;End(S,S)) such that
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Connections

A connection V¢ on S, called a spin connection, such that:
i) VEOY) = 1(VxY )y +7(Y)V5,
iD) X(4-p) = V3B + §- 5V 5, (4)
iii) KV = VK,
forall X, Y € C>*°(M;TM) and ¢ € C>°(M;S), where V is the
Levi-Civita connection on (M, g). The rank of S is necessarily

equal to 4 and if (2) holds for some time-like future directed vector
field e, then it holds for all such vector fields.

A linear map v as in (1) is called a Clifford representation. A section ( as
in (2) is called a positive energy Hermitian form (for the Clifford
representation vy), while a section « as in (3) is called a charge
conjugation (for the Clifford representation ). The properties listed in
(4) are usually summarized by saying that v, 3, k are covariantly constant
w.r.t. the connection V.
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Weyl spinors

Volume element 7 = 7(ep) - - - y(es) (independent on the choice of local
oriented orthonormal frame eg, e1, €2, e3).

7 =—1, y(X) = —y(X)n. (5)
Sp =Wez ®Wo g, We,» = Ker(mn(z) — 1), W, = Ker(in(z) + 1).
The bundle S splits as W, © W, where W, , is the bundle of even/odd
Weyl spinors.
W# : dual bundle of W, W* = W#. Setting S := W, one identifies S
with S* @& S# by the map

C®(M;8) 3¢ — he ® Kktho =: x B ¢ € C°(M;S*) & C(M;S*).

S is equipped with the symplectic form

€:= —(Bm) € C*°(M;End(S,S#)).

g
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Null tetrads and associated frames

There is an isomorphism
7:C®(M;CTM) > v By(v) € C®°(M;S®S)
If we extend g to CT'M as a bilinear (not sesquilinear) form, one
can show that
#o(e®@é) oT=g.

A normalized null tetrad (Newman-Penrose tetrad) is a global
frame (I,n, m,m) of CI'M such that:

l,narereal, l-.gl=n-gn=0, l-gn=—1

m-gm =1l-gm=n-gm =0, m-gm = 1.
Spin frames

1m(l)=o®o0, 11(n) =1®7,

1im(m) =0®7, 1T(M) =1® o,
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Dirac operators

If S 5 M is a spinor bundle, the Dirac operator Ip acting on
C°(M;S) is the differential operator defined as:

D =g"y(e) Ve,

where (eg,...,e3) is a local frame of T'M.

@ The advantage of I) (massless) over I) + A with A # 0
(massive) is conformal invariance: g — c?g corresponds to

D — c2Pe.

@ Weyl equation (W, even Weyl spinors).
S = W, T(X) = By(X),D = g"T(e,) VS , D = ¢ *De.

Weyl equation D¢ = 0 (D : C°(M;S*) — C*(M;S)).
© In the following we only consider massless Dirac fields (Weyl
equation).
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Conserved current

(6l)ar = (W]d)ar = / 6(x)-v(z) dvol,, (6)

(M, g) globally hyperbolic spacetime (of dimension 4) with a spin
structure and denote by ID the associated Weyl operator.
Space-compact solutions Let Sols.(M) be the space of smooth
space-compact solutions of D¢ = 0, ¢ € C°(M;S*).

The current J(¢1, ¢2) € C°(M;T*M) defined by

J(p1,02) X := ¢1-T'(X)p2, X € C°(M;TM), ¢; € Solse(M),

it satisfies
Ja(¢1,02) =0, ¢ € Solsc(M).
Stokes :

/8 (g (61,62)20) =0, 91 € Sole(M).
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9 .
L~ solutions

Hilbertian scalar product Let now S C M be any smooth Cauchy surface.

(ulda)p =1 / (g (b1, d2)22)
(7)
/¢1 v)py i dvolg,

where S = Kerv, [ transverse to S future pointing with v-l =1,
iydvoly = [i*(11Qg)|. The r.h.s. in (7) is independent on the choice of
the Cauchy surface S. If S is space-like, we obtain (I = n, v = —gn):

(P1|@2)p = 1/ ¢1-T(n)p dvoly,. (8)

By (2) i['(n) is positive definite, which shows that (-|-)p is a Hilbertian
scalar product on Sols.(M).

Definition

The Hilbert space Soly2 (M), called the space of L? solutions, is the
completion of Sols.(M) for the scalar product (+|-)p.

Dietrich Hafner (Université Grenoble Alpes) Dirac fields on Kerr spacetime and the Hawking radiation |1



Use of null tetrads

Let (I,n,m,m) be a normalized null tetrad and (o0,2) the
associated frame of S. For ¢ € C°°(M;S*) one sets then:

¢0 :¢'07 ¢1 :(ZS‘Z; U¢: ( i(l) > € COO(M7C2)7

so that ¢ = ¢po* + ¢10* if (0*,2") is the dual frame of S*. If the
tetrad is chosen such that [ + n is normal to a space-like Cauchy
surface S, then we obtain

(Sl6) f/ (I60f? + |1 ]%) dvols. 9)

We say that a tetrad is adapted to a foliation if [ 4+ n is normal to
all slices of the foliation.
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[1.2 The Cauchy problem for the Weyl equation on Kerr spacetime
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Evolutionary form of the Weyl equation in M;

Kinnersley's tetrad The Weyl equation D¢ = 0 can be reduced to
an equation of the form ;¥ — 1HWV = 0 with H a t-independent
differential operator.

1
[ = ((r* 4+ a®)0 + AD, + ad,,)
V20 p?
1
n= ((r2 +a?)d; — AD, + ad,) ,
\/2Ap2
m = \fp (1@ sin 60; + Oy —l— 98¢> ,

for p = r +1acosf. Note that [, n are up to scaling the principal
null directions. We set

b0 =00, 1=
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Tetrad adapted to the foliation

A null tetrad (1,n, m, m) adapted to the foliation of Mj by the
hypersurfaces X3 = {t = s} is used for the scattering theory
arguments, with the property that

1+ n=2T, 1 nec Span{T, 0.},

where T is the future directed unit normal vector field to this
foliation. Concretely,

o 2aMr [ A
1= /72Ap2 (at + 70_2 a<p> + ﬁara
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If (0,1) is the spinor basis associated to (1,n, m, m), one sets then:

1
2 2 1 .
i R I

(T‘ +a ) (b'l Uy
and uses the coordinates (¢, 7., 6, ).

o\ _ [ Ap’s? %U b0

Uy ) \(r?2 + a?)? o)
Finally, one sets

D=VDV ! (¥¥)p / (1To)? + |1 [?) dovdw.
\f

The equation DU = 0 can be rewritten as

O — 1 HW =0,

which we will call the reduced Weyl equation.
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The Cauchy problem

We denote by Sol;2(Mi) the closure of the space Sols(Mj) of
space-compact solutions of DW = 0 for the scalar product (-|-)p.

V : Solp2 (M) = Sol2(Mj) is unitary.

Cauchy evolution Let H be the Hilbert space associated to
(]¥)p.

(H,D(H)) is selfadjoint on H.

We set
Py SOle(MI) DY — 1,/}(0) eH
and denote by W = Usx, f the unique solution of the Cauchy problem

DU =0,
pz‘I/:fGH.
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[1.3 Scattering theory for the Weyl equation on Kerr spacetime
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Decomposition of Solz(Mj)

Theorem (H-Nicolas '03)

There exists a selfadjoint operator P~ € B(H), called the past
asymptotic velocity such that:

X(P7) =s— lim e tHy (’i) et Yy € C°(R).

t——00 t

We have o(P~) = {-1,1}, [P, H| = [P7,0,] = 0.

We set

T—= 1y (P7), mp- =1 3(P7),
Solr2(Myp) = SOZL27%7 (Mp) @ SOle’jf (My),

where Sol2 -7~ (Mp) :=Us oy - H.

Let I,y = Us om /4~ o ps (orthogonal projections on
Solrz2 y—;.7—(Mr)). Note : 171w, resp. 17w, preserves
SOlL2 o (MI) resp. SOle 7— (MI)
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Traces at infinities

Traces on s~ For W € Sols.(Mj), the trace
Ty-V =V p- € Cc>®(#;C)

is well defined.

Proposition (H-Nicolas '03)

T,,- uniquely extends as a bounded operator
Ty = Solr2(My) — L2(~, dvol s ),
where 7~ is identified with R« x Sg,*so’ and
dvol ;- = sin 0d*tdfd*p. One has:

KerTy— = Solgz s~ (M), RanT— = L*(A#~,dvol y-),
(U|¥)p = %j%, | Ty- U2 dvol yp—, W € Solrz - (My).
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Traces on .~

For ¥ € Sols.(Mj), the trace
T, -V := \I/0|]7 S Coo(ji,(C)

is well defined.

Proposition (H-Nicolas '03)

T ;- uniquely extends as a bounded operator
Ty : Solp2(My) — L*(F~,dvol ),

where . — s identified with R+ x ng* and
dvol y- = sin 0dt*dfdy*. One has

KerT,- = Solrz y-(Mp), RanT,- = L*(.#~,dvols_)
(\I/’\I/)D = % fj* ’ij\I/PdVOIy—, U e SOlL2’V¢— (MI)
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Killing vector fields

Note that at 5~ , only the W1 component is relevant for the
trace, whereas at .#~ only the Uy component is relevant.

Killing vector field on 22~ The Killing vector field v is null and
tangent to 2. On JZ~ it equals 0% + Q2 0+,, resp. —k+U0dy in
star-Kerr, resp. KBL coordinates.

If we also denote by 171v its selfadjoint realization on
L?(#~,dvol ) we have:

T,- o (1_1’0%) = (I_I’U%ﬂ) oT,— on SOZL2,Jf— (MI)

Killing vector field on .#~ The Killing vector field v 4 is null and
tangent to .#. On .~ it equals Oy« in Kerr-star coordinates. If we
also denote by 171v s~ its selfadjoint realization on
L?(#~,dvol ;—), we have:

Ty o vy)=0"tvys)0T, on Solyz g (My).
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Asymptotic completeness

Theorem (H-Nicolas '03)

T=T, &T,- from
Solr2(Myp) = SOZLQ”%L (Mp) ® SOZL2’<¢7 (MI) to
L3(#~,dvol - ) ® L*(F~,dvol s_) is unitary with

Tr lvglly- =0 e ®@0)T, Tilu dl,— =031 v,)T.

Scattering theory was formulated for vectors ¥ € Sol;2(Mjy). We
will now re-express these results as the existence of traces on the
horizon and infinity for spinors ¢ € Soly2(Mj). We will use the
decomposition

Soly 2 (MI) = SOIL27%H7 (Mp) & SOIL27y7 (1\/[1)7

where
SOILQ’%—/j— (MI) = VSOZLQJf—/j— (MI)
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Results for spinors

Traces on s~ For ¢ € Sols.(My) we set
To-¢ = G- € CP(H;C).
We denote by L2(#~) the completion of C2°(#~;C?) for

@0 = =1 [ GT(VV)olaltavdpipt.

Traces on .#~ Conformal rescaling

- 2 -1
g=c¢g, ¢c=1 7,

Ty-¢:=d -, ¢=c '¢eSol(D).
We denote by L?(.# ) the completion of C°(.# ~; C?) for the
scalar product:

(6lé).r- = —1/

&-T(Ve)d|g|E dtdody”
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Asymptotic completeness for spinors

Sw-0=Ty-0i, Sy-9p=Ty ¢-0.
1Ly = flﬁv% and 17 'L, = flﬁvﬂ

Proposition

@ The map Tyvyy =T - & T 4- from Sol;2 (M) to
L2(s~) @ L2(#7) is unitary.
@ The map Smy; = Spp- & Sy- from Solj2(M) to
L?(A#~;C) ® L?>(.#~;C) is unitary.
© One has
Syw-o1 Wy =11 (Udy + 1) 0 S,
St o1 'Ly =110 08,_,

in the sense of unitary equivalence of selfadjoint operators.
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Elements of the proof

Wave operators
PN = ’YDT* - 2

{(¢0, ) S

out

The group e~

Theorem (H-Nicolas '03)

The following strong limits exist:

Hopn — 5

Q;[,,pn =s5—

W}*,pn =8=
.}*,pn 8

a
r —i—azD@’fY:(

1 0
0o -1 )’

7‘[}, Hin = ,¢1) S 7—[}

{(0

represents transport along the principal null directions.

0 —itH _itPn
i e
t_lgr_noo e—thN eth,Irjf_7

: —itH it PN
t~1>u;noo € € 1 out?
lim efitPN eitH,/T _
t——o0
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Link with the trace operators and choice of the tetrad

Link with the trace operators Let ¥ = {t = 0} and F3- the
diffeomorphism which identifies points on 7~ and X by following
outgoing principal null geodesics. We define F ;- in the same way.
Then

Ty- = 'F?Z*Qﬁf,pnv Ty- = .7:},9;,71371.

Choice of the tetrad If we choose a tetrad adapted to the foliation,
then

H = hHoh+ V,D, +V,

h? — 1, V,,, V short range and Hj spherically symmetric.
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The Mourre estimate

Let H be a Hilbert space and (H, D(H)), (A, D(A)) selfadjoint
operators s. t.

(M1) €4 preserves D(H)
(M2) [[iH, A](u, v)| < [[(H + dyull o] '
(M3) |[[H, A], Al (u, 0)| S |(H + )l (H +3)ol].
(M4) 1A(H)[iH, A]IA(H) > 61a(H) + 1A(H)K1A(H);
0 > 0, A open interval, K compact operator. Then
@ In A the point spectrum of H is finite.

@ For each closed interval [a,b] C ANo.(H) we have for

w>1/2:
sup  [[(A)TH(H — 2)THA) T < o0
Re z€]a,b],Im z>0
(A) := 1+ A2
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Toy model near the horizon

Toy model :
H=~D, +e"Dg, k>0, R_ x S% v = Diag(1,—1).
o Try A=~r. We obtain : [iH,A] =1+ re [Dg2,7].
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Toy model near the horizon

Toy model :

H=~D, +e"Dg, k>0, R_ x S% v = Diag(1,—1).
o Try A=~r. We obtain : [iH,A] =1+ re [Dg2,7].
@ Almost nothing of (M1)-(M4) is fulfilled.
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Toy model near the horizon

Toy model :

H=~D, +e"Dg, k>0, R_ x S% v = Diag(1,—1).
o Try A=~r. We obtain : [iH,A] =1+ re [Dg2,7].
@ Almost nothing of (M1)-(M4) is fulfilled.

o U=er iDrinlls2| . [] = U*HU = 4D, + & \552\.
S2
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Toy model near the horizon

Toy model :

H=~D, +e"Dg, k>0, R_ x S% v = Diag(1,—1).
o Try A=~r. We obtain : [iH,A] =1+ re [Dg2,7].
@ Almost nothing of (M1)-(M4) is fulfilled.

o U=er iDrinlls2| . [] = U*HU = 4D, + & \552\.
S2

@ Spin weighted spherical harmonics :

N 0o -1
nl _ KT —
H™ =~D, + e, T—(_l 0 )
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Toy model near the horizon

Toy model :

H=~D, +e"Dg, k>0, R_ x S% v = Diag(1,—1).
o Try A=~r. We obtain : [iH,A] =1+ re [Dg2,7].
@ Almost nothing of (M1)-(M4) is fulfilled.

o U=er iDrinlls2| . [] = U*HU = 4D, + & \552\.
S2

Spin weighted spherical harmonics :

N -1
H" =D, + e"'r, T:<—O1 0 )
@ Now A works and the estimates are uniform in n,[ because

everything is independent of n, [ ! A:=UAU*.
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