On the spectral problem of a three term difference operator

Rinat Kashaev
University of Geneva

Joint work with Sergey Sergeev (University of Canberra)

Thematic Programme "Higher Structures and Field Theory"

Erwin Schrödinger International Institute for Mathematical Physics
2 September, 2020

Motivation: topological strings

Topological String/Spectral Theory (TS/ST) correspondence

$$
\text { Toric CY 3-fold } M \xrightarrow{\text { Mirror Symmetry }} \boldsymbol{\rho}_{M} \quad \text { (trace class operator) }
$$

The spectrum of ρ_{M} is expected to be related to enumerative invariants of M through the topological string partition functions.
Suggested by Aganagic-Dijkgraaf-Klemm-Mariño-Vafa (2006) and materialized by Grassi-Hatsuda-Mariño (2016).
Example: the local \mathbb{P}^{2}

$$
\boldsymbol{\rho}_{\mathbb{P}^{2}}^{-1}=\boldsymbol{u}+\boldsymbol{v}+\mathrm{e}^{i \frac{\hbar}{2}} \boldsymbol{v}^{-1} \boldsymbol{u}^{-1}
$$

with positive self-adjoint operators \boldsymbol{u} and \boldsymbol{v} in a (separable) Hilbert space satisfying the Heisenberg-Weyl commutation relation

$$
\boldsymbol{u} \boldsymbol{v}=\mathrm{e}^{\mathrm{i} \hbar} \boldsymbol{v} \boldsymbol{u}, \quad \hbar \in \mathbb{R}_{>0}
$$

Implications of the TS/ST correspondence

Fredholm determinant

$$
\operatorname{det}\left(1+\kappa \rho_{M}\right)=1+\sum_{N=1}^{\infty} Z(N, \hbar) \kappa^{N} \quad \text { (convergent series) }
$$

where the fermionic spectral traces $Z(N, \hbar)=\mathrm{e}^{F(N, \hbar)}$ provide a non-perturbative definition of the topological string partition functions.

$$
\begin{aligned}
\hbar & =\lambda N, \quad N \rightarrow \infty, \quad \text { (t'Hooft limit) } \\
F(N, \hbar) & \simeq \sum_{g=0}^{\infty} \mathcal{F}_{g}(\lambda) \hbar^{2-2 g} \quad \text { (asymptotic series) }
\end{aligned}
$$

with the standard topological string genus g free energies $\mathcal{F}_{g}(\lambda)$ in the conifold frame where λ is a flat coordinate for the CY moduli space vanishing at the conifold point.

The spectral problem

Define a positive self-adjoint operator in $L^{2}(\mathbb{R})$

$$
\boldsymbol{H}:=\mathrm{e}^{2 \pi \mathrm{~b} \boldsymbol{p}}+\mathrm{e}^{2 \pi \mathrm{~b} \boldsymbol{x}}+\mathrm{e}^{-2 \pi \mathrm{~b}(\boldsymbol{p}+\boldsymbol{x})}, \quad \mathrm{b}:=\sqrt{\frac{\hbar}{2 \pi}} \in \mathbb{R}_{>0}
$$

with normalized Heisenberg's position and momentum operators

$$
\langle x| \boldsymbol{x}=x\langle x|, \quad\langle x| \boldsymbol{p}=\frac{1}{2 \pi i} \frac{\partial}{\partial x}\langle x|, \quad[\boldsymbol{p}, \boldsymbol{x}]=(2 \pi i)^{-1}
$$

Small \hbar limit

$$
\begin{aligned}
& \boldsymbol{H}=3+\hbar \sqrt{3}\left(\boldsymbol{a}^{*} \boldsymbol{a}+\frac{1}{2}\right)+\mathcal{O}\left(\hbar^{3 / 2}\right) \\
& \boldsymbol{a}:=\frac{\sqrt{2 \pi}}{\sqrt[4]{3}}\left(\boldsymbol{x}+\boldsymbol{p} \mathrm{e}^{\frac{\pi i}{3}}\right), \quad\left[\boldsymbol{a}, \boldsymbol{a}^{*}\right]=1
\end{aligned}
$$

Power series expansion of eigenvalues $E_{n}(\hbar)=\sum_{k=0}^{\infty} E_{n, k} \hbar^{\frac{k}{2}}$,

$$
E_{n, 0}=3, \quad E_{n, 1}=0, \quad E_{n, 2}=\sqrt{3}\left(n+\frac{1}{2}\right), \ldots
$$

If $\mathrm{b}=\mathrm{e}^{\mathrm{i} \theta}, 0<\theta<\pi / 2$, then \boldsymbol{H} is formally normal:

$$
\mathcal{D}(\boldsymbol{H}) \subset \mathcal{D}\left(\boldsymbol{H}^{*}\right), \quad\|\boldsymbol{H} x\|=\left\|\boldsymbol{H}^{*} x\right\| \forall x \in \mathcal{D}(\boldsymbol{H})
$$

Lemma

Let $\left\{\mathbf{a}_{j}\right\}_{j \in J}$ be a finite set of densely defined operators such that $\boldsymbol{A}:=\sum_{j \in J} \boldsymbol{a}_{j}$ is densely defined and, for any $j, k \in J$, the operator $\boldsymbol{a}_{j}+\boldsymbol{a}_{k}$ is formally normal. Then \boldsymbol{A} is formally normal.

Proof. As \boldsymbol{a}_{j} is formally normal for any $j \in J$, it follows that

$$
\mathcal{D}(\boldsymbol{A})=\cap_{j \in J} \mathcal{D}\left(\boldsymbol{a}_{j}\right) \subset \cap_{j \in J} \mathcal{D}\left(\boldsymbol{a}_{j}^{*}\right)=\mathcal{D}\left(\sum_{j \in J} \boldsymbol{a}_{j}^{*}\right) \subset \mathcal{D}\left(\boldsymbol{A}^{*}\right)
$$

For any $j, k \in J$ and $x \in \mathcal{D}\left(\boldsymbol{a}_{j}+\boldsymbol{a}_{k}\right)$, one deduces that

$$
\left\langle\boldsymbol{a}_{j} x \mid \boldsymbol{a}_{k} x\right\rangle-\left\langle\boldsymbol{a}_{j}^{*} x \mid \boldsymbol{a}_{k}^{*} x\right\rangle=: M_{j, k}(x)=-M_{k, j}(x)
$$

For any $x \in \mathcal{D}(\boldsymbol{A})$, the equality $\|\boldsymbol{A} x\|=\left\|\boldsymbol{A}^{*} x\right\|$ follows from

$$
\|\boldsymbol{A} x\|^{2}-\left\|\boldsymbol{A}^{*} x\right\|^{2}=\sum_{j, k \in J} M_{j, k}(x)=-\sum_{j, k \in J} M_{k, j}(x)=\left\|\boldsymbol{A}^{*} x\right\|^{2}-\|\boldsymbol{A} x\|^{2}
$$

In our case $\boldsymbol{H}=\boldsymbol{a}_{1}+\boldsymbol{a}_{2}+\boldsymbol{a}_{3}$ with

$$
\boldsymbol{a}_{1}=\mathrm{e}^{2 \pi \mathrm{~b} \boldsymbol{p}}, \quad \boldsymbol{a}_{2}=\mathrm{e}^{2 \pi \mathrm{~b} x}, \quad \boldsymbol{a}_{3}=\mathrm{e}^{-2 \pi \mathrm{~b}(\boldsymbol{p}+\boldsymbol{x})}
$$

and $\boldsymbol{a}_{1}+\boldsymbol{a}_{2}=\boldsymbol{U} \mathrm{e}^{2 \pi \mathrm{~b} \boldsymbol{x}} \boldsymbol{U}^{*}$ with unitary operator

$$
\boldsymbol{U}:=\Phi_{\mathrm{b}}(\boldsymbol{p}-\boldsymbol{x}), \quad \Phi_{\mathrm{b}}(x):=\frac{\left(-q \mathrm{e}^{2 \pi \mathrm{~b} x} ; q^{2}\right)_{\infty}}{\left(-\bar{q} \mathrm{e}^{2 \pi \mathrm{~b}^{-1} x} ; \bar{q}^{2}\right)_{\infty}}
$$

$q:=\mathrm{e}^{\pi i b^{2}}, \bar{q}:=\mathrm{e}^{-\pi i b^{-2}}$, and similarly for two other pairs.
Thus, \boldsymbol{H} is at least formally normal and it is expected to admit a unique normal extension.

Principle of F-duality

The common spectral problem for \boldsymbol{H} and \boldsymbol{H}^{*} is equivalent to constructing an element $\langle x \mid \Psi\rangle:=\Psi(x) \in L^{2}(\mathbb{R})$ admitting analytic continuation to a domain in \mathbb{C} containing the strip $|\Im z|<\cos \theta$ and satisfying two difference equations

$$
\begin{gathered}
\Psi(x-i \mathrm{~b})+\mathrm{e}^{-\pi i \mathrm{~b}^{2}} \mathrm{e}^{-2 \pi \mathrm{~b} x} \Psi(x+i \mathrm{~b})=\left(E-\mathrm{e}^{2 \pi \mathrm{~b} x}\right) \Psi(x), \\
\Psi\left(x-i \mathrm{~b}^{-1}\right)+\mathrm{e}^{-\pi i \mathrm{~b}^{-2}} \mathrm{e}^{-2 \pi \mathrm{~b}^{-1} x} \Psi\left(x+i \mathrm{~b}^{-1}\right)=\left(\bar{E}-\mathrm{e}^{2 \pi \mathrm{~b}^{-1} x}\right) \Psi(x)
\end{gathered}
$$

related to each other by the substitutions

$$
(\mathrm{b}, E) \leftrightarrow\left(\mathrm{b}^{-1}, \bar{E}\right) \text { (Faddeev's modular duality=F-duality). }
$$

In the general case of Baxter's TQ-equations, an approach for constructing solutions in the strongly coupled regime is suggested by Sergeev (2005).
An approach through auxiliary non-linear integral equations is developed by Babelon-Kozlowski-Pasquier (2018).

There are two possibilities

$$
\left.\Psi(x)\right|_{x \rightarrow+\infty} \sim \psi_{k}(x):=\mathrm{e}^{\pi i(1-3 k) x^{2}-2 \pi x \cos \theta}, \quad k \in\{0,1\}
$$

with exact solutions $\psi_{k}(x)=\psi_{k}(x) \varphi_{k}(x)$,

$$
\begin{array}{r}
\varphi_{k}\left(x-\epsilon_{k}\right)+\mathrm{e}^{-\left(2 x+\epsilon_{k}\right) 3 \pi \mathrm{~b}} \varphi_{k}\left(x+\epsilon_{k}\right)=\left(1-E \mathrm{e}^{-2 \pi \mathrm{~b} x}\right) \varphi_{k}(x) \\
\epsilon_{k}:=(1-2 k) i \mathrm{~b}
\end{array}
$$

+ the F-dual equations $(\mathrm{b}, E) \mapsto\left(\mathrm{b}^{-1}, \bar{E}\right)$ and the boundary conditions

$$
\lim _{x \rightarrow+\infty} \varphi_{k}(x)=1
$$

The factorisation Ansatz

The F-dual substitutions

$$
\varphi_{k}(x)=\chi_{k}\left(\mathrm{e}^{2 \pi \mathrm{~b} x}\right) \bar{\chi}_{k}\left(\mathrm{e}^{2 \pi \mathrm{~b}^{-1} x}\right), \quad k \in\{0,1\}
$$

give rise to power series solutions $\left(q:=e^{\pi i b^{2}}\right)$

$$
\begin{aligned}
\chi_{k}(z)=\phi_{q^{2 k-1}, E}(1 / z), \quad \phi_{q, E}(z):= & \sum_{n=0}^{\infty} \frac{p_{n}(q, E)}{\left(q^{-2} ; q^{-2}\right)_{n}} z^{n}, \\
& \bar{\chi}_{k}=\left.\chi_{k}\right|_{(q, E) \mapsto\left(\bar{q}^{-1}, \bar{E}\right)}
\end{aligned}
$$

with the polynomials $p_{n}=p_{n}(q, E) \in \mathbb{Z}\left[q, q^{-1}\right][E]$ of degree n in E defined by

$$
p_{n+1}=E p_{n}+\left(q^{n}-q^{-n}\right)\left(q^{n-1}-q^{1-n}\right) p_{n-2}, \quad p_{0}=1
$$

$\left.p_{n}(q, E)\right|_{n \rightarrow \infty} \sim q^{-n^{2} / 3} \Rightarrow R C\left(\phi_{q, E}(z)\right)=\infty$ (radius of convergence) and $R C\left(\phi_{1 / q, E}(z)\right)=0$.

The vector spaces $F_{p, c}, V_{p, \alpha, c}, T_{p, r}^{m}$

Let $\mathcal{O}_{\mathbb{C}_{\neq 0}}$ be the \mathbb{C}-vector space of holomorphic maps $f: \mathbb{C}_{\neq 0} \rightarrow \mathbb{C}$. For $c \in \mathbb{C}, p, r, \alpha \in \mathbb{C}_{\neq 0}$ and $m \in \mathbb{Z}$, define the following vector subspaces of $\mathcal{O}_{\mathbb{C}_{\neq 0}}$

- $F_{p, c}:=\left\{f \mid f\left(z / p^{2}\right)+(z p)^{3} f\left(z p^{2}\right)=(1-c z) f(z)\right\}$;
- $V_{p, \alpha, c}:=\left\{f \mid \alpha z f\left(z / p^{2}\right)+z^{2} p \alpha^{-1} f\left(z p^{2}\right)=(1-c z) f(z)\right\}$;
- $T_{p, r}^{m}:=\left\{f \mid r z^{m} f(z p)=f(z)\right\}$.

Lemma

(i) $|p|^{m}<1 \Rightarrow \operatorname{dim}\left(T_{p, r}^{m}\right)=|m|(\theta$-functions of order $|m|)$;
(ii) $\operatorname{dim}\left(V_{q, \alpha, E}\right)=1$;
(iii) the multiplication of functions induces a linear map $V_{q, \alpha, E} \otimes T_{q^{2}, q^{2} \alpha}^{1} \rightarrow F_{q, E} ;$
(iv) $\operatorname{dim}\left(F_{q, E}\right)=3$ and $\phi_{q, E} \in F_{q, E}$.

Proof of $(i i) \operatorname{dim}\left(V_{q, \alpha, E}\right)=1$

Cosider a linear map

$$
A: \mathcal{O}_{\mathbb{C}_{\neq 0}} \rightarrow \mathcal{O}_{\mathbb{C}_{\neq 0}}, \quad(A f)(z)=P_{+}\left(f \psi_{q, E}\right)(1 / \sqrt{-z})
$$

where

$$
\psi_{q, E}(z):=\sum_{n=0}^{\infty} \frac{p_{n}(q, E) q^{(1-n) n / 2}}{\left(q^{-2} ; q^{-2}\right)_{n}} z^{n}=\psi_{1 / q, E}(-z)
$$

(∞ radius of convergence) and P_{+}is the projection to the even part of a function:

$$
P_{+}(f)(z)=(f(z)+f(-z)) / 2
$$

Then, the restriction $\left.A\right|_{T_{q,-\alpha}^{1}}$ is a linear isomorphism between $T_{q,-\alpha}^{1}$ and $V_{q, \alpha, E}$.

First order matrix difference equation for $F_{p, c}$

For any $f \in F_{p, c}$, we have

$$
\hat{f}(z)=L(z) \hat{f}\left(z p^{2}\right), \quad \hat{f}(z):=\binom{f\left(\frac{z}{p^{2}}\right)}{f(z)}, L(z):=\left(\begin{array}{cc}
1-c z & -z^{3} p^{3} \\
1 & 0
\end{array}\right) .
$$

Defining

$$
L_{n}(z):=L(z) L\left(z p^{2}\right) \cdots L\left(z p^{2 n-2}\right)=:\left(\begin{array}{ll}
a_{n}(z) & b_{n}(z) \\
c_{n}(z) & d_{n}(z)
\end{array}\right), \quad n \in \mathbb{Z}_{>0}
$$

we have

$$
L_{m+n}(z)=L_{m}(z) L_{n}\left(z p^{2 m}\right), \quad \forall m, n \in \mathbb{Z}_{>0}
$$

in particular,

$$
L_{n+1}(z)=L(z) L_{n}\left(z p^{2}\right)=L_{n}(z) L\left(z p^{2 n}\right), \quad \forall n \in \mathbb{Z}_{>0}
$$

Assuming $|p|<1$ and taking the limit $n \rightarrow \infty$,

$$
L_{\infty}(z):=\lim _{n \rightarrow \infty} L_{n}(z)=\left(\begin{array}{cc}
\phi_{p, c}\left(z / p^{2}\right) & 0 \\
\phi_{p, c}(z) & 0
\end{array}\right)
$$

Adjoint functions

Define the (skew-symmetric bilinear) Wronskian pairing

$$
[\cdot, \cdot]: F_{q, E} \times F_{q, E} \rightarrow T_{q^{2}, q^{3}}^{3}, \quad[f, g](z)=f\left(\frac{z}{q^{2}}\right) g(z)-g\left(\frac{z}{q^{2}}\right) f(z)
$$

and the adjoint function $\tilde{f}: U\left(\left[\phi_{q, E}, f\right]\right) \rightarrow \mathbb{C}$

$$
\tilde{f}(z):=\frac{f(z)}{\left[\phi_{q, E}, f\right](z)}, \quad \forall f \in F_{q, E}, \quad U(g):=\mathbb{C}_{\neq 0} \backslash g^{-1}(0)
$$

Adjoint functions are analytic substitutes for the series $\phi_{1 / q, E}(z)$.

Theorem

Let $f \in F_{q, E}$ be such that $U\left(\left[\phi_{q, E}, f\right]\right) \neq \emptyset$. Then

$$
z \in U\left(\left[\phi_{q, E}, f\right]\right) \Rightarrow z q^{2 \mathbb{Z}} \subset U\left(\left[\phi_{q, E}, f\right]\right), \quad \lim _{n \rightarrow \infty} \tilde{f}\left(z q^{2 n}\right)=1
$$

and $\tilde{f}(z)$ admits an asymptotic expansion at small z in the form of the series $\phi_{1 / q, E}(z)$.

The general Ansatz for $\Psi(x)$

$$
\begin{aligned}
& \Psi(x)=\Psi_{0}(x)+\xi \Psi_{1}(x) \text { where } \xi \in \mathbb{C} \text { and } \\
& \Psi_{0}(x):=\psi_{0}(x) \tilde{h}\left(\mathrm{e}^{-2 \pi \mathrm{~b} x}\right) \phi_{\bar{q}, \bar{E}}\left(\mathrm{e}^{-2 \pi \mathrm{~b}^{-1} x}\right), \quad h \in F_{q, E} \backslash \mathbb{C} \phi_{q, E} \\
& \\
& \Psi_{1}(x):=\psi_{1}(x) \phi_{q, E}\left(\mathrm{e}^{-2 \pi \mathrm{~b} x}\right) \tilde{\bar{h}}\left(\mathrm{e}^{-2 \pi \mathrm{~b}^{-1} x}\right), \quad \bar{h} \in F_{\bar{q}, \bar{E}} \backslash \mathbb{C} \phi_{\bar{q}, \bar{E}}
\end{aligned}
$$

sharing a common pole set (Requirement(I)).
Then, for any $\zeta, \sigma \in \mathbb{C}$, there exist a (multivalued) function $E=E(q, \zeta, \sigma)$ and elements $f \in V_{q, q \mathrm{e}^{-2 \pi \mathrm{~b} \zeta, E}, \bar{f}} \in V_{\bar{q}, \bar{q} \mathrm{e}^{-2 \pi \mathrm{~b}^{-1} \zeta, \bar{E}}}$ with $\bar{E}:=\left.E\right|_{q \mapsto \bar{q}}$ such that
$\Psi(x)=\mathrm{e}^{-2 \pi x \cos \theta} \frac{\mathrm{e}^{\pi i x^{2}} f(z) \phi_{\bar{q}, \bar{E}}(\bar{z})+\xi \mathrm{e}^{-2 \pi i(\zeta+2 \sin \theta) x} \bar{f}(\bar{z}) \phi_{q, E}(z)}{\vartheta\left(z / s ; q^{2}\right) \vartheta\left(z s \mathrm{e}^{2 \pi \mathrm{~b} \zeta} ; q^{2}\right)}$
where $z:=\mathrm{e}^{-2 \pi \mathrm{~b} x}, \bar{z}:=\mathrm{e}^{-2 \pi \mathrm{~b}^{-1} x}, s:=\mathrm{e}^{-2 \pi \mathrm{~b} \sigma}, \bar{s}:=\mathrm{e}^{-2 \pi \mathrm{~b}^{-1} \sigma}$, $\vartheta(u ; p):=\sum_{n \in \mathbb{Z}} p^{(n-1) n / 2}(-u)^{n}=(u, p / u, p ; p)_{\infty}$.

Pole cancellation in $\Psi(x)$

Theorem

Under the substitution

$$
\xi=\xi(\theta, \zeta, \sigma):=-\mathrm{e}^{\pi i \sigma(\sigma+2 \zeta)} \frac{f(s) \phi_{\bar{q}, \bar{E}}(\bar{s}) \bar{s}}{\bar{f}(\bar{s}) \phi_{q, E}(s) s} .
$$

all the poles of $\Psi(x)$ at $x=\sigma+i \mathrm{~b} m+i \mathrm{~b} n, m, n \in \mathbb{Z}$, are cancelled. Furthermore, the equation

$$
\xi(\zeta, \theta, \sigma)=\xi(\zeta, \theta, \zeta-\sigma)
$$

ensures that all the remaining poles of $\Psi(x)$ are cancelled as well (Requirement(II)).

