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A Snapshot of its Historical Milestones

How much faster the first pages [of logarithmic tables] wear out than the last ones (1881)

Simon Newcomb: American astronomer
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He deduced the logarithmic probabilities shown in the first two row for the first and second digits [111]

d 0 1 2 3 4 5 6 7 8 9
P(D1 = d) 0 30.10 17.60 12.49 9.69 7.91 6.69 5.79 5.11 4.57
P(D2 = d) 11.96 11.38 10.88 10.43 10.03 9.66 9.33 9.03 8.75 8.49
P(D3 = d) 10.17 10.13 10.09 10.05 10.01 9.97 9.94 9.90 9.86 9.82
P(D4 = d) 10.01 10.01 10.00 10.00 10.00 9.99 9.99 9.99 9.98 9.98

Probabilities (in percent) of the frst four signifcant decimal digits
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Fifty-seven Years Later

American physicist (1937)

American Philosophical Society

Frank Benford
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WHY Benford’s Law?

Benford’s Law for arithmetic sequences.
(I) Sequences such as the squares that grow at linear or polynomial rate.

(II) Sequences such as (2n), (2n2
), or (nn) that grow at faster than polynomial rate,

but whose logarithms grow at polynomial rate.

(III) Sequences whose logarithms grow at faster than polynomial rate; e.g, (22n
)
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Main Definition

• Let x ∈ R+; and m ∈ N⩾2.

Definition (1)

The most significant digit of x , is the unique j ∈ J1, 9K satisfying

10k j ⩽ |x | < 10k (j + 1), ∃! k ∈ Z.

• D1(x) := j

Definition (2)

The mth significant digit of x , is defined inductively as the unique J0, 9K such
that

10k
(m−1∑

i=1

Di (x) 10 m−i + j
)
⩽ |x | < 10k

(m−1∑
i=1

Di (x) 10 m−i + j +1
)
, ∃! k ∈ Z

• Dm(x) := j
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Observation

(2n) 2481361251 2481361251 2481361251 2481361251 2481371251
(2n2

) 2156365121 2271519342 5412132118 1169511474 1146399353
(n!) 1262175433 3468123612 5126141382 8282131528 3162152163
(p(n)) 1235711234 5711122346 7111123345 6811122333 4567811112
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From Benford back to equidistribution

World of numbers X World of logs Y = {log10 X}
Leading-digit pattern Interval length in [0, 1)
Benford probabilities Uniform (equidistributed) density
Base change / Scaling X 7→ cX Shift Y 7→ Y + log10 c (mod 1)
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Homogeneous–space point of view

A homogeneous space is a quotient G/Γ of a Lie group G by a lattice Γ.

• flows are given by one-parameter subgroups of G.

• follow the point Γ under such a flow and write down in which piece of a fixed finite
partition it lands =⇒ an infinite word in a finite alphabet

Arithmetic sequence Log map Orbit lives on Flow
an n logb a mod 1 T1 = R/Z an irrational

rotation
an2

, n!, Γ(cn), . . . polynomial in n higher-dimensional torus or nil-manifold polynomial
or diagonal

general aP(n) (P polynomial) polynomial in n nilmanifold G/Γ unipotent
or diagonal
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Factor Complexity

Morse and Hedlund (1938)
• under the name block growth

• subword complexity (1975)

Definition (4)

The factor complexity of w is the map pw : N → N defined as follows:

n 7→ #Facn(w)
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Outline of This Talk

• F.C. is stand for factor complexity.

F.C. of sequences of the most significant digits of the decimal expansion of an.

F.C. of sequences of the most significant digits of the b-expansion of an.

Beyond of F.C. of sequences of the most significant digits of the b-expansion of an.

F.C. of sequences of the most significant digits of the b-expansion of and

F.C. of sequences of the most significant digits of the decimal expansion of n!.
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The Most Significant Digits of First 50 Terms (Concatenated)

Sequence The most significant digits of first 50 terms (concatenated)
(2n) 2481361251 2481361251 2481361251 2481361251 2481371251
(3n) 3928272615 1514141313 1392827262 6151514141 3139282727
(4n) 4162141621 4162141621 4172141731 4172141731 4173141731
(5n) 5216317319 4216317319 4215217319 4215217319 4215217318
(6n) 6321742116 3217421163 2174211632 1742116321 8421163218
(7n) 7432118542 1196432117 5321196432 1175321196 4321175321
(8n) 8654322111 8654322111 9754322111 9765432211 1865432211
(9n) 9876554433 3222211111 1987765544 3332222111 1119877655

Table: Leading digits (in base 10) of the first 50 terms of the sequences (an), a ∈ J2, 9K
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Empirical Factor Complexities Based on the First 100,000 Terms
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Admissible Pairs

Definition
A pair (a, b) is called admissible if

i) a is a positive rational number;.

ii) b is a squarefree integer ⩾ 5;

iii) a and b are multiplicative independent: logb(a) /∈ Q.

• A pair (a, b) is called strong admissible if

I) a is a positive real number;.

II) b is a squarefree integer ⩾ 5;

III) a and b are multiplicative independent: logb(a) /∈ Q.

• A pair (a, b) is called weak admissible if

A) a is a positive real number;.

B) b ⩾ 5;

C) a and b are multiplicative independent: logb(a) /∈ Q.
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Complexity of Leading Digit Sequences

Notation

pa,b(n): factor complexity of the most significant digits of the sequence (an) in base b.

(2n) (3n) (4n) (5n) (6n) (7n) (8n) (9n)
b = 5 2n + 2 3n + 1 3n + 1 4n 4n 4n 3n + 2
b = 6 2n + 3 2n + 3 3n + 2 4n + 1 5n 4n + 1 3n + 2
b = 7 3n + 3 4n + 2 5n + 1 5n + 1 5n + 1 6n 6n
b = 10 4n + 5 6n + 3 6n + 3 4n + 5 7n + 2 8n + 1 7n + 2 8n + 1

Table: Formulas for sequences in different bases

Theorem 1. ( He & Hildebrand & ... 2020)
• Let (a, b) be an admissible pair. Then pa,b(n) is an affine function for n ⩾ 1.

Theorem 2. (P. Alessandri. PhD thesis, 1996)
• A coding of an irrational rotation, the complexity has the form p(n) = cn + d , for n

large enough.
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Admissibility Requirement

Multiplicative independent: logb(a) /∈ Q
logb a ∈ Q =⇒ the sequence of the most significant digits: periodic =⇒ pa,b(n) : bounded

Lower bound of base: b ⩾ 5
b = 3 =⇒ interval I = [logb 1, logb 2) =⇒ ℓ(I) > 1

2

• the intersection of the interval [0, 2/3] with its translate by 1/2 consists of the two disjoint
intervals [0, 1/6] and [1/2, 2/3].

Squarefree bases

b ⩾ 5: non-squarefree integer, q: prime, q2 | b, a = q

Case I: b ̸= qn =⇒ pa,b(n) : NOTaffine

Case II: b = qn =⇒ periodic =⇒ pa,b(n) : bounded

16



Admissibility Requirement

Multiplicative independent: logb(a) /∈ Q
logb a ∈ Q =⇒ the sequence of the most significant digits: periodic =⇒ pa,b(n) : bounded

Lower bound of base: b ⩾ 5
b = 3 =⇒ interval I = [logb 1, logb 2) =⇒ ℓ(I) > 1

2

• the intersection of the interval [0, 2/3] with its translate by 1/2 consists of the two disjoint
intervals [0, 1/6] and [1/2, 2/3].

Squarefree bases

b ⩾ 5: non-squarefree integer, q: prime, q2 | b, a = q

Case I: b ̸= qn =⇒ pa,b(n) : NOTaffine

Case II: b = qn =⇒ periodic =⇒ pa,b(n) : bounded

16



Admissibility Requirement

Multiplicative independent: logb(a) /∈ Q
logb a ∈ Q =⇒ the sequence of the most significant digits: periodic =⇒ pa,b(n) : bounded

Lower bound of base: b ⩾ 5
b = 3 =⇒ interval I = [logb 1, logb 2) =⇒ ℓ(I) > 1

2

• the intersection of the interval [0, 2/3] with its translate by 1/2 consists of the two disjoint
intervals [0, 1/6] and [1/2, 2/3].

Squarefree bases

b ⩾ 5: non-squarefree integer, q: prime, q2 | b, a = q

Case I: b ̸= qn =⇒ pa,b(n) : NOTaffine

Case II: b = qn =⇒ periodic =⇒ pa,b(n) : bounded

16



Admissibility Requirement

Multiplicative independent: logb(a) /∈ Q
logb a ∈ Q =⇒ the sequence of the most significant digits: periodic =⇒ pa,b(n) : bounded

Lower bound of base: b ⩾ 5
b = 3 =⇒ interval I = [logb 1, logb 2) =⇒ ℓ(I) > 1

2

• the intersection of the interval [0, 2/3] with its translate by 1/2 consists of the two disjoint
intervals [0, 1/6] and [1/2, 2/3].

Squarefree bases

b ⩾ 5: non-squarefree integer, q: prime, q2 | b, a = q

Case I: b ̸= qn =⇒ pa,b(n) : NOTaffine

Case II: b = qn =⇒ periodic =⇒ pa,b(n) : bounded

16



Transcendental or Algebraic

Question: The following number made by the most significant digits of 2n should be
transcendental?

A := 0.124813612512 · · ·

Answer:

YES!

Theorem 3. (Adamczewski & Bugeaud. 2004)
• Let b ⩾ 2 be an integer. The factor complexity of the b-ary expansion of every

irrational algebraic number satisfies

lim inf
n→∞

p(n)
n

= ∞

Example
Let a = 2 and b = 10. Then p2,10(n) = 4n + 5. Hence, A is a transcendental number.
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Leading Digit Complexity Function

Theorem 4. (Cassaigne. 1997)
• Any function of the form cn + d , where c and d are positive integers, is the

complexity function of some word w for all n ∈ N.

Definition (5)

(i) A function cn + d is called a leading digit complexity function if there
exists an admissible pair (a, b) such that

cn + d = pa,b(n); ∀n.

(ii) A pair (c, d) of integers is called good if it is the pair of coefficients of a
leading digit complexity function cn + d .
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Good Pairs

Notation

G :=
{
(c, d) | cn + d is a leading digit complexity function

}
,

G(c) :=
{

d | (c, d) ∈ G
}
.

F1(c) :=
#G(c)
√

c
F2(N) :=

(∑
c⩽N

(#G(c)
)

N
−3
2

• bounded above and below by positive constants
• F1(c): not converge to a limit
• F2(N): appears to converge to a limit
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Number of Good Pairs

Theorem 5. (M. G. 2025+)

1. There exist positive constants k1 and k2 such that

k1
√

c ⩽ #G(c) ⩽ k2
√

c

for all sufficiently large c, but the limit

lim
c→∞

#G(c)
√

c
:= NOT EXIST

2. There exists a positive constant k such that∑
c≤N

#G(c) ∼ k N3/2 (N → ∞).
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Arithmetic Complexity

• Let w ∈ AN. An n-arithmetic factor in w is any subwords of the form

wk wk+d wk+2d · · · , wk+(n−1)d , k ⩾ 0, d ⩾ 1.

Definition (6)

The arithmetical complexity of w is given by:

aw (n) = #
{

wk wk+d · · · wk+(n−1)d

∣∣∣ k ⩾ 0, d ⩾ 1
}
.

• counts how many distinct arithmetic n-factors of appear in w .

Theorem 6. (Cassaign & Frid. 2007)
• Let s be a sturmain word. Then as(k) = O(k3)

21
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Notation

aa,b(n): arthmetic complexity of the most significant digits of the sequence (an) in
base b.

ar(n): arthmetic complexity of the rotation word r

Conclusion (admissible pair)

as(k) =⇒ ar(k) =⇒ aa,b(k) = O(k3)
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Polynomial Complexity

Let w ∈ AN. For any polynomial

P(x) = ad xd + ad−1xd−1 + · · ·+ a1x + a0 ∈ Z[x ].

• The polynomial subword:

wk+P(0) wk+P(1) wk+P(2) . . . , d ⩾ 1, ad > 0, k ⩾> 0.

• The polynomial closure:

Pd (w) =
⋃
k⩾0

⋃
P∈Z[x ]

deg(P)=d, P(n)⩾0

Fac
(

wk+P(0) wk+P(1) wk+P(2) . . .
)
.

Definition (7)

The polynomial complexity of w is given by:

Pw
d (n) = #

(
Pd (w) ∩ An

)
,

• counts the number of distinct n-factors that appear in Pd (w).

23



Polynomial Complexity

Let w ∈ AN. For any polynomial

P(x) = ad xd + ad−1xd−1 + · · ·+ a1x + a0 ∈ Z[x ].

• The polynomial subword:

wk+P(0) wk+P(1) wk+P(2) . . . , d ⩾ 1, ad > 0, k ⩾> 0.

• The polynomial closure:

Pd (w) =
⋃
k⩾0

⋃
P∈Z[x ]

deg(P)=d, P(n)⩾0

Fac
(

wk+P(0) wk+P(1) wk+P(2) . . .
)
.

Definition (7)

The polynomial complexity of w is given by:

Pw
d (n) = #

(
Pd (w) ∩ An

)
,

• counts the number of distinct n-factors that appear in Pd (w).

23



Polynomial Complexity

Let w ∈ AN. For any polynomial

P(x) = ad xd + ad−1xd−1 + · · ·+ a1x + a0 ∈ Z[x ].

• The polynomial subword:

wk+P(0) wk+P(1) wk+P(2) . . . , d ⩾ 1, ad > 0, k ⩾> 0.

• The polynomial closure:

Pd (w) =
⋃
k⩾0

⋃
P∈Z[x ]

deg(P)=d, P(n)⩾0

Fac
(

wk+P(0) wk+P(1) wk+P(2) . . .
)
.

Definition (7)

The polynomial complexity of w is given by:

Pw
d (n) = #

(
Pd (w) ∩ An

)
,

• counts the number of distinct n-factors that appear in Pd (w).
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Theorem 7. (M.G. & Cassaign 2025+)

Let s be a Sturmian word. Then

Ps
d (k) = O

(
k

(d+1)(d+2)
2

)
.

Notation

Pa,b
d (n): polynomial complexity of the most significant digits of the sequence (an) in

base b.

Pr
d (n): polynomial complexity of the rotation word r

Conclusion (admissible pair)

Ps
d (k) =⇒ Pr

d (k) =⇒ Pa,b
d (k) = O

(
k

(d+1)(d+2)
2

)

24



Theorem 7. (M.G. & Cassaign 2025+)

Let s be a Sturmian word. Then

Ps
d (k) = O

(
k

(d+1)(d+2)
2

)
.

Notation

Pa,b
d (n): polynomial complexity of the most significant digits of the sequence (an) in

base b.

Pr
d (n): polynomial complexity of the rotation word r

Conclusion (admissible pair)

Ps
d (k) =⇒ Pr

d (k) =⇒ Pa,b
d (k) = O

(
k

(d+1)(d+2)
2

)

24



Theorem 7. (M.G. & Cassaign 2025+)

Let s be a Sturmian word. Then

Ps
d (k) = O

(
k

(d+1)(d+2)
2

)
.

Notation

Pa,b
d (n): polynomial complexity of the most significant digits of the sequence (an) in

base b.

Pr
d (n): polynomial complexity of the rotation word r

Conclusion (admissible pair)

Ps
d (k) =⇒ Pr

d (k) =⇒ Pa,b
d (k) = O

(
k

(d+1)(d+2)
2

)

24



Theorem 7. (M.G. & Cassaign 2025+)

Let s be a Sturmian word. Then

Ps
d (k) = O

(
k

(d+1)(d+2)
2

)
.

Notation

Pa,b
d (n): polynomial complexity of the most significant digits of the sequence (an) in

base b.

Pr
d (n): polynomial complexity of the rotation word r

Conclusion (admissible pair)

Ps
d (k) =⇒ Pr

d (k) =⇒ Pa,b
d (k) = O

(
k

(d+1)(d+2)
2

)

24



Theorem 7. (M.G. & Cassaign 2025+)

Let s be a Sturmian word. Then

Ps
d (k) = O

(
k

(d+1)(d+2)
2

)
.

Notation

Pa,b
d (n): polynomial complexity of the most significant digits of the sequence (an) in

base b.

Pr
d (n): polynomial complexity of the rotation word r

Conclusion (admissible pair)

Ps
d (k) =⇒ Pr

d (k) =⇒ Pa,b
d (k) = O

(
k

(d+1)(d+2)
2

)

24



Beyond

Theorem 8. (M. G., Kanel-Belov, Kondakov, & Mitrofanov. 2021)

Let P(n) be a polynomial with an irrational leading coefficient. Let W be an
infinite word where

Wn = [2{P(n)}]

Then there is a polynomial Q(k) that depends only on deg(P), such that

Q(k) = pW(k)

for all sufficiently large k .

Theorem 9. (M. G. & Mitrofanov. 2024)

Let d ∈ Z>0, let b ⩾ 5 be an integer, and let a > 0 be a real number such that
a and b are multiplicatively independent. Consider the sequence w , where wn

is the most significant digit of and
when expressed in base b.

Then, there exists a polynomial P(k) of degree d(d+1)
2 such that:

P(k) = pW(k) for large enough k .
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Bounding of Significant Factor Complexity

Definition (8)

A significant factor in base b is a contiguous subword that appears in the
most significant digits word of (c · an)n∈N, where c, a > 0.

Theorem 10. (M. G. & Shevtsova. 2025+)

Let k ∈ N. Then

(k − 1)k(k + 1)
6

⩽ pd(k) ⩽ 3(k − 1)k(k + 1).
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Figure: Lines for k = 1 Figure: Lines for k = 2
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Sketch of proof

• Counting Faces: Exactly 9k lines partition T2; each face in this partition
corresponds uniquely to a length-k factor in d.

• Lower Bound: Coloring lines cleverly ensures many intersection points (vertices),
giving at least (k−1)k(k+1)

6 faces.

• Upper Bound: One also cannot exceed 3 (k − 1) k (k + 1) faces by topological
constraints (Euler characteristic on the torus).
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A bit terminology

Definition (9)

A log-factorial sequence is any sequence of the form (lg(c · n!))n∈N , c > 0.

• Let (sn)n∈N be a sequence of nonzero real numbers.

Definition (10)

The leading decimal signature of this sequence is the infinite word formed
by the most significant digits of the sequence

(
10sn

)
n∈N in base 10, which we

denote by D.

Definition (11)

A factorial signature is the leading decimal signature associated with a log-
factorial sequence, and it is denoted by F.
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Recurrence of Significant Factors in Factorial Signature

Theorem 11. (M. G. & Shevtsova. 2025+)

Any significant factor in the factorial signature F appears infinitely often.
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Factor Complexity of Residual Words

Definition (12)

Any recurrent factor of a factorial signature that is not a significant factor is
called a residual factor.

Theorem 12. (M. G. & Shevtsova. 2025+)

The number of distinct residual factors of length k in a factorial signature is
Θ
(
k2 ln k

)
.
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Measure-Zero Exceptions

Theorem 13. (M. G. & Shevtsova. 2025+)

For any fixed k , the set of real c > 0 whose factorial signature carries a length-
k residual factor infinitely often has Lebesgue measure zero.
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On the Recurrence of Gamma Words

We call
(
c1 · Γ(c2 · n)

)
n∈N is Gamma sequence if c1, c2 > 0.

Definition (13)

A Gamma word is the leading decimal signature associated with associated
with a gamma sequence, and it is denoted by G.

Theorem 14. (M. G. & Shevtsova. 2025+)

For every residual factor of a factorial signature, there exists a gamma word in
which that same factor appears infinitely many times.
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