Homotopy transfer for conserved currents and rigid symmetries in gauge theories
 (work in progress)

Igor Khavkine

Institute of Mathematics
Czech Academy of Sciences, Prague

Geometry for Higher Spin Gravity
Erwin Schrödinger Institute, Vienna
07 Sep 2021

PDEs

- A PDE is $\mathcal{E} \hookrightarrow J^{\infty} F$, where $F \rightarrow M$ is a (ghost) graded super-bundle of fields over spacetime M, with $n=\operatorname{dim} M$.
- The Cartan distribution on $J^{\infty} F$ gives rise to $\mathrm{d}_{V}, \mathrm{~d}_{H}$ and evolutionary vector fields (evfs), $\mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F\right)$, which commute with d_{H} and d_{V}.
- The Cartan distribution should be involutive on \mathcal{E} and local symme ries are evfs tangent to \mathcal{E}, $\mathfrak{X e v}(\mathcal{E})$.
- We mostly consider horizontal forms $\Omega^{\bullet \bullet}=\Omega^{\text {ghost\#, horiz.deg }}\left(J^{\infty} F\right.$ or $\left.\mathcal{E}\right)$.
- Sign Conventions: Any formula can be written for purely even (odd) objects; general signs recovered by introducing formal parity changing parameters $\left(\epsilon_{1}, \epsilon_{2}, \ldots\right)$.

PDEs

- A PDE is $\mathcal{E} \hookrightarrow J^{\infty} F$, where $F \rightarrow M$ is a (ghost) graded super-bundle of fields over spacetime M, with $n=\operatorname{dim} M$.
- The Cartan distribution on $J^{\infty} F$ gives rise to $\mathrm{d}_{V}, \mathrm{~d}_{H}$ and evolutionary vector fields (evfs), $\mathfrak{X}_{\text {ev }}\left(J^{\infty} F\right)$, which commute with d_{H} and d_{V}.
- The Cartan distribution should be involutive on \mathcal{E} and local symmetries are evfs tangent to $\mathcal{E}, \mathfrak{X}_{\mathrm{ev}}(\mathcal{E})$.
- Sign Conventions: Any formula can be written for purely even (odd) objects; general signs recovered by introducing formal parity changing

PDEs

- A PDE is $\mathcal{E} \hookrightarrow J^{\infty} F$, where $F \rightarrow M$ is a (ghost) graded super-bundle of fields over spacetime M, with $n=\operatorname{dim} M$.
- The Cartan distribution on $J^{\infty} F$ gives rise to $\mathrm{d}_{V}, \mathrm{~d}_{H}$ and evolutionary vector fields (evfs), $\mathfrak{X}_{\text {ev }}\left(J^{\infty} F\right)$, which commute with d_{H} and d_{V}.
- The Cartan distribution should be involutive on \mathcal{E} and local symmetries are evfs tangent to $\mathcal{E}, \mathfrak{X e v}_{\mathrm{ev}}(\mathcal{E})$.
- We mostly consider horizontal forms $\Omega^{\boldsymbol{\bullet}, \bullet}=\Omega^{\text {ghost\#, horiz.deg }}\left(J^{\infty} F\right.$ or $\left.\mathcal{E}\right)$.
- Sign Conventions: Any formula can be written for purely even (odd) objects; general signs recovered by introducing formal parity changing parameters $\left(\epsilon_{1}, \epsilon_{2}, \ldots\right)$.
Adopt $\left|\mathscr{L}_{(-)}\right|=\left|[-,-]_{\mathscr{L}}\right|=$ even, $\left|\mathrm{d}_{V}\right|=\left|\mathrm{d}_{H}\right|=\left|u_{(-)}\right|=$odd,

PDEs

- A PDE is $\mathcal{E} \hookrightarrow J^{\infty} F$, where $F \rightarrow M$ is a (ghost) graded super-bundle of fields over spacetime M, with $n=\operatorname{dim} M$.
- The Cartan distribution on $J^{\infty} F$ gives rise to $\mathrm{d}_{V}, \mathrm{~d}_{H}$ and evolutionary vector fields (evfs), $\mathfrak{X}_{\text {ev }}\left(J^{\infty} F\right)$, which commute with d_{H} and d_{V}.
- The Cartan distribution should be involutive on \mathcal{E} and local symmetries are evfs tangent to $\mathcal{E}, \mathfrak{X e v}_{\mathrm{ev}}(\mathcal{E})$.
- We mostly consider horizontal forms $\Omega^{\boldsymbol{\bullet}, \bullet}=\Omega^{\text {ghost\#, horiz.deg }}\left(J^{\infty} F\right.$ or $\left.\mathcal{E}\right)$.
- Sign Conventions: Any formula can be written for purely even (odd) objects; general signs recovered by introducing formal parity changing parameters $\left(\epsilon_{1}, \epsilon_{2}, \ldots\right)$.
Adopt $\left|\mathscr{L}_{(-)}\right|=\left|[-,-]_{\mathscr{L}}\right|=$ even, $\left|\mathrm{d}_{V}\right|=\left|\mathrm{d}_{H}\right|=\left|\iota_{(-)}\right|=$odd, $\# \mathscr{L}_{(-)}=\#[-,-]_{\mathscr{L}}=\# \mathrm{~d}_{v}=\# \mathrm{~d}_{H}=\# \iota_{(-)}=0$.

BV-BRST

- A (sufficiently regular) variational PDE \mathcal{E} has a BV-BRST description.
- In the BV-BRST extension, fiber coordinates over M come in field $\Phi^{\prime}\left(F_{B R S T}\right)$, antifield Φ_{1}^{*} pairs ($F_{B V} \rightarrow F_{B R S T}$):

\rightarrow Antifields give rise to a local shifted symplectic density $\Omega=\mathrm{d}_{V} \Phi_{i}{ }^{\prime} \mathrm{d}_{V} \Phi^{\prime}$, together with a homological evfs $Q \in \mathscr{X} \mathrm{ev}\left(J^{\infty} F_{B V}\right), Q_{B R S T} \in \mathscr{X}_{\mathrm{ev}}\left(\mathcal{E}_{B R S T}\right)$, with ghost $\# Q=-\# \Omega=1$, such that $H^{\#<0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}=\mathscr{L}_{Q}\right)=0$ and $\mathrm{s})=H^{0}\left(C^{\infty}\left(\mathcal{E}_{\text {BRST }}\right), \mathscr{L}_{Q_{\text {BRST }}}\right)=C^{\infty}(\mathcal{E})^{\mathscr{S}}$ with \mathscr{G} generated by infinitesimal
- The antibracket $\left(\int b, \int c\right)=L_{\Omega-1 . d_{V}} \mathrm{~d}_{V} c$ is defined on local functionals $H^{0, n}\left(\mathrm{~d}_{H}\right)$
\rightarrow The BV differential $s(-)=\left(S_{B V},-\right)$, where the BV extended action $S_{B V}=\int L\left(\Phi, \Phi^{*}\right) \mathrm{d}^{n} x \in H^{0, n}\left(\mathrm{~d}_{H}\right)$ satisfies the Master Equation $\left(S_{B V}, S_{B V}\right)=0$. This makes $\left(H^{\bullet, n}\left(d_{H}\right), \mathbf{s},(-,-)\right)$ into a dg-Lie algebra. \rightarrow Symmetries $\beta \in \mathscr{X}_{\mathrm{ev}}\left(J^{\infty} F_{B V}\right)$ must now leave $L \mathrm{~d}^{n} X$ and Ω invariant mod d_{H}.

BV-BRST

- A (sufficiently regular) variational PDE \mathcal{E} has a BV-BRST description.
- In the BV-BRST extension, fiber coordinates over M come in field $\Phi^{\prime}\left(F_{B R S T}\right)$, antifield $\Phi_{/}^{*}$ pairs $\left(F_{B V} \rightarrow F_{B R S T}\right)$:

- Antifields give rise to a local shifted symplectic density $\Omega=\mathrm{d}_{V} \Phi_{I}^{*} \mathrm{~d}_{V} \Phi^{\prime}$, together with a homological evfs $Q \in \mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B V}\right), Q_{B R S T} \in \mathfrak{X}_{\mathrm{ev}}\left(\mathcal{E}_{\text {BRST }}\right)$, with ghost $\# Q=-\# \Omega=1$, such that $H^{\#<0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}=\mathscr{L}_{Q}\right)=0$ and $H^{0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}\right)=H^{0}\left(C^{\infty}\left(\mathcal{E}_{B R S T}\right), \mathscr{L}_{Q_{B R S T}}\right)=C^{\infty}(\mathcal{E})^{\mathscr{G}}$ with \mathscr{G} generated by infinitesimal gauge symmetries.
- The BV differential $\mathbf{s}(-)=\left(S_{B V},-\right)$, where the BV extended action This makes $\left(H^{\circ}, n\left(d_{H}\right), s,(-,-)\right)$ into a dg-Lie algebra. \rightarrow Symmetries $\beta \in \mathscr{X}$ ev $\left(J^{\infty} F_{B V}\right)$ must now leave $L \mathrm{~d}^{n} X$ and Ω invariant mod d ${ }_{H}$.

BV-BRST

- A (sufficiently regular) variational PDE \mathcal{E} has a BV-BRST description.
- In the BV-BRST extension, fiber coordinates over M come in field $\Phi^{\prime}\left(F_{B R S T}\right)$, antifield $\Phi_{/}^{*}$ pairs $\left(F_{B V} \rightarrow F_{B R S T}\right)$:

- Antifields give rise to a local shifted symplectic density $\Omega=\mathrm{d}_{V} \Phi_{I}^{*} \mathrm{~d}_{V} \Phi^{\prime}$, together with a homological evfs $Q \in \mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B V}\right), Q_{B R S T} \in \mathfrak{X}_{\mathrm{ev}}\left(\mathcal{E}_{\text {BRST }}\right)$, with ghost $\# Q=-\# \Omega=1$, such that $H^{\#<0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}=\mathscr{L}_{Q}\right)=0$ and $H^{0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}\right)=H^{0}\left(C^{\infty}\left(\mathcal{E}_{B R S T}\right), \mathscr{L}_{Q_{B R S T}}\right)=C^{\infty}(\mathcal{E})^{\mathscr{G}}$ with \mathscr{G} generated by infinitesimal gauge symmetries.
- The antibracket $\left(\int b, \int c\right)=\iota_{" \Omega-1}{ }^{n} \mathrm{~d}_{V} b \mathrm{~d}_{V} c$ is defined on local functionals $H^{\bullet, n}\left(\mathrm{~d}_{H}\right)$.

The BV differential $\mathbf{S}(-)=\left(S_{B v},-\right)$, where the BV extended action

BV-BRST

- A (sufficiently regular) variational PDE \mathcal{E} has a BV-BRST description.
- In the BV-BRST extension, fiber coordinates over M come in field $\Phi^{\prime}\left(F_{B R S T}\right)$, antifield $\Phi_{/}^{*}$ pairs $\left(F_{B V} \rightarrow F_{B R S T}\right)$:

- Antifields give rise to a local shifted symplectic density $\Omega=\mathrm{d}_{V} \Phi_{I}^{*} \mathrm{~d}_{V} \Phi^{\prime}$, together with a homological evfs $Q \in \mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B V}\right), Q_{B R S T} \in \mathfrak{X}_{\mathrm{ev}}\left(\mathcal{E}_{\text {BRST }}\right)$, with ghost $\# Q=-\# \Omega=1$, such that $H^{\#<0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}=\mathscr{L}_{Q}\right)=0$ and $H^{0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}\right)=H^{0}\left(C^{\infty}\left(\mathcal{E}_{B R S T}\right), \mathscr{L}_{Q_{B R S T}}\right)=C^{\infty}(\mathcal{E})^{\mathscr{G}}$ with \mathscr{G} generated by infinitesimal gauge symmetries.
- The antibracket $\left(\int b, \int c\right)=\iota_{" \Omega} \Omega^{-1}{ }^{n} \mathrm{~d}_{V} b \mathrm{~d}_{V} c$ is defined on local functionals $H^{\bullet, n}\left(\mathrm{~d}_{H}\right)$.
- The BV differential $\mathbf{s}(-)=\left(S_{B V},-\right)$, where the BV extended action $S_{B V}=\int L\left(\Phi, \Phi^{*}\right) \mathrm{d}^{n} x \in H^{0, n}\left(\mathrm{~d}_{H}\right)$ satisfies the Master Equation $\left(S_{B V}, S_{B V}\right)=0$. This makes $\left(H^{\bullet, n}\left(\mathrm{~d}_{H}\right), \mathbf{s},(-,-)\right)$ into a dg-Lie algebra.

BV-BRST

- A (sufficiently regular) variational PDE \mathcal{E} has a BV-BRST description.
- In the BV-BRST extension, fiber coordinates over M come in field $\Phi^{\prime}\left(F_{B R S T}\right)$, antifield $\Phi_{/}^{*}$ pairs $\left(F_{B V} \rightarrow F_{B R S T}\right)$:

- Antifields give rise to a local shifted symplectic density $\Omega=\mathrm{d}_{V} \Phi_{I}^{*} \mathrm{~d}_{V} \Phi^{\prime}$, together with a homological evfs $Q \in \mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B V}\right), Q_{B R S T} \in \mathfrak{X}_{\mathrm{ev}}\left(\mathcal{E}_{\text {BRST }}\right)$, with ghost $\# Q=-\# \Omega=1$, such that $H^{\#<0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}=\mathscr{L}_{Q}\right)=0$ and $H^{0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}\right)=H^{0}\left(C^{\infty}\left(\mathcal{E}_{B R S T}\right), \mathscr{L}_{Q_{B R S T}}\right)=C^{\infty}(\mathcal{E})^{\mathscr{G}}$ with \mathscr{G} generated by infinitesimal gauge symmetries.
- The antibracket $\left(\int b, \int c\right)=\iota_{" \Omega} \Omega^{-1}{ }^{n} \mathrm{~d}_{V} b \mathrm{~d}_{V} c$ is defined on local functionals $H^{\bullet, n}\left(\mathrm{~d}_{H}\right)$.
- The BV differential $\mathbf{s}(-)=\left(S_{B V},-\right)$, where the BV extended action $S_{B V}=\int L\left(\Phi, \Phi^{*}\right) \mathrm{d}^{n} x \in H^{0, n}\left(\mathrm{~d}_{H}\right)$ satisfies the Master Equation $\left(S_{B V}, S_{B V}\right)=0$. This makes $\left(H^{\bullet, n}\left(\mathrm{~d}_{H}\right), \mathbf{s},(-,-)\right)$ into a dg-Lie algebra.
- Symmetries $\beta \in \mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B V}\right)$ must now leave $L \mathrm{~d}^{n} x$ and Ω invariant mod d_{H}.

BV-BRST

- A (sufficiently regular) variational PDE \mathcal{E} has a BV-BRST description.
- In the BV-BRST extension, fiber coordinates over M come in field $\Phi^{\prime}\left(F_{B R S T}\right)$, antifield $\Phi_{/}^{*}$ pairs $\left(F_{B V} \rightarrow F_{B R S T}\right)$:

- Antifields give rise to a local shifted symplectic density $\Omega=\mathrm{d}_{V} \Phi_{I}^{*} \mathrm{~d}_{V} \Phi^{\prime}$, together with a homological evfs $Q \in \mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B V}\right), Q_{B R S T} \in \mathfrak{X}_{\mathrm{ev}}\left(\mathcal{E}_{\text {BRST }}\right)$, with ghost $\# Q=-\# \Omega=1$, such that $H^{\#<0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}=\mathscr{L}_{Q}\right)=0$ and $H^{0}\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}\right)=H^{0}\left(C^{\infty}\left(\mathcal{E}_{B R S T}\right), \mathscr{L}_{Q_{B R S T}}\right)=C^{\infty}(\mathcal{E})^{\mathscr{G}}$ with \mathscr{G} generated by infinitesimal gauge symmetries.
- The antibracket $\left(\int b, \int c\right)=\iota_{" \Omega-1,}{ }^{\prime} \mathrm{d}_{V} b \mathrm{~d}_{V} c$ is defined on local functionals $H^{\bullet, n}\left(\mathrm{~d}_{H}\right)$.
- The BV differential $\mathbf{s}(-)=\left(S_{B V},-\right)$, where the BV extended action $S_{B V}=\int L\left(\Phi, \Phi^{*}\right) \mathrm{d}^{n} x \in H^{0, n}\left(\mathrm{~d}_{H}\right)$ satisfies the Master Equation $\left(S_{B V}, S_{B V}\right)=0$. This makes $\left(H^{\bullet, n}\left(\mathrm{~d}_{H}\right), \mathbf{s},(-,-)\right)$ into a dg-Lie algebra.
- Symmetries $\beta \in \mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B V}\right)$ must now leave $L \mathrm{~d}^{n} x$ and Ω invariant mod d_{H}.
- Conventions: $|(-,-)|=|\mathbf{s}|=$ odd, $\#(-,-)=\# \mathbf{s}=1$, with $(-\epsilon,-)=(-)^{|\epsilon|}(-, \epsilon-)$.

L_{∞}-algebras

- Def: On a $\left(\mathbb{Z}, \mathbb{Z}_{2}\right)$-graded vector space V, the (1 , odd)-degree brackets $[\mathcal{S}(V)] \rightarrow V$ are an L_{∞}-algebra when $\left[e^{B}\left[e^{B}\right]\right]=0$ for any even $B \in V$, while $[1]=0$ and $\epsilon[(\cdots)]=(-)^{|\epsilon|}[\epsilon(\cdots)]$, for odd ϵ.
\rightarrow Writing $\mathrm{s} B:=[B]$ and decoding the higher Jacobi identities, $\mathrm{s}^{2} B=0$, $2[B \mathbf{s} B]+\mathbf{s}\left[B^{2}\right]=0, \quad 3\left[B^{2} \mathbf{s} B\right]+3\left[B\left[B^{2}\right]\right]+\mathbf{s}\left[B^{3}\right]=0$,

- Ex: For a dg-Lie algebra $(\mathfrak{g}, \mathbf{s},[-,-])$, the L_{∞}-algebra is

- Dually: L_{∞}-algebra $(V,[-]) \Longleftrightarrow\left(\mathcal{S}\left(V^{*}\right), D=[-]^{*}\right)$ dgca.
- (non-)Ex: $\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}_{B V}\right)$ is an L_{∞}-algebr(-oid) in the dual picture. But it is not the L_{∞}-structure that I will talk about!

L_{∞}-algebras

- Def: On a $\left(\mathbb{Z}, \mathbb{Z}_{2}\right)$-graded vector space V, the (1 , odd)-degree brackets $[\mathcal{S}(V)] \rightarrow V$ are an L_{∞}-algebra when $\left[e^{B}\left[e^{B}\right]\right]=0$ for any even $B \in V$, while $[1]=0$ and $\epsilon[(\cdots)]=(-)^{|\epsilon|}[\epsilon(\cdots)]$, for odd ϵ.
- Writing $\mathbf{s} B:=[B]$ and decoding the higher Jacobi identities, $\mathbf{s}^{2} B=0$, $2[B \mathbf{s} B]+\mathbf{s}\left[B^{2}\right]=0, \quad 3\left[B^{2} \mathbf{s} B\right]+3\left[B\left[B^{2}\right]\right]+\mathbf{s}\left[B^{3}\right]=0, \ldots$,

$$
\sum_{k=1}^{n} \frac{n!}{(n-k)!k!}\left[B^{n-k}\left[B^{k}\right]\right]=0
$$

- Ex: For a dg-Lie algebra $(g, s,[-,-])$, the L_{∞}-algebra is
- Dually: L_{∞}-algebra $(V,[-]) \Longleftrightarrow\left(\mathcal{S}\left(V^{*}\right), D=[-]^{*}\right)$ dgca.
- (non-)Ex: $\left(C^{\infty}\left(J \infty F_{B V}\right) s_{B V}\right)$ is an 1 -algehr(-oid) in the dual picture. But it is not the L_{∞}-structure that I will talk about!

L_{∞}-algebras

- Def: On a $\left(\mathbb{Z}, \mathbb{Z}_{2}\right)$-graded vector space V, the (1 , odd)-degree brackets $[\mathcal{S}(V)] \rightarrow V$ are an L_{∞}-algebra when $\left[e^{B}\left[e^{B}\right]\right]=0$ for any even $B \in V$, while $[1]=0$ and $\epsilon[(\cdots)]=(-)^{|\epsilon|}[\epsilon(\cdots)]$, for odd ϵ.
- Writing $\mathbf{s} B:=[B]$ and decoding the higher Jacobi identities, $\mathbf{s}^{2} B=0$, $2[B \mathbf{s} B]+\mathbf{s}\left[B^{2}\right]=0, \quad 3\left[B^{2} \mathbf{s} B\right]+3\left[B\left[B^{2}\right]\right]+\mathbf{s}\left[B^{3}\right]=0, \ldots$,

$$
\sum_{k=1}^{n} \frac{n!}{(n-k)!k!}\left[B^{n-k}\left[B^{k}\right]\right]=0
$$

- Ex: For a dg-Lie algebra $(\mathfrak{g}, \mathbf{s},[-,-])$, the L_{∞}-algebra is

$$
(\mathfrak{g}[-1, \text { odd }], 0 \oplus \mathbf{s} \oplus[-,-] \oplus 0 \oplus \cdots) .
$$

Dually: L_{∞}-algebra $(V,[-]) \Longleftrightarrow\left(\mathcal{S}\left(V^{*}\right), D=[-]^{*}\right)$ dgca.
(non-)Ex: $\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}_{B V}\right)$ is an L_{∞}-algebr(-oid) in the dual picture. But it is not the L_{∞}-structure that I will talk about!

L_{∞}-algebras

- Def: On a $\left(\mathbb{Z}, \mathbb{Z}_{2}\right)$-graded vector space V, the (1 , odd)-degree brackets $[\mathcal{S}(V)] \rightarrow V$ are an L_{∞}-algebra when $\left[e^{B}\left[e^{B}\right]\right]=0$ for any even $B \in V$, while $[1]=0$ and $\epsilon[(\cdots)]=(-)^{|\epsilon|}[\epsilon(\cdots)]$, for odd ϵ.
- Writing $\mathbf{s} B:=[B]$ and decoding the higher Jacobi identities, $\mathbf{s}^{2} B=0$, $2[B \mathbf{s} B]+\mathbf{s}\left[B^{2}\right]=0, \quad 3\left[B^{2} \mathbf{s} B\right]+3\left[B\left[B^{2}\right]\right]+\mathbf{s}\left[B^{3}\right]=0, \ldots$,

$$
\sum_{k=1}^{n} \frac{n!}{(n-k)!k!}\left[B^{n-k}\left[B^{k}\right]\right]=0
$$

- Ex: For a dg-Lie algebra $(\mathfrak{g}, \mathbf{s},[-,-])$, the L_{∞}-algebra is

$$
(\mathfrak{g}[-1, \text { odd }], 0 \oplus \mathbf{s} \oplus[-,-] \oplus 0 \oplus \cdots) .
$$

- Dually: L_{∞}-algebra $(V,[-]) \Longleftrightarrow\left(\mathcal{S}\left(V^{*}\right), D=[-]^{*}\right)$ dgca. But it is not the L_{∞}-structure that I will talk about!

L_{∞}-algebras

- Def: On a $\left(\mathbb{Z}, \mathbb{Z}_{2}\right)$-graded vector space V, the (1 , odd)-degree brackets $[\mathcal{S}(V)] \rightarrow V$ are an L_{∞}-algebra when $\left[e^{B}\left[e^{B}\right]\right]=0$ for any even $B \in V$, while $[1]=0$ and $\epsilon[(\cdots)]=(-)^{|\epsilon|}[\epsilon(\cdots)]$, for odd ϵ.
- Writing $\mathbf{s} B:=[B]$ and decoding the higher Jacobi identities, $\mathbf{s}^{2} B=0$, $2[B \mathbf{s} B]+\mathbf{s}\left[B^{2}\right]=0, \quad 3\left[B^{2} \mathbf{s} B\right]+3\left[B\left[B^{2}\right]\right]+\mathbf{s}\left[B^{3}\right]=0, \ldots$,

$$
\sum_{k=1}^{n} \frac{n!}{(n-k)!k!}\left[B^{n-k}\left[B^{k}\right]\right]=0
$$

- Ex: For a dg-Lie algebra $(\mathfrak{g}, \mathbf{s},[-,-])$, the L_{∞}-algebra is

$$
(\mathfrak{g}[-1, \text { odd }], 0 \oplus \mathbf{s} \oplus[-,-] \oplus 0 \oplus \cdots) .
$$

- Dually: L_{∞}-algebra $(V,[-]) \Longleftrightarrow\left(\mathcal{S}\left(V^{*}\right), D=[-]^{*}\right)$ dgca.
- (non-)Ex: $\left(C^{\infty}\left(J^{\infty} F_{B V}\right), \mathbf{s}_{B V}\right)$ is an L_{∞}-algebr(-oid) in the dual picture. But it is not the L_{∞}-structure that I will talk about!

Higher Structure Constants in Extended BV

- Brandt, Henneaux, Wilch (1998)

Extended antifield formalism Nucl Phys B510 640-656
$\begin{aligned} & \text { Start with a BV description of a gauge theory and consider a basis } S_{A} \text { of } \\ & \text { representatives for } H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right) \text { in local functionals, } \int b\left(\Phi, \Phi^{*}\right) \mathrm{d}^{n} x . \\ > & \text { Then take some antibrackets }(-,-) \text {, then some more }\end{aligned}$
\rightarrow Putting the dg-Lie properties of \mathbf{s} and $(-,-)$ to full use, after some magic, they end up with

Higher Structure Constants in Extended BV

- Brandt, Henneaux, Wilch (1998)

Extended antifield formalism Nucl Phys B510 640-656

- Start with a BV description of a gauge theory and consider a basis S_{A} of representatives for $H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$ in local functionals, $\int b\left(\Phi, \Phi^{*}\right) \mathrm{d}^{n} x$.
- Putting the dg-Lie properties of \mathbf{s} and $(-,-)$ to full use, after some magic, they end up with

Higher Structure Constants in Extended BV

- Brandt, Henneaux, Wilch (1998)

Extended antifield formalism Nucl Phys B510 640-656

- Start with a BV description of a gauge theory and consider a basis S_{A} of representatives for $H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$ in local functionals, $\int b\left(\Phi, \Phi^{*}\right) \mathrm{d}^{n} x$.
- Then take some antibrackets (,--),

$$
\begin{equation*}
(-1)^{\varepsilon_{A}}\left(S_{A}, S_{B}\right)=f_{A B}^{D} S_{D}+\left(S, S_{A B}\right) \tag{3.3}
\end{equation*}
$$

At each stage, you get new structure constants $f_{A B}^{D}, f_{A B C}^{D}, \ldots$, and new local
functionals $S_{A B}, S_{A B C}$,

- Putting the dg-Lie properties of s and $(-,-)$ to full use, after they end up with

Higher Structure Constants in Extended BV

- Brandt, Henneaux, Wilch (1998)

Extended antifield formalism Nucl Phys B510 640-656

- Start with a BV description of a gauge theory and consider a basis S_{A} of representatives for $H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$ in local functionals, $\int b\left(\Phi, \Phi^{*}\right) \mathrm{d}^{n} x$.
- Then take some antibrackets $(-,-)$, then some more antibrackets,

$$
\begin{array}{r}
(-1)^{\varepsilon_{A}}\left(S_{A}, S_{B}\right)=f_{A B}^{D} S_{D}+\left(S, S_{A B}\right) \\
(-)^{\varepsilon_{A}}\left(S_{[A}, S_{B C]}\right)=S_{D[C} f_{A B]}^{D}+\frac{1}{3} f_{A B C}^{D} S_{D}+\frac{1}{3}\left(S, S_{A B C}\right) \tag{3.5}
\end{array}
$$

At each stage, you get new
functionals $S_{A B}, S_{A B C}$,

- Putting the dg-Lie properties of s and $(-,-)$ to full use, after they end up with

Higher Structure Constants in Extended BV

- Brandt, Henneaux, Wilch (1998)

Extended antifield formalism Nucl Phys B510 640-656

- Start with a BV description of a gauge theory and consider a basis S_{A} of representatives for $H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$ in local functionals, $\int b\left(\Phi, \Phi^{*}\right) \mathrm{d}^{n} x$.
- Then take some antibrackets $(-,-)$, then some more antibrackets, \ldots

$$
\begin{array}{r}
(-1)^{\varepsilon_{A}}\left(S_{A}, S_{B}\right)=f_{A B}^{D} S_{D}+\left(S, S_{A B}\right) \tag{3.3}\\
(-)^{\varepsilon_{A}}\left(S_{[A}, S_{B C]}\right)=S_{D[C} f_{A B]}^{D}+\frac{1}{3} f_{A B C}^{D} S_{D}+\frac{1}{3}\left(S, S_{A B C}\right)
\end{array}
$$

At each stage, you get new structure constants $f_{A B}^{D}, f_{A B C}^{D}, \ldots$, and new local functionals $S_{A B}, S_{A B C}, \ldots$.

- Putting the dg-Lie properties of s and $(-,-)$ to full use, after they end up with

Higher Structure Constants in Extended BV

- Brandt, Henneaux, Wilch (1998)

Extended antifield formalism Nucl Phys B510 640-656

- Start with a BV description of a gauge theory and consider a basis S_{A} of representatives for $H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$ in local functionals, $\int b\left(\Phi, \Phi^{*}\right) \mathrm{d}^{n} x$.
- Then take some antibrackets $(-,-)$, then some more antibrackets, \ldots

$$
\begin{array}{r}
(-1)^{\varepsilon_{A}}\left(S_{A}, S_{B}\right)=f_{A B}^{D} S_{D}+\left(S, S_{A B}\right) \tag{3.3}\\
(-)^{\varepsilon_{A}}\left(S_{[A}, S_{B C]}\right)=S_{D[C} f_{A B]}^{D}+\frac{1}{3} f_{A B C}^{D} S_{D}+\frac{1}{3}\left(S, S_{A B C}\right)
\end{array}
$$

At each stage, you get new structure constants $f_{A B}^{D}, f_{A B C}^{D}, \ldots$, and new local functionals $S_{A B}, S_{A B C}, \ldots$.

- Putting the dg-Lie properties of \mathbf{s} and $(-,-)$ to full use, after some magic, they end up with...

$$
\begin{aligned}
& \sum_{r=2}^{p-1} \frac{1}{r!(p-r)!} f_{C\left[A_{r+1} \ldots A_{p}\right.}^{D} f_{\left.A_{1} \ldots A_{r}\right]}^{C}=0 \\
& \Longleftrightarrow \sum_{k=1}^{n} \frac{n!}{(n-k)!k!}\left[B^{n-k}\left[B^{k}\right]\right]=0 \quad L_{\infty} \text {-algebra identities! }
\end{aligned}
$$

Homotopy Transfer

- Dually, an L_{∞}-morphism $\lambda^{*}:\left(\mathcal{S}\left(V_{2}^{*}\right), D_{2}\right) \rightarrow\left(\mathcal{S}\left(V_{1}^{*}\right), D_{1}\right)$ is a dgca-morphism, with $\lambda(1)=0$. Equivalently, for even $B \in V_{1}$:

$$
\left[e^{\lambda\left(e^{B}\right)}\right]_{2}=\lambda\left(e^{B}\left[e^{B}\right]_{1}\right) .
$$

\Rightarrow Expansion: $\mathbf{s}_{2} \lambda(B)=\lambda\left(\mathbf{s}_{1} B\right)$

- Homotopy transfer (Thm 10.3.\{1,7\}, Loday-Vallette Given an L_{∞}-algebra $\left(V_{2},[-]_{2}\right)$ and a quasi-isomorphism $\left(V_{1}, \mathbf{s}_{1}\right) \rightarrow\left(V_{2}, s_{2}\right)$ of dg-vector snaces, it can be extended to an 1 -mornhism $\left(V_{1},\left[-l_{1}=\mathbf{s}_{1}+?\right)-\left(V_{2},[-]_{2}\right)\right.$.
The $[-]_{1}$ can be built "explicitly" provided the q-iso is presented by a zigzag of (dg-vector) homotopy retracts, using bar and co-bar constructions.
- Homotopy transfor interpretation of Brandt-Henneaux-Wilch'98:

Homotopy Transfer

- Dually, an L_{∞}-morphism $\lambda^{*}:\left(\mathcal{S}\left(V_{2}^{*}\right), D_{2}\right) \rightarrow\left(\mathcal{S}\left(V_{1}^{*}\right), D_{1}\right)$ is a dgca-morphism, with $\lambda(1)=0$. Equivalently, for even $B \in V_{1}$:

$$
\left[e^{\lambda\left(e^{B}\right)}\right]_{2}=\lambda\left(e^{B}\left[e^{B}\right]_{1}\right) .
$$

- Expansion: $\mathbf{s}_{2} \lambda(B)=\lambda\left(\mathbf{s}_{1} B\right)$
- Homotopy transfer (Thm 10.3.\{1,7\}, Loday-Vallette Given an L_{∞}-algebra $\left(V_{2},[-]_{2}\right)$ and a quasi-isomorphism $\left(V_{1}, \mathbf{s}_{1}\right) \rightarrow\left(V_{2}, s_{2}\right)$ of dg-vector snaces, it can be extended to an I_{o}-mornhism $\left(V_{1},[-]_{1}=\mathbf{s}_{1}+?\right)-\left(V_{2,}[-]_{2}\right)$. The [-] $]_{1}$ can be built "explicity" provided the q-iso is presented by a zigzag of (dg-vector) homotopy retracts, using bar and co-bar constructions.
- Homotopy transfer interpretation of Brandt-Henneaux-Wilch'98:

Homotopy Transfer

- Dually, an L_{∞}-morphism $\lambda^{*}:\left(\mathcal{S}\left(V_{2}^{*}\right), D_{2}\right) \rightarrow\left(\mathcal{S}\left(V_{1}^{*}\right), D_{1}\right)$ is a dgca-morphism, with $\lambda(1)=0$. Equivalently, for even $B \in V_{1}$:

$$
\left[e^{\lambda\left(e^{B}\right)}\right]_{2}=\lambda\left(e^{B}\left[e^{B}\right]_{1}\right) .
$$

- Expansion: $\mathbf{s}_{2} \lambda(B)=\lambda\left(\mathbf{s}_{1} B\right)$, then \ldots

$$
\begin{gather*}
\frac{1}{2}\left(\mathbf{s}_{2} \lambda\left(B^{2}\right)+\left[\lambda(B)^{2}\right]_{2}\right)=\frac{1}{2} \lambda\left(2 B \mathbf{s}_{1} B+\left[B^{2}\right]_{1}\right) \\
(-1)^{\varepsilon_{A}}\left(S_{A}, S_{B}\right)=f_{A B}^{D} S_{D}+\left(S, S_{A B}\right) \tag{3.3}
\end{gather*}
$$

- Homotopy transfer (Thm 10.3.\{1,7\}, Loday-Vallette Given an L_{∞}-algebra $\left(V_{2},[-]_{2}\right)$ and a quasi-isomorphism $\left(V_{1}, \mathbf{s}_{1}\right) \rightarrow\left(V_{2}, \mathbf{s}_{2}\right)$ of dg-vector spaces, it can be extended to an L_{∞}-morphism $\left(V_{1},[-]_{1}=\mathbf{s}_{1}+\right.$? $) \rightarrow\left(V_{2},[-]_{2}\right)$. The [-] can be built "ex "t city" provided the q-iso is presented' by a zlozag of (d'g-vector) homotopy retracts, using bar and co-bar constructions.
- Homotopy transfer interpretation of Brandt-Henneaux-Wilch'98:

Homotopy Transfer

- Dually, an L_{∞}-morphism $\lambda^{*}:\left(\mathcal{S}\left(V_{2}^{*}\right), D_{2}\right) \rightarrow\left(\mathcal{S}\left(V_{1}^{*}\right), D_{1}\right)$ is a dgca-morphism, with $\lambda(1)=0$. Equivalently, for even $B \in V_{1}$:

$$
\left[e^{\lambda\left(e^{B}\right)}\right]_{2}=\lambda\left(e^{B}\left[e^{B}\right]_{1}\right) .
$$

- Expansion: $\mathbf{s}_{2} \lambda(B)=\lambda\left(\mathbf{s}_{1} B\right)$, then \ldots

$$
\begin{gather*}
\frac{1}{3!}\left(\mathbf{s}_{2} \lambda\left(B^{3}\right)+\left[3 \lambda\left(B^{2}\right) \lambda(B)\right]_{2}+\left[\lambda(B)^{3}\right]_{2}\right)=\frac{1}{3!} \lambda\left(3 B^{2} \mathbf{s}_{1} B+3 B\left[B^{2}\right]_{1}+\left[B^{3}\right]_{1}\right) \\
(-)^{\varepsilon_{A}}\left(S_{[A}, S_{B C]}\right)=S_{D[C} f_{A B]}^{D}+\frac{1}{3} f_{A B C}^{D} S_{D}+\frac{1}{3}\left(S, S_{A B C}\right) \tag{3.5}
\end{gather*}
$$

- Homotopy transfer (Thm 10.3.\{1,7\}, Loday-Vallette Given an L_{∞}-algebra $\left(V_{2},[-]_{2}\right)$ and a quasi-isomorphism $\left(V_{1}, \mathbf{s}_{1}\right) \rightarrow\left(V_{2}, \mathbf{s}_{2}\right)$ of dg-vector spaces, it can be extended to an L_{∞}-morphism $\left(V_{1},[-]_{1}=\mathbf{s}_{1}+\right.$? $) \rightarrow\left(V_{2},[-]_{2}\right)$. The [-] can be built "explicily" provided the q-iso is presented by a zigzag of (dg-vector) homotopy retracts, using bar and co-bar constructions.
- Homotopy transfer interpretation of Brandt-Henneaux-Wilch'98:

Homotopy Transfer

- Dually, an L_{∞}-morphism $\lambda^{*}:\left(\mathcal{S}\left(V_{2}^{*}\right), D_{2}\right) \rightarrow\left(\mathcal{S}\left(V_{1}^{*}\right), D_{1}\right)$ is a dgca-morphism, with $\lambda(1)=0$. Equivalently, for even $B \in V_{1}$:

$$
\left[e^{\lambda\left(e^{B}\right)}\right]_{2}=\lambda\left(e^{B}\left[e^{B}\right]_{1}\right) .
$$

- Expansion: $\mathbf{s}_{2} \lambda(B)=\lambda\left(\mathbf{s}_{1} B\right)$, then \ldots

$$
\begin{gather*}
\frac{1}{3!}\left(\mathbf{s}_{2} \lambda\left(B^{3}\right)+\left[3 \lambda\left(B^{2}\right) \lambda(B)\right]_{2}+\left[\lambda(B)^{3}\right]_{2}\right)=\frac{1}{3!} \lambda\left(3 B^{2} \mathbf{s}_{1} B+3 B\left[B^{2}\right]_{1}+\left[B^{3}\right]_{1}\right) \\
(-)^{\varepsilon_{A}}\left(S_{[A}, S_{B C]}\right)=S_{D[C} f_{A B]}^{D}+\frac{1}{3} f_{A B C}^{D} S_{D}+\frac{1}{3}\left(S, S_{A B C}\right) \tag{3.5}
\end{gather*}
$$

- Homotopy transfer (Thm 10.3.\{1,7\}, Loday-Vallette Algebraic Operads): Given an L_{∞}-algebra ($V_{2},[-]_{2}$) and a quasi-isomorphism $\left(V_{1}, \mathbf{s}_{1}\right) \rightarrow\left(V_{2}, \mathbf{s}_{2}\right)$ of dg-vector spaces, it can be extended to an L_{∞}-morphism $\left(V_{1},[-]_{1}=\mathbf{s}_{1}+\right.$?) $\rightarrow\left(V_{2},[-]_{2}\right)$.
The $[-]_{1}$ can be built "explicitly" provided the q-iso is presented by a zigzag of (dg-vector) homotopy retracts, using bar and co-bar constructions.

Homotopy Transfer

- Dually, an L_{∞}-morphism $\lambda^{*}:\left(\mathcal{S}\left(V_{2}^{*}\right), D_{2}\right) \rightarrow\left(\mathcal{S}\left(V_{1}^{*}\right), D_{1}\right)$ is a dgca-morphism, with $\lambda(1)=0$. Equivalently, for even $B \in V_{1}$:

$$
\left[e^{\lambda\left(e^{B}\right)}\right]_{2}=\lambda\left(e^{B}\left[e^{B}\right]_{1}\right) .
$$

- Expansion: $\mathbf{s}_{2} \lambda(B)=\lambda\left(\mathbf{s}_{1} B\right)$, then \ldots

$$
\begin{gather*}
\frac{1}{3!}\left(\mathbf{s}_{2} \lambda\left(B^{3}\right)+\left[3 \lambda\left(B^{2}\right) \lambda(B)\right]_{2}+\left[\lambda(B)^{3}\right]_{2}\right)=\frac{1}{3!} \lambda\left(3 B^{2} \mathbf{s}_{1} B+3 B\left[B^{2}\right]_{1}+\left[B^{3}\right]_{1}\right) \\
(-)^{\varepsilon_{A}}\left(S_{[A}, S_{B C]}\right)=S_{D[C} f_{A B]}^{D}+\frac{1}{3} f_{A B C}^{D} S_{D}+\frac{1}{3}\left(S, S_{A B C}\right) \tag{3.5}
\end{gather*}
$$

- Homotopy transfer (Thm 10.3.\{1,7\}, Loday-Vallette Algebraic Operads): Given an L_{∞}-algebra ($V_{2},[-]_{2}$) and a quasi-isomorphism $\left(V_{1}, \mathbf{s}_{1}\right) \rightarrow\left(V_{2}, \mathbf{s}_{2}\right)$ of dg-vector spaces, it can be extended to an L_{∞}-morphism $\left(V_{1},[-]_{1}=\mathbf{s}_{1}+\right.$?) $\rightarrow\left(V_{2},[-]_{2}\right)$.
The $[-]_{1}$ can be built "explicitly" provided the q-iso is presented by a zigzag of (dg-vector) homotopy retracts, using bar and co-bar constructions.
- Homotopy transfer interpretation of Brandt-Henneaux-Wilch'98:

$$
\left(H^{<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right), 0 \oplus f_{A B}^{D} \oplus f_{A B C}^{D} \oplus \cdots\right) \xrightarrow{s_{A}, S_{A B}, S_{A B C}, \ldots}\left(H^{<0, n}\left(\mathrm{~d}_{H}\right), \mathbf{s} \oplus(-,-)\right)
$$

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Recall the hierarchy $\stackrel{\text { andifields }}{F_{B V}} \rightarrow \stackrel{\text { ghosts }}{F_{B R S T}} \rightarrow \stackrel{\text { fields }}{F} \rightarrow M$ (topologically trivial M, F).

\rightarrow Symmetry $\left[Q_{K T}, \beta\right]=0$, gauge symmetry $\beta=\left[Q_{K T}, \gamma\right]$, among $\mathscr{L}_{\beta} \Omega=0 \bmod \mathrm{~d}_{H}$:

- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Recall the hierarchy ${ }^{\text {antifields }}{ }_{B V} \rightarrow \stackrel{\text { ghosts }}{F_{B R S T}} \rightarrow \stackrel{\text { fieds }}{F} \rightarrow M$ (topologically trivial M, F).
- Symmetry $\left[Q_{K T}, \beta\right]=0$, gauge symmetry $\beta=\left[Q_{K T}, \gamma\right]$, among $\mathscr{L}_{\beta} \Omega=0 \bmod d_{H}$: $\left.\left.H_{\varepsilon_{\text {boST }}}^{*}\left(\mid Q_{C E},-\right\rceil_{\mathrm{ev}}\right) \cong H_{j \infty F_{B V}, \Omega}(\mid Q,-\rceil_{\mathrm{ev}}\right) \cong H^{\bullet<0, n}\left(\mathbf{s}_{K T} \mid \mathrm{d}_{H}\right) \cong H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$
- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Recall the hierarchy $\stackrel{\text { antifields }}{F_{B V}} \rightarrow \stackrel{\text { ghosts }}{F_{B R S T}} \rightarrow \stackrel{\text { fields }}{F} \rightarrow M$ (topologically trivial M, F).

\Rightarrow Symmetry $\left[Q_{K T}, \beta\right]=0$, gauge symmetry $\beta=\left[Q_{K T}, \gamma\right]$, among $\mathscr{L}_{\beta} \Omega=0 \bmod d_{H}$: $H_{\varepsilon_{\text {BRST }}}^{\bullet}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right) \cong H_{j \infty F_{B V}, \Omega}\left([Q,-]_{\mathrm{ev}}\right) \cong H^{\bullet<0, n}\left(\mathbf{s}_{K T} \mid \mathrm{d}_{H}\right) \cong H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$
- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Recall the hierarchy $\stackrel{\text { antifields }}{F_{B V}} \rightarrow \stackrel{\text { ghosts }}{F_{B R S T}} \rightarrow \stackrel{\text { fields }}{F} \rightarrow M$ (topologically trivial M, F).

- $\operatorname{evf} \mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B R S T}\right) \ni \beta=\beta^{\prime}\left(\partial / \partial \Phi^{\prime}\right) \xrightarrow{\text { M }} \boldsymbol{\Phi}_{1}^{*} \beta^{\prime}=b \in \Omega^{\bullet<0, n}\left(J^{\infty} F_{B V}\right)$ loc.form
\Rightarrow Symmetry $\left[Q_{K T}, \beta\right]=0$, gauge symmetry $\beta=\left[Q_{K T}, \gamma\right]$, among $\mathscr{L}_{\beta} \Omega=0 \bmod d_{H}$: $H_{\varepsilon_{\text {BRST }}}^{\bullet}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right) \cong H_{j \times F_{B V}, \Omega}\left([Q,-]_{\mathrm{ev}}\right) \cong H^{\bullet<0, n}\left(\mathbf{s}_{K T} \mid \mathrm{d}_{H}\right) \cong H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$
- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Recall the hierarchy $\stackrel{\text { antifields }}{F_{B V}} \rightarrow \stackrel{\text { ghosts }}{F_{B R S T}} \rightarrow \stackrel{\text { fields }}{F} \rightarrow M$ (topologically trivial M, F).

- evf $\mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B R S T}\right) \ni \beta=\beta^{\prime}\left(\partial / \partial \Phi^{\prime}\right) \xrightarrow{\text { M }} \boldsymbol{\Phi}_{1}^{*} \beta^{\prime}=b \in \Omega^{\bullet<0, n}\left(J^{\infty} F_{B V}\right)$ loc.form
- Symmetry $\left[Q_{K T}, \beta\right]=0$, gauge symmetry $\beta=\left[Q_{K T}, \gamma\right]$, among $\mathscr{L}_{\beta} \Omega=0 \bmod d_{H}$:

$$
H_{\varepsilon_{\text {BAST }}}^{\bullet}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right) \cong H_{j \infty F_{B V}, \Omega}\left([Q,-]_{\mathrm{ev}}\right) \cong H^{\bullet<0, n}\left(\mathbf{s}_{K T} \mid \mathrm{d}_{H}\right) \cong H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)
$$

- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Recall the hierarchy $\stackrel{\text { antifields }}{F_{B V}} \rightarrow \stackrel{\text { ghosts }}{F_{B R S T}} \rightarrow \stackrel{\text { fields }}{F} \rightarrow M$ (topologically trivial M, F).

- evf $\mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B R S T}\right) \ni \beta=\beta^{\prime}\left(\partial / \partial \Phi^{\prime}\right) \xrightarrow{\text { M }} \boldsymbol{\Phi}_{1}^{*} \beta^{\prime}=b \in \Omega^{\bullet<0, n}\left(J^{\infty} F_{B V}\right)$ loc.form
- Symmetry $\left[Q_{K T}, \beta\right]=0$, gauge symmetry $\beta=\left[Q_{K T}, \gamma\right]$, among $\mathscr{L}_{\beta} \Omega=0 \bmod \mathrm{~d}_{H}$:

$$
H_{\varepsilon_{B A S T}}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right) \cong H_{j \infty F_{B V}, \Omega}\left([Q,-]_{\mathrm{ev}}\right) \cong H^{\bullet<0, n}\left(\mathbf{s}_{K T} \mid \mathrm{d}_{H}\right) \cong H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)
$$

- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296

(Lie algebra isomorphisms):

\Rightarrow Tantalizing hint of

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Recall the hierarchy $\stackrel{\text { antifields }}{F_{B V}} \rightarrow \stackrel{\text { ghosts }}{F_{B R S T}} \rightarrow \stackrel{\text { fields }}{F} \rightarrow M$ (topologically trivial M, F).

- evf $\mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B R S T}\right) \ni \beta=\beta^{\prime}\left(\partial / \partial \Phi^{\prime}\right) \xrightarrow{\text { M }} \boldsymbol{\Phi}_{1}^{*} \beta^{\prime}=b \in \Omega^{\bullet<0, n}\left(J^{\infty} F_{B V}\right)$ loc.form
- Symmetry $\left[Q_{K T}, \beta\right]=0$, gauge symmetry $\beta=\left[Q_{K T}, \gamma\right]$, among $\mathscr{L}_{\beta} \Omega=0 \bmod \mathrm{~d}_{H}$:

$$
H_{\varepsilon_{\text {BAST }}}^{\bullet}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right) \cong H_{j \infty F_{B V}, \Omega}\left([Q,-]_{\mathrm{ev}}\right) \cong H^{\bullet<0, n}\left(\mathbf{s}_{K T} \mid \mathrm{d}_{H}\right) \cong H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)
$$

- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296
- Conserved currents: $\mathrm{d}_{H} j=0, j \in \Omega^{0, n-p}(\mathcal{E})=H_{\text {anti\#\#=0 }}^{0, n-p}\left(\mathbf{s}_{K T}\right)$.

(Lie algebra isomorphisms):

\Rightarrow Tantalizing hint of

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Recall the hierarchy $\stackrel{\text { antifields }}{F_{B V}} \rightarrow \stackrel{\text { ghosts }}{F_{B R S T}} \rightarrow \stackrel{\text { fields }}{F} \rightarrow M$ (topologically trivial M, F).

- evf $\mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B R S T}\right) \ni \beta=\beta^{\prime}\left(\partial / \partial \Phi^{\prime}\right) \rightarrow \boldsymbol{\Phi}_{1}^{*} \beta^{\prime}=\boldsymbol{b} \in \Omega^{\bullet<0, n}\left(J^{\infty} F_{B V}\right)$ loc.form
- Symmetry $\left[Q_{K T}, \beta\right]=0$, gauge symmetry $\beta=\left[Q_{K T}, \gamma\right]$, among $\mathscr{L}_{\beta} \Omega=0 \bmod \mathrm{~d}_{H}$:

$$
H_{\varepsilon_{\text {BAST }}}^{\bullet}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right) \cong H_{j \infty F_{B V}, \Omega}\left([Q,-]_{\mathrm{ev}}\right) \cong H^{\bullet<0, n}\left(\mathbf{s}_{K T} \mid \mathrm{d}_{H}\right) \cong H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)
$$

- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296
- Conserved currents: $\mathrm{d}_{H} j=0, j \in \Omega^{0, n-p}(\mathcal{E})=H_{\text {anti\#\#= }}^{0, n-p}\left(\mathbf{s}_{K T}\right)$.
- Dickey bracket: $\left[j_{1}, j_{2}\right]_{D}=\mathscr{L}_{\xi_{1}} j_{2}\left(\bmod \mathrm{~d}_{H}\right)$ on $H_{\mathcal{E}}^{0, n-p}\left(\mathrm{~d}_{H}\right) \cong H_{\text {anti\# }}^{0, n-1}\left(\mathrm{~d}_{H} \mid \mathbf{s}_{K T}\right)$.
\rightarrow Tantalizing hint of

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Recall the hierarchy $\stackrel{\text { antifields }}{F_{B V}} \rightarrow \stackrel{\text { ghosts }}{F_{B R S T}} \rightarrow \stackrel{\text { fields }}{F} \rightarrow M$ (topologically trivial M, F).

- evf $\mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B R S T}\right) \ni \beta=\beta^{\prime}\left(\partial / \partial \Phi^{\prime}\right) \xrightarrow{\text { M }} \boldsymbol{\Phi}_{1}^{*} \beta^{\prime}=b \in \Omega^{\bullet<0, n}\left(J^{\infty} F_{B V}\right)$ loc.form
- Symmetry $\left[Q_{K T}, \beta\right]=0$, gauge symmetry $\beta=\left[Q_{K T}, \gamma\right]$, among $\mathscr{L}_{\beta} \Omega=0 \bmod d_{H}$:

$$
H_{\varepsilon_{\text {BAST }}}^{\bullet}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right) \cong H_{j \infty F_{B V}, \Omega}\left([Q,-]_{\mathrm{ev}}\right) \cong H^{\bullet<0, n}\left(\mathbf{s}_{K T} \mid \mathrm{d}_{H}\right) \cong H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)
$$

- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296
- Conserved currents: $\mathrm{d}_{H} j=0, j \in \Omega^{0, n-p}(\mathcal{E})=H_{\text {anti\#\#= }}^{0, n-p}\left(\mathbf{s}_{K T}\right)$.
- Dickey bracket: $\left[j_{1}, j_{2}\right]_{D}=\mathscr{L}_{\xi_{1}} j_{2}\left(\bmod \mathrm{~d}_{H}\right)$ on $H_{\mathcal{E}}^{0, n-p}\left(\mathrm{~d}_{H}\right) \cong H_{\text {anti\#=0 }}^{0, n-1}\left(\mathrm{~d}_{H} \mid \mathbf{s}_{K T}\right)$.
- Noether's first theorem (Lie algebra isomorphisms):

$$
\left(H_{\varepsilon_{\text {BRST }}}([Q,-]),[-,-]_{\mathrm{ev}}\right) \cong\left(H^{-1, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right),(-,-)\right) \cong\left(H_{\varepsilon}^{0, n-1}\left(\mathrm{~d}_{H}\right),[-,-]_{D}\right)
$$

\Rightarrow Tantalizing hint of

Noether's Theorem

"symmetries" \simeq "conserved currents"

- Barnich, Brandt, Henneaux (1995) Local BRST cohomology in the antifield formalism: I CMP 174 57-92
- Recall the hierarchy $\stackrel{\text { antifields }}{F_{B V}} \rightarrow \stackrel{\text { ghosts }}{F_{B R S T}} \rightarrow \stackrel{\text { fields }}{F} \rightarrow M$ (topologically trivial M, F).

- $\operatorname{evf} \mathfrak{X}_{\mathrm{ev}}\left(J^{\infty} F_{B R S T}\right) \ni \beta=\beta^{\prime}\left(\partial / \partial \Phi^{\prime}\right) \xrightarrow{\text { M }} \boldsymbol{\Phi}_{1}^{*} \beta^{\prime}=b \in \Omega^{\bullet<0, n}\left(J^{\infty} F_{B V}\right)$ loc.form
- Symmetry $\left[Q_{K T}, \beta\right]=0$, gauge symmetry $\beta=\left[Q_{K T}, \gamma\right]$, among $\mathscr{L}_{\beta} \Omega=0 \bmod d_{H}$:

$$
H_{\varepsilon_{\text {BAST }}}^{\bullet}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right) \cong H_{j \infty F_{B V}, \Omega}\left([Q,-]_{\mathrm{ev}}\right) \cong H^{\bullet<0, n}\left(\mathbf{s}_{K T} \mid \mathrm{d}_{H}\right) \cong H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)
$$

- Barnich, Henneaux (1996) Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket JMP 37 5273-5296
- Conserved currents: $\mathrm{d}_{H} j=0, j \in \Omega^{0, n-p}(\mathcal{E})=H_{\text {anti\#\#= }}^{0, n-p}\left(\mathbf{s}_{K T}\right)$.
- Dickey bracket: $\left[j_{1}, j_{2}\right]_{D}=\mathscr{L}_{\xi_{1}} j_{2}\left(\bmod \mathrm{~d}_{H}\right)$ on $H_{\mathcal{E}}^{0, n-p}\left(\mathrm{~d}_{H}\right) \cong H_{\text {anti\#=0 }}^{0, n-1}\left(\mathrm{~d}_{H} \mid \mathbf{s}_{K T}\right)$.
- Noether's first theorem (Lie algebra isomorphisms):

$$
\left(H_{\varepsilon_{\text {BRST }}^{0}}^{0}([Q,-]),[-,-]_{\mathrm{ev}}\right) \cong\left(H^{-1, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right),(-,-)\right) \cong\left(H_{\mathcal{E}}^{0, n-1}\left(\mathrm{~d}_{H}\right),[-,-]_{D}\right)
$$

- Tantalizing hint of homotopy transfer?

$$
H_{\varepsilon_{\text {BRST }}}^{-p}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right) \cong H^{-p, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right) \cong H_{\varepsilon}^{0, n-p}\left(\mathrm{~d}_{H}\right)
$$

(New?) Local Antibracket

- The antibracket $\left(\int b\left(\Phi, \Phi^{*}\right), \int c\left(\Phi, \Phi^{*}\right)\right)$ is traditionally defined on local functionals or $H^{\bullet, n}\left(\mathrm{~d}_{H}\right)$ classes $[b],[c]$.
- Local antibracket: lift to local forms $\Omega^{\bullet \bullet \bullet}$. Barnich-Henneaux'96 tried $(b, c)_{10 c}=\mathscr{L}_{\beta} c$ or $-\mathscr{L}_{\gamma} b$ or $\iota_{\beta} \iota_{\gamma} \Omega$ where $\mathrm{d}_{V} b=\iota_{\beta} \Omega-\mathrm{d}_{H} \theta_{b}, \mathrm{~d}_{V} c=\iota_{\gamma} \Omega-\mathrm{d}_{H} \theta_{C}$ and $\Omega=\mathrm{d}_{V} \Phi_{l}^{*} \mathrm{~d}_{V} \Phi^{\prime}$ is the local antibracket shifted symplectic form (density).
> All these choices satisfy at least one of anti-symmetry, Jacobi, (Leibniz) identities only up to $\mathrm{d}_{\boldsymbol{H}}$. By the transfer theorem, there might only be an L_{∞}-transfer to $\Omega^{\bullet \bullet \bullet}$ (cf. Barnich-Fulp-Lada-Stasheff'98).
- Theorem: (via Prop 17.2.3 Delgado (PhD, Bonn 2017); via Eq (2.100) Deligne-Freed'99) $\left(\Omega^{\bullet \bullet} \cdot[1\right.$, odd $\left.], \mathrm{d} H+\tilde{s},(-,-)_{\text {loc }}\right)$ is a dg-Lie algebra on the nose, with (for odd $b, c \in \Omega^{\bullet,}$)

\square while $\tilde{\mathbf{s}}(-)=(L+J+$

(New?) Local Antibracket

- The antibracket $\left(\int b\left(\Phi, \Phi^{*}\right), \int c\left(\Phi, \Phi^{*}\right)\right)$ is traditionally defined on local functionals or $H^{\bullet, n}\left(\mathrm{~d}_{H}\right)$ classes $[b],[c]$.
- Local antibracket: lift to local forms $\Omega^{\boldsymbol{\bullet}, \bullet}$. Barnich-Henneaux'96 tried

$$
(b, c)_{\text {Ioc }}=\mathscr{L}_{\beta} c \text { or }-\mathscr{L}_{\gamma} b \text { or } \iota_{\beta} \iota_{\gamma} \Omega
$$

where $\mathrm{d}_{V} b=\iota_{\beta} \Omega-\mathrm{d}_{H} \theta_{b}, \mathrm{~d}_{V} C=\iota_{\gamma} \Omega-\mathrm{d}_{H} \theta_{c}$ and $\Omega=\mathrm{d}_{V} \Phi_{I}^{*} \mathrm{~d}_{V} \Phi^{\prime}$ is the local antibracket shifted symplectic form (density).

$$
\begin{aligned}
& \text { All these choices satisfy at least one of anti-symmetry, Jacobi, (Leibniz) } \\
& \text { identities only up to } \mathrm{d}_{H} \text {. By the transfer theorem, there might only be an } \\
& L_{\infty} \text {-transfer to } \Omega^{\bullet \bullet \bullet} \text { (cf. Barnich-Fulp-Lada-Stasheff'98). }
\end{aligned}
$$

\square For Jacobi, use $\Omega=\mathrm{d}_{V}\left(\Phi_{,}^{*} \mathrm{~d}_{V} \Phi^{\prime}\right)$ and $(b, c)_{\text {loc }}$

(New?) Local Antibracket

- The antibracket $\left(\int b\left(\Phi, \Phi^{*}\right), \int c\left(\Phi, \Phi^{*}\right)\right)$ is traditionally defined on local functionals or $H^{\bullet, n}\left(\mathrm{~d}_{H}\right)$ classes $[b],[c]$.
- Local antibracket: lift to local forms $\Omega^{\bullet \bullet \bullet}$. Barnich-Henneaux'96 tried

$$
(b, c)_{\text {Ioc }}=\mathscr{L}_{\beta} c \text { or }-\mathscr{L}_{\gamma} b \text { or } \iota_{\beta} \iota_{\gamma} \Omega
$$

where $\mathrm{d}_{V} b=\iota_{\beta} \Omega-\mathrm{d}_{H} \theta_{b}, \mathrm{~d}_{V} C=\iota_{\gamma} \Omega-\mathrm{d}_{H} \theta_{c}$ and $\Omega=\mathrm{d}_{V} \Phi_{l}^{*} \mathrm{~d}_{V} \Phi^{\prime}$ is the local antibracket shifted symplectic form (density).

- All these choices satisfy at least one of anti-symmetry, Jacobi, (Leibniz) identities only up to d_{H}. By the transfer theorem, there might only be an L_{∞}-transfer to $\Omega^{\bullet \bullet \bullet}$ (cf. Barnich-Fulp-Lada-Stasheff'98).
$\left(\Omega^{\bullet}, \bullet[1\right.$, odd $\left.], d_{H}+\tilde{\mathbf{s}},(-,-)_{\text {loc }}\right)$ is a dg-Lie algebra on the nose, with (for odd $b, c \in \Omega^{\bullet \bullet}$) For Jacobi, use $\Omega=\mathrm{d}_{V}\left(\Phi_{,}^{*} \mathrm{~d}_{V} \Phi^{\prime}\right)$ and $(b, c)_{\text {loc }} \rightsquigarrow[\beta, \gamma]$ (

(New?) Local Antibracket

- The antibracket $\left(\int b\left(\Phi, \Phi^{*}\right), \int c\left(\Phi, \Phi^{*}\right)\right)$ is traditionally defined on local functionals or $H^{\bullet, n}\left(\mathrm{~d}_{H}\right)$ classes $[b],[c]$.
- Local antibracket: lift to local forms $\Omega^{\bullet \bullet \bullet}$. Barnich-Henneaux'96 tried

$$
(b, c)_{\mathrm{Ioc}}=\mathscr{L}_{\beta} c \text { or }-\mathscr{L}_{\gamma} b \text { or } \iota_{\beta} \iota_{\gamma} \Omega
$$

where $\mathrm{d}_{V} b=\iota_{\beta} \Omega-\mathrm{d}_{H} \theta_{b}, \mathrm{~d}_{V} C=\iota_{\gamma} \Omega-\mathrm{d}_{H} \theta_{c}$ and $\Omega=\mathrm{d}_{V} \Phi_{l}^{*} \mathrm{~d}_{V} \Phi^{\prime}$ is the local antibracket shifted symplectic form (density).

- All these choices satisfy at least one of anti-symmetry, Jacobi, (Leibniz) identities only up to d_{H}. By the transfer theorem, there might only be an L_{∞}-transfer to $\Omega^{\bullet \bullet \bullet}$ (cf. Barnich-Fulp-Lada-Stasheff'98).
- Theorem: (via Prop 17.2.3 Delgado (PhD, Bonn 2017); via Eq (2.100) Deligne-Freed'99) $\left(\Omega^{\bullet \bullet},[1\right.$, odd $\left.], \mathrm{d}_{H}+\tilde{\mathbf{s}},(-,-)_{\text {loc }}\right)$ is a dg-Lie algebra on the nose, with (for odd $\left.b, c \in \Omega^{\bullet \bullet \bullet}\right)$:

$$
(b, c)_{\text {loc }}= \begin{cases}\mathscr{L}_{\beta} c-\mathscr{L}_{\gamma} b-\iota_{\beta} \iota_{\gamma} \Omega & \text { if } b, c \in \Omega^{\bullet}, n \\ \mathscr{L}_{\beta} c & \text { if } b \in \Omega^{\bullet, n}, c \in \Omega^{\bullet,<n} \\ 0 & \text { if } b, c \in \Omega^{\bullet},<n\end{cases}
$$

Proof. For Jacobi, use $\Omega=\mathrm{d}_{V}\left(\Phi_{l}^{*} \mathrm{~d}_{V} \Phi^{\prime}\right)$ and $(b, c)_{\text {loc }} \rightsquigarrow[\beta, \gamma]$ (Barnich-Henneaux'96), while $\tilde{\mathbf{s}}(-)=(L+J+\cdots,-)_{\text {loc }}$, with $\mathrm{d}_{H} J=(L, L)_{\text {loc }}$.

L_{∞}-zigzags (WIP)

- Arrows indicate dg-Lie morphisms, or inclusion of dg-vector cocycles. All arrows should be dg-vector quasi-isomorphisms. (Work In Progress)
- (conj.) Extended Noether's theorem:
- Topologically non-trivial $\mathcal{E} \rightarrow M: H_{\varepsilon}^{\circ}\left(\mathrm{d}_{H}\right) \rightsquigarrow H_{\varepsilon}^{\bullet}\left(\mathrm{d}_{H}\right) / H_{\varepsilon}^{\bullet}(\mathrm{d})$. \leadsto Central L_{∞}-extension?
- Bonus: $\left(\Omega^{\bullet}(\mathcal{E}), \mathrm{d}_{H}, \wedge\right)$ is a dgca.

L_{∞}-zigzags (WIP)

- Arrows indicate dg-Lie morphisms, or inclusion of dg-vector cocycles. All arrows should be dg-vector quasi-isomorphisms. (Work In Progress)
- (conj.) Extended Noether's theorem:

$$
\left(H_{\mathcal{E}_{\text {BAST }}}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right), 0 \oplus[-]_{\mathrm{ev}}\right) \stackrel{L_{\infty} \text { equiv. }}{\longleftrightarrow}\left(H_{\mathcal{E}}^{*<n}\left(\mathrm{~d}_{H}\right), 0 \oplus[-]_{D}\right)
$$

\Rightarrow Topologically non-trivial $\mathcal{E} \rightarrow M: H_{\varepsilon}^{\otimes}\left(\mathrm{d}_{H}\right) \rightsquigarrow H_{\varepsilon}^{\otimes}\left(\mathrm{d}_{H}\right) / H_{\varepsilon}^{\otimes}(\mathrm{d})$. \leadsto Central L_{∞}-extension?

- Bonus: $\left(\Omega^{\bullet}(\mathcal{E}), \mathrm{d}_{H}, \wedge\right)$ is a dgca.

L_{∞}-zigzags (WIP)

- Arrows indicate dg-Lie morphisms, or inclusion of dg-vector cocycles. All arrows should be dg-vector quasi-isomorphisms. (Work In Progress)
- (conj.) Extended Noether's theorem:

$$
\left(H_{\mathcal{E}_{\text {BRST }}}^{\bullet}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right), 0 \oplus[-]_{\mathrm{ev}}\right) \stackrel{L_{\infty} \text { equiv. }}{\longleftrightarrow}\left(H_{\mathcal{E}}^{\bullet<n}\left(\mathrm{~d}_{H}\right), 0 \oplus[-]_{D}\right)
$$

- Topologically non-trivial $\mathcal{E} \rightarrow M: H_{\mathcal{E}}^{\bullet}\left(\mathrm{d}_{H}\right) \rightsquigarrow H_{\mathcal{E}}^{\bullet}\left(\mathrm{d}_{H}\right) / H_{\mathcal{E}}^{\bullet}(\mathrm{d})$.
\rightsquigarrow Central L_{∞}-extension?
\rightarrow Bonus: $\left(\Omega^{\bullet}(\mathcal{E}), \mathrm{d}_{H}, \wedge\right)$ is a dgca.

L_{∞}-zigzags (WIP)

- Arrows indicate dg-Lie morphisms, or inclusion of dg-vector cocycles. All arrows should be dg-vector quasi-isomorphisms. (Work In Progress)
- (conj.) Extended Noether's theorem:

$$
\left(H_{\mathcal{E}_{\text {BRST }}}^{\bullet}\left(\left[Q_{C E},-\right]_{\mathrm{ev}}\right), 0 \oplus[-]_{\mathrm{ev}}\right) \stackrel{L_{\infty} \text { equiv. }}{\longleftrightarrow}\left(H_{\mathcal{E}}^{\bullet<n}\left(\mathrm{~d}_{H}\right), 0 \oplus[-]_{D}\right)
$$

- Topologically non-trivial $\mathcal{E} \rightarrow M: H_{\mathcal{E}}^{\bullet}\left(\mathrm{d}_{H}\right) \rightsquigarrow H_{\mathcal{E}}^{\bullet}\left(\mathrm{d}_{H}\right) / H_{\mathcal{E}}^{\bullet}(\mathrm{d})$.
\rightsquigarrow Central L_{∞}-extension?
- Bonus: $\left(\Omega^{\bullet}(\mathcal{E}), \mathrm{d}_{H}, \wedge\right)$ is a dgca.
\rightsquigarrow Homotopy Transfer of C_{∞}-algebra structure?

Discussion

- L_{∞} Homotopy Transfer interpretation of constant ghost/antifield extended BV (Brandt-Henneaux-Wilch'98).
Cf. talk in Prague Mathematical Physics Seminar by Hiroaki Matsunaga (05.2021).
- Successful dg-Lie local lift (- , -) loc of antibracket.
of $H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$ via higher symmetries and
conserved currents.

Thank you for your attention!

Discussion

- L_{∞} Homotopy Transfer interpretation of constant ghost/antifield extended BV (Brandt-Henneaux-Wilch'98).
Cf. talk in Prague Mathematical Physics Seminar by Hiroaki Matsunaga (05.2021).
- Successful dg-Lie local lift (,--$)_{\text {loc }}$ of antibracket.
of $H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$ via higher symmetries and
conserved currents.

Thank you for your attention!

Discussion

- L_{∞} Homotopy Transfer interpretation of constant ghost/antifield extended BV (Brandt-Henneaux-Wilch'98).
Cf. talk in Prague Mathematical Physics Seminar by Hiroaki Matsunaga (05.2021).
- Successful dg-Lie local lift (,--$)_{\text {loc }}$ of antibracket.
- Geometric interpretation of $H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$ via higher symmetries and conserved currents.

Thank you for your attention!

Discussion

- L_{∞} Homotopy Transfer interpretation of constant ghost/antifield extended BV (Brandt-Henneaux-Wilch'98).
Cf. talk in Prague Mathematical Physics Seminar by Hiroaki Matsunaga (05.2021).
- Successful dg-Lie local lift (,--$)_{\text {loc }}$ of antibracket.
- Geometric interpretation of $H^{\bullet<0, n}\left(\mathbf{s} \mid \mathrm{d}_{H}\right)$ via higher symmetries and conserved currents.
- L_{∞}-extension of Noether's theorem.

Thank you for your attention!

References

R. Barnich, R. Fulp, T. Lada, and J. Stasheff, "The sh Lie structure of Poisson brackets in field theory," Communications in Mathematical Physics 191 (1998) 585-601, arXiv:hep-th/9702176.
© G. Barnich, F. Brandt, and M. Henneaux, "Local BRST cohomology in gauge theories," Physics Reports 338 no. 5, (Nov., 2000) 439-569, arXiv:hep-th/0002245.
R. Barnich and M. Henneaux, "Isomorphisms between the Batalin-Vilkovisky antibracket and the poisson bracket," Journal of Mathematical Physics 37 (1996) 5273-5296, arXiv:hep-th/9601124.
R F. Brandt, M. Henneaux, and A. Wilch, "Extended antifield formalism," Nuclear Physics B 510 (1998) 640-656, arXiv: hep-th/9705007.
围 N. L. Delgado, Lagrangian field theories: ind/pro-approach and L_{∞}-algebra of local observables.
PhD thesis, MPI Bonn, 2017.
arXiv:1805.10317.
围 J.-L. Loday and B. Vallette, Algebraic Operads, vol. 346 of Grundlehren der mathematischen Wissenschaften.
Springer, Berlin, 2012.

