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Motivation: topological strings

Topological String/Spectral Theory (TS/ST) correspondence

Toric CY 3-fold M
Mirror Symmetry

ρM (trace class operator)

The spectrum of ρM is expected to be related to enumerative
invariants of M through the topological string partition functions.
Suggested by Aganagic–Dijkgraaf–Klemm–Mariño–Vafa (2006)
and materialized by Grassi–Hatsuda–Mariño (2016).
Example: the local P2

ρ−1
P2 = u + v + ei

~
2 v−1u−1

with positive self-adjoint operators u and v in a (separable) Hilbert
space satisfying the Heisenberg–Weyl commutation relation

uv = ei~ vu, ~ ∈ R>0.
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Implications of the TS/ST correspondence

Fredholm determinant

det(1 + κρM) = 1 +
∞∑

N=1

Z (N, ~)κN (convergent series)

where the fermionic spectral traces Z (N, ~) = eF (N,~) provide a
non-perturbative definition of the topological string partition
functions.

~ = λN, N →∞, (t’Hooft limit)

F (N, ~) '
∞∑
g=0

Fg (λ)~2−2g (asymptotic series)

with the standard topological string genus g free energies Fg (λ) in
the conifold frame where λ is a flat coordinate for the CY moduli
space vanishing at the conifold point.
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The spectral problem

Define a positive self-adjoint operator in L2(R)

H := e2πbp + e2πbx + e−2πb(p+x), b :=

√
~

2π
∈ R>0

with normalized Heisenberg’s position and momentum operators

〈x |x = x〈x |, 〈x |p =
1

2πi

∂

∂x
〈x |, [p, x ] = (2πi)−1

Small ~ limit

H = 3 + ~
√

3

(
a∗a +

1

2

)
+O(~3/2),

a :=

√
2π

4
√

3

(
x + p e

πi
3

)
, [a, a∗] = 1

Power series expansion of eigenvalues En(~) =
∑∞

k=0 En,k~
k
2 ,

En,0 = 3, En,1 = 0, En,2 =
√

3

(
n +

1

2

)
, . . .
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If b = eiθ, 0 < θ < π/2, then H is formally normal:

D(H) ⊂ D(H∗), ‖Hx‖ = ‖H∗x‖ ∀x ∈ D(H).

Lemma

Let {aj}j∈J be a finite set of densely defined operators such that
A :=

∑
j∈J aj is densely defined and, for any j , k ∈ J, the operator

aj + ak is formally normal. Then A is formally normal.

Proof. As aj is formally normal for any j ∈ J, it follows that

D(A) = ∩j∈JD(aj) ⊂ ∩j∈JD(a∗j ) = D
(∑

j∈J
a∗j
)
⊂ D(A∗).

For any j , k ∈ J and x ∈ D(aj + ak), one deduces that

〈ajx |akx〉 − 〈a∗j x |a∗kx〉 =: Mj ,k(x) = −Mk,j(x).

For any x ∈ D(A), the equality ‖Ax‖ = ‖A∗x‖ follows from

‖Ax‖2−‖A∗x‖2 =
∑
j ,k∈J

Mj ,k(x) = −
∑
j ,k∈J

Mk,j(x) = ‖A∗x‖2−‖Ax‖2
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In our case H = a1 + a2 + a3 with

a1 = e2πbp, a2 = e2πbx , a3 = e−2πb(p+x)

and a1 + a2 = U e2πbx U∗ with unitary operator

U := Φb(p − x), Φb(x) :=
(−q e2πbx ; q2)∞

(−q̄ e2πb−1x ; q̄2)∞

q := eπib
2
, q̄ := e−πib

−2
, and similarly for two other pairs.

Thus, H is at least formally normal and it is expected to admit a
unique normal extension.
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Principle of F-duality

The common spectral problem for H and H∗ is equivalent to
constructing an element 〈x |Ψ〉 := Ψ(x) ∈ L2(R) admitting analytic
continuation to a domain in C containing the strip |=z | < cos θ
and satisfying two difference equations

Ψ(x − ib) + e−πib
2

e−2πbx Ψ(x + ib) = (E − e2πbx)Ψ(x),

Ψ(x− ib−1) + e−πib
−2

e−2πb−1x Ψ(x + ib−1) = (Ē −e2πb−1x)Ψ(x)

related to each other by the substitutions

(b,E )↔ (b−1, Ē ) (Faddeev’s modular duality=F-duality).

In the general case of Baxter’s TQ-equations, an approach for
constructing solutions in the strongly coupled regime is suggested
by Sergeev (2005).
An approach through auxiliary non-linear integral equations is
developed by Babelon–Kozlowski–Pasquier (2018).
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F-dual asymptotics at x → +∞

There are two possibilities

Ψ(x)|x→+∞ ∼ ψk(x) := eπi(1−3k)x2−2πx cos θ, k ∈ {0, 1},

with exact solutions Ψk(x) = ψk(x)ϕk(x),

ϕk(x − εk) + e−(2x+εk )3πb ϕk(x + εk) = (1− E e−2πbx)ϕk(x),

εk := (1− 2k)ib,

+ the F-dual equations (b,E ) 7→ (b−1, Ē ) and the boundary
conditions

lim
x→+∞

ϕk(x) = 1.
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The factorisation Ansatz

The F-dual substitutions

ϕk(x) = χk(e2πbx)χ̄k(e2πb−1x), k ∈ {0, 1},

give rise to power series solutions (q := eπib
2
)

χk(z) = φq2k−1,E (1/z), φq,E (z) :=
∞∑
n=0

pn(q,E )

(q−2; q−2)n
zn,

χ̄k = χk |(q,E)7→(q̄−1,Ē)

with the polynomials pn = pn(q,E ) ∈ Z[q, q−1][E ] of degree n in
E defined by

pn+1 = Epn + (qn − q−n)(qn−1 − q1−n)pn−2, p0 = 1.

pn(q,E )|n→∞ ∼ q−n
2/3 ⇒ RC (φq,E (z)) =∞ (radius of

convergence) and RC (φ1/q,E (z)) = 0.
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The vector spaces Fp,c , Vp,α,c , Tm
p,r

Let OC6=0
be the C-vector space of holomorphic maps f : C 6=0 → C.

For c ∈ C, p, r , α ∈ C 6=0 and m ∈ Z, define the following vector
subspaces of OC6=0

Fp,c := {f | f (z/p2) + (zp)3f (zp2) = (1− cz)f (z)};
Vp,α,c := {f | αzf (z/p2) + z2pα−1f (zp2) = (1− cz)f (z)};
Tm
p,r := {f | rzmf (zp) = f (z)}.

Lemma

(i) |p|m < 1⇒ dim(Tm
p,r ) = |m| (θ-functions of order |m|);

(ii) dim(Vq,α,E ) = 1;

(iii) the multiplication of functions induces a linear map
Vq,α,E ⊗ T 1

q2,q2α → Fq,E ;

(iv) dim(Fq,E ) = 3 and φq,E ∈ Fq,E .
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Proof of (ii) dim(Vq,α,E ) = 1

Cosider a linear map

A : OC 6=0
→ OC6=0

, (Af )(z) = P+(f ψq,E )(1/
√
−z)

where

ψq,E (z) :=
∞∑
n=0

pn(q,E )q(1−n)n/2

(q−2; q−2)n
zn = ψ1/q,E (−z)

(∞ radius of convergence) and P+ is the projection to the even
part of a function:

P+(f )(z) = (f (z) + f (−z))/2.

Then, the restriction A|T 1
q,−α

is a linear isomorphism between

T 1
q,−α and Vq,α,E .
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First order matrix difference equation for Fp,c

For any f ∈ Fp,c , we have

f̂ (z) = L(z)f̂ (zp2), f̂ (z) :=

(
f ( z

p2 )

f (z)

)
, L(z) :=

(
1− cz −z3p3

1 0

)
.

Defining

Ln(z) := L(z)L(zp2) · · · L(zp2n−2) =:

(
an(z) bn(z)
cn(z) dn(z)

)
, n ∈ Z>0,

we have

Lm+n(z) = Lm(z)Ln(zp2m), ∀m, n ∈ Z>0,

in particular,

Ln+1(z) = L(z)Ln(zp2) = Ln(z)L(zp2n), ∀n ∈ Z>0.

Assuming |p| < 1 and taking the limit n→∞,

L∞(z) := lim
n→∞

Ln(z) =

(
φp,c(z/p2) 0
φp,c(z) 0

)
.
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Adjoint functions

Define the (skew-symmetric bilinear) Wronskian pairing

[·, ·] : Fq,E × Fq,E → T 3
q2,q3 , [f , g ](z) = f (

z

q2
)g(z)− g(

z

q2
)f (z),

and the adjoint function f̃ : U([φq,E , f ])→ C

f̃ (z) :=
f (z)

[φq,E , f ](z)
, ∀f ∈ Fq,E , U(g) := C6=0 \ g−1(0).

Adjoint functions are analytic substitutes for the series φ1/q,E (z).

Theorem

Let f ∈ Fq,E be such that U([φq,E , f ]) 6= ∅. Then

z ∈ U([φq,E , f ])⇒ zq2Z ⊂ U([φq,E , f ]), lim
n→∞

f̃ (zq2n) = 1,

and f̃ (z) admits an asymptotic expansion at small z in the form of
the series φ1/q,E (z).
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The general Ansatz for Ψ(x)

Ψ(x) = Ψ0(x) + ξΨ1(x) where ξ ∈ C and

Ψ0(x) := ψ0(x)h̃(e−2πbx)φq̄,Ē (e−2πb−1x), h ∈ Fq,E \ Cφq,E ,

Ψ1(x) := ψ1(x)φq,E (e−2πbx)˜̄h(e−2πb−1x), h̄ ∈ Fq̄,Ē \ Cφq̄,Ē ,

sharing a common pole set (Requirement(I)).
Then, for any ζ, σ ∈ C, there exist a (multivalued) function
E = E (q, ζ, σ) and elements f ∈ Vq,q e−2πbζ ,E , f̄ ∈ V

q̄,q̄ e−2πb−1ζ ,Ē

with Ē := E |q 7→q̄ such that

Ψ(x) = e−2πx cos θ
eπix

2
f (z)φq̄,Ē (z̄) + ξ e−2πi(ζ+2 sin θ)x f̄ (z̄)φq,E (z)

ϑ(z/s; q2)ϑ(zs e2πbζ ; q2)

where z := e−2πbx , z̄ := e−2πb−1x , s := e−2πbσ, s̄ := e−2πb−1σ,
ϑ(u; p) :=

∑
n∈Z p

(n−1)n/2(−u)n = (u, p/u, p; p)∞.
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Pole cancellation in Ψ(x)

Theorem

Under the substitution

ξ = ξ(θ, ζ, σ) := − eπiσ(σ+2ζ)
f (s)φq̄,Ē (s̄)s̄

f̄ (s̄)φq,E (s)s
.

all the poles of Ψ(x) at x = σ+ ibm+ ibn, m, n ∈ Z, are cancelled.
Furthermore, the equation

ξ(ζ, θ, σ) = ξ(ζ, θ, ζ − σ)

ensures that all the remaining poles of Ψ(x) are cancelled as well
(Requirement(II)).
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