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                                              II. Status of constructions: via toric geometry techniques
     a) First globally consistent three-family Standard Model
        

       b) Landscape of three-family Standard Models 
             [M.C., Jim Halverson, Ling Lin, Muyang Liu, Jiahua Tian,
              “A Quadrillion Standard Models from F-theory’’ 1903.00009, PRL]
        
 

[M.C., Klevers, Peña, Oehlmann, Reuter 1503.02068;
     M.C., Lin, Liu, Oehlmann 1807.01320]

I. The program:
   Globally consistent F-theory compactifications with the 
   gauge symmetry and matter spectrum of the Standard Model
   Key building blocks: gauge symmetry; matter spectrum; global conditions  
                                   

III. Further analysis:                                                                  Time permitting 
     a) Constraints on moduli stabilization scenarios

         [M.C., Cody Long, J. Halverson,L. Lin 2004.00630]
    b) Toward charged vector matter pairs
[Martin Bies, M.C., Ron. Donagi, L. Lin, M. Liu, Fabian Rühle 2007.0009]
[Bies,M.C. Donagi, Liu 2102.10115, 2104.08297]  
[Bies,M.C. Donagi, Marielle Ong 2205.00008, 2307.02535]
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I. F-theory: Geometric Approach
                    Appearance of non-Abelian gauge symmetry,
                                                matter and  Yukawa couplings
                       Appearance of Abelian continuous and discrete 
                                               symmetries, global constraints

II.  Construction of Particle physics Models
      Building blocks for consistent models via toric techniques
      Landscape of three-family Standard Models

Highlight 

IV. Outlook: work in progress & open issues 
      

III. Further Analysis: 
     Constraints on moduli stabilization scenarios for Standard           
      Model constructions; toward vector-pair matter calculation

      

Time permitting 
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F-theory?

F-theory                  =             Type IIB

M-theory (11dim SG)

on S1

• back-reacted 
D7-branes 

• regions with large
gs on non-CY space

gs –string coupling

• Coupling gs part of
     geometry (12dim)



F-theory?

On T2
   Limit vol(T2)      0

S-duality

F-theory                  =             Type IIB

M-theory Type II A

SO(32) Het. Type I

on S1

Certain
setups

Certain
setups

• back-reacted 
D7-branes 

• regions with large
gs on non-CY space

• Coupling gs part of
     geometry (12dim)

E8xE8 Het. 
c.f. L. Anderson’s talk



Type IIB string perspective 

I.  F-theory basic ingredients



B⌧ ⌘ C0 + ig�1
s

Weierstrass normal form for torus (elliptic) fibration of X

[z:x:y] - homogeneous coordinates on P2(1,2,3)
 weighted projective space
 f, g – sections of    B6  and B4  on B          B  -anti-canonical bundle on B 

y2 = x3 + fxz4 + gz6

[Vafa’96], [Morrison,Vafa’96]
 review [Weigand 1806.01854]

F-theory compactification 

Singular torus fibered Calabi-Yau manifold X (N=1 supersymmetry)

To B add torus:
 Modular parameter of torus 
 (elliptic curve) 

 

divisor

B-3D Kähler 



F-theory compactification 

Singular elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus
(elliptic curve)
 

B
⌧ ⌘ C0 + ig�1

s

divisor- singular elliptic-fibration 
gsà∞ location of (p,q) 7-branes

Non-Abelian gauge symmetry
(co-dim 1) – ADE singularities



I.a Non-Abelian Gauge Symmetry
Standard Model has SU(2)L x SU(3)C



Non-Abelian Gauge Symmetry

•  Weierstrass normal form for elliptic fibration  of X

•  Severity of singularity along divisor S in B

• Resolution: structure of a tree of     ‘s over S
      

y2 = x3 + fxz4 + gz6

[Kodaira],[Tate], [Vafa], [Morrison,Vafa],...[Esole,Yau], 
[Hayashi,Lawrie,Schäfer-Nameki],[Morrison], …         

P1

Resolved In-singularity ßà SU(n) Dynkin diagram

specified by  [ordS(f),ordS(g),ordS(Δ)] 

B

P1
1 P1

2 P1
3 P1

4

Cartan gauge bosons: supported by (1,1) form                 on resolved X  
   
    (via M-theory  Kaluza-Klein reduction of C3 potential                   )
 

C3 � Ai!i

!i $ P1
i

n=5

Non-Abelian gauge bosons: light M2-brane excitations on     ‘sP1

[Witten]

Kodaira classification (ADE classification)



F-theory compactification 

Singular elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus
(elliptic curve)
 

B
⌧ ⌘ C0 + ig�1

s

divisor- singular elliptic-fibration 
gsà∞ location of (p,q) 7-branes

Non-Abelian gauge symmetry
(co-dim 1) – ADE singularities

Matter (co-dim 2)

Abelian symmetries different
à   More later



Matter
Standard Model SU(2)L x SU(3)C has
quarks      Q    ~  (   2 ,    3 ) 



Matter

    Singularity at codimension-two in B:  
   

I2 fiber                          Singular fiber 

ByQ = 0

fz4Q + 3x2
Q = 0

resolved



Matter

    Singularity at codimension-two in B:  
   

cmat

I2 fiber                          Singular fiber 

ByQ = 0

fz4Q + 3x2
Q = 0

w/isolated (M2-matter) curve wrapping      à charged matter
                                          (determine rep. via intersection theory)

resolved

P1



F-theory compactification 

Singular elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus
(elliptic curve)
 

B
⌧ ⌘ C0 + ig�1

s

Divisor- singular elliptic-fibration 
gsà∞ location of (p,q) 7-branes

Non-Abelian gauge symmetry
(co-dim 1) – ADE singularities

Matter (co-dim 2)

Abelian symmetries different
à   More later

Chirality: Should add G4-flux à   More later
c.f., [Lin, Mayrhofer, Till,Weigand, 1508.00162]
        [M.C., Grassi, Klevers, Piragua, 1306.3987]

Yukawa couplings 
(co-dim 3) à No time



I.b Abelian Gauge Symmetry - U(1) 
 Standard Model has SU(2)L x SU(3)C x U(1)Y



!m

I.b Abelian Gauge Symmetry - U(1) 
 

Different:   (1,1) forms        , supporting U(1) gauge bosons, isolated
                          & associated with I1-fibers, only

(1,1) - form                        rational section of elliptic fibration 

[Morrison,Vafa’96]

!m

!m



1. Rational point Q on elliptic curve E with zero point P
• is solution                         in field K of Weierstrass form

• Rational points form group (addition) on E
y2 = x3 + fxz4 + gz6
(xQ, yQ, zQ)

EMordell-Weil group of rational points

Abelian Gauge Symmetry & Mordell-Weil Group

Q

P

rational sections of elliptic fibr.       rational points of elliptic curve
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2.   Q on E induces a rational section                       of elliptic fibration 

 

•         gives rise to a second copy of B in X:  

       new divisor BQ in X 

ŝQ

 B 

ŝQ
ŝQ

 BQ 

ŝQ : B ! X

!U(1)’s<Abelian!Symmetry!&Mordell<Weil!Group!

ŝQ
ŝQ

Q
torus

Point



2.   Q on E induces a rational section                       of elliptic fibration 

 

•         gives rise to a second copy of B in X:  

       new divisor BQ in X   

        (1,1)-form             constructed from divisor BQ (Shioda map) 

            indeed  (1,1) - form                    rational section  

!m

ŝQ

 B 

ŝQ
ŝQ

 BQ 

ŝQ : B ! X

!U(1)’s<Abelian!Symmetry!&Mordell<Weil!Group!

!m

QPoint

Shioda map of      ,  complementary to BP - zero section & Ei  - Cartan divisors:� (ŝQ) = BQ � BP �
X

i

li Ei + · · · (1)

li = C�1
ij (BQ � BP ) .P1

j (2)

I. CURIR’S SPIN SYSTEM ANALOGY

Anna Curir regards a rotating black hole as a double system with contributions to the

thermodynamics from the outer and inner horizon. The outer horizon is taken to have

positive temperature and the inner horizon to have a negative temperature. The mass M

and angular momentum J are common to both systems.

Anna Curir claims 1[1].

⌦± =
4⇡J

MA±
, T± = ±A+ � A�

32⇡MA±
(3)

note that her T± is out by a factor of 1/4 from the standard formula

dM = T±dA± + ⌦±dJ (4)

Note that this lacks a factor of 1/4 in front of the first term compared with the Hawking

value .

Moreover

A+A� = 64⇡2J2 (5)

which agrees with [10].

More interestingly Curir claims that there is a modified Smarr formula

M = T+A+ + T�A� + ⌦+J + ⌦�J = ⌦+J + ⌦�J (6)

where the second equation in (6) follows from the second equation of (3).

Curir also claims

M2 =
A+

16⇡
+

A�

16⇡
(7)

1 Our J is Anna Curir’s L.

1
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X

i
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1

Implications for global constraints on gauge symmetriesà shortly

[M.C., Lin, 1706.08521]

!mConstruct (1,1) form          from BQ



n=0:    with P - generic CY in                   (Tate form)

n=1:    with P, Q - generic CY in                          

n=2:   with P, Q, R - specific example: generic CY in dP2 

           
            

generalization to nongeneric cubic in 
                                       

n=3:   with P, Q, R, S - CICY in         

n=4     determinantal variety in 
higher n, not clear…    

Explicit Examples: (n+1)-rational sections – U(1)n 

[Borchmann,Mayerhofer,Palti,Weigand     
  1303.54054,1307.2902;
  M.C.,Klevers,Piragua 1303.6970,1307.6425;
  M.C.,Grassi,Klevers,Piragua 1306.0236] 

    
   [M.C.,Klevers,Piragua,Taylor 1507.05954]

[M.C.,Klevers,Piragua,Song 1310.0463]

[Morrison,Park 1208.2695]...

P2(1, 2, 3)

Bl3P3

Bl1P2(1, 1, 2)

P4 …

P2[u : v : w]

[via line bundle constr. on elliptic curve E- CY in (blow-up) of          ]WPm

Earlier work: [Grimm,Weigand 1006.0226]...[Grassi,Perduca 1201.0930]
                           [M.C.,Grimm,Klevers 1210.6034]...

[Deligne]



n=0:    with P - generic CY in                   (Tate form)

n=1:    with P, Q - generic CY in                        

n=2:   with P, Q, R - specific example: generic CY in dP2 

           
 
           

generalization to nongeneric cubic in                     àcollisions of P,Q,Rà
 à gauge enhancement & higher index representations….                                      

n=3:   with P, Q, R, S - CICY in         
n=4:     determinantal variety in 
higher n, not clear…    

Explicit Examples: (n+1)-rational sections – U(1)n 

[Borchmann,Mayerhofer,Palti,Weigand     
                                         1303.54054,1307.2902]
[M.C.,Klevers,Piragua 1303.6970,1307.6425]
        [M.C.,Grassi,Klevers,Piragua 1306.0236] 
 
      

       [M.C.,Klevers,Piragua,Taylor 1507.05954]

[M.C.,Klevers,Piragua,Song 1310.0463]

[Morrison,Park 1208.2695]…

P2(1, 2, 3)

Bl3P3

Bl1P2(1, 1, 2)

P4

P2[u : v : w]

No time à c.f.,[M.C. Lin,1809.00012] TASI review 



Shioda map of section      more involved than BQ: 
a map onto divisor complementary to BP divisor of zero section

 & Ei – resolution (Cartan) divisors of non-Abelian gauge symmetry

Cartan matrix Fiber of divisor Ej 

Ensures proper F-theory interpretation of U(1) 
(via M-theory/F-theory duality) 
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Shioda map and the center of gauge groups

Fractional u(1) charges

u(1) charge of matter states from codim. 2 fibral curves � given by � · '(�) with
'(�) = S � S0 +

P
i li Ei .

Coefficients li are determined by ‘orthogonality’ of '(�) with Ei = (P1
i ! {✓});

explicitly, li =
P

j(C
�1)ij (S � S0) · P1

j , with Cij = �Ei · P1
j .

li are in general fractional, depend on the fibre split type and gauge algebra g.
However, there is always an integer  s.t. 8i :  li 2 Z.
=) '(�) has manifestly integer class.

Therefore, all matter charges are integral multiples of 1/.

�w ,v fibral curves with weights w, v in the same g-rep ) �v = �w + �k P1
k with �k 2 Z

=) li vi = li (Ei · �v ) = li (Ei · �w � �k Cik) = li wi � �k (S � S0) · P1
k| {z }

2Z

Ling Lin Global gauge group structure of F-theory with U(1)s StringPheno 2017, 04/07/2017 5 / 10

I.b  U(1) & Non-Abelian Gauge symmetry

[M.C. and Ling Lin 1706.08521]

c.f., review [M.C. Lin,1809.00012]



Construct non-trivial central element of U(1) × G: 

Shioda map and the center of gauge groups

Non-trivial central element from Shioda map

(a) There is  2 N s.t. 8i :  li 2 Z =) qu(1) =
n
 , n 2 Z (pick smallest such ).

(b) Two weights w, v in the same g-rep Rg: liwi = livi mod Z =: L(Rg) ()  L(Rg) 2 Z).

Construct non-trivial central element of U(1)⇥ G :

Charge of state w 2 Rg from a fibral curve � satisfies q(w) = (S � S0 + li Ei ) · �
=) q(w)� li (Ei · �) = q(w)� li wi =: ⇠(w) = (S � S0) · � 2 Z.

C (w) := [e2⇡iq(w) ⌦ (e�2⇡i li wi ⇥ 1)]w
(b)
= [e2⇡iq(w) ⌦ (e�2⇡i L(Rg) ⇥ 1)]w

defines element in centre of U(1)⇥ G ; (a) ) C
 = 1.

But also: C (w) = exp(2⇡i ⇠(w)|{z}
2Z

)w = w.

=) Gglobal =
U(1)⇥ G

hC i
⇠=

U(1)⇥ G

Z
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Employing (a)                           &  (b) 
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I. CURIR’S SPIN SYSTEM ANALOGY

Anna Curir regards a rotating black hole as a double system with contributions to the

thermodynamics from the outer and inner horizon. The outer horizon is taken to have

positive temperature and the inner horizon to have a negative temperature. The mass M

and angular momentum J are common to both systems.

Anna Curir claims 1[1].
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dM = T±dA± + ⌦±dJ (9)

Note that this lacks a factor of 1/4 in front of the first term compared with the Hawking

value .

1 Our J is Anna Curir’s L.

1

Shioda map and the center of gauge groups

Non-trivial central element from Shioda map

(a) There is  2 N s.t. 8i :  li 2 Z =) qu(1) =
n
 , n 2 Z (pick smallest such ).

(b) Two weights w, v in the same g-rep Rg: liwi = livi mod Z =: L(Rg) ()  L(Rg) 2 Z).

Construct non-trivial central element of U(1)⇥ G :

Charge of state w 2 Rg from a fibral curve � satisfies q(w) = (S � S0 + li Ei ) · �
=) q(w)� li (Ei · �) = q(w)� li wi =: ⇠(w) = (S � S0) · � 2 Z.

C (w) := [e2⇡iq(w) ⌦ (e�2⇡i li wi ⇥ 1)]w
(b)
= [e2⇡iq(w) ⌦ (e�2⇡i L(Rg) ⇥ 1)]w

defines element in centre of U(1)⇥ G ; (a) ) C
 = 1.

But also: C (w) = exp(2⇡i ⇠(w)|{z}
2Z

)w = w.

=) Gglobal =
U(1)⇥ G

hC i
⇠=

U(1)⇥ G

Z
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&

Global group structure as charge constraints

Global group structure as charge constraints

� torsional ) '(�) = 0 (no u(1)), global group structure G/Z

=) not all g-reps allowed. [Mayrhofer, Morrison, Till, Weigand ’14]

� free, then global group structure [U(1)⇥ G ]/Z ) u(1) charges of g-reps constrained:
For R(i) = (q(i),R(i)

g ) we have q
(i) = L(R(i)

g ) mod Z.
For g = su(5): [Braun, Grimm, Keitel ’13], [Lawrie, Schäfer-Nameki, Wong, ’15]

Argument derived with normalization � = 1 for Shioda map ) ‘preferred’ charge normalization
in F-theory: can read off global gauge group from fractional u(1) charges.

Equivalently:
MW-group finitely generated �! global gauge group structure, refined charge quantization.
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:=

All matter charges are integral multiples of 1/!, w/
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U(1) matter charges q(w) =                
intersection of Shioda divisor            with matter curve� (ŝQ) = BQ � BP �

X

i

li Ei + · · · (1)

li = C�1
ij (BQ � BP ) .P1

j (2)

ŝP (3)

�(ŝQ) (4)

I. CURIR’S SPIN SYSTEM ANALOGY

Anna Curir regards a rotating black hole as a double system with contributions to the

thermodynamics from the outer and inner horizon. The outer horizon is taken to have

positive temperature and the inner horizon to have a negative temperature. The mass M

and angular momentum J are common to both systems.

Anna Curir claims 1[1].

⌦± =
4⇡J

MA±
, T± = ±A+ � A�

32⇡MA±
(5)

note that her T± is out by a factor of 1/4 from the standard formula

dM = T±dA± + ⌦±dJ (6)

Note that this lacks a factor of 1/4 in front of the first term compared with the Hawking

value .

Moreover

A+A� = 64⇡2J2 (7)

which agrees with [10].

More interestingly Curir claims that there is a modified Smarr formula

M = T+A+ + T�A� + ⌦+J + ⌦�J = ⌦+J + ⌦�J (8)

1 Our J is Anna Curir’s L.

1
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Anna Curir regards a rotating black hole as a double system with contributions to the

thermodynamics from the outer and inner horizon. The outer horizon is taken to have

positive temperature and the inner horizon to have a negative temperature. The mass M

and angular momentum J are common to both systems.

Anna Curir claims 1[1].
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MA±
, T± = ±A+ � A�

32⇡MA±
(7)

note that her T± is out by a factor of 1/4 from the standard formula

dM = T±dA± + ⌦±dJ (8)

Note that this lacks a factor of 1/4 in front of the first term compared with the Hawking

value .

1 Our J is Anna Curir’s L.

1

In the presence of non-Abelian gauge symmetry g

Global group structure as charge constraints

Global group structure as charge constraints

� torsional ) '(�) = 0 (no u(1)), global group structure G/Z

=) not all g-reps allowed. [Mayrhofer, Morrison, Till, Weigand ’14]

� free, then global group structure [U(1)⇥ G ]/Z ) u(1) charges of g-reps constrained:
For R(i) = (q(i),R(i)

g ) we have q
(i) = L(R(i)

g ) mod Z.
For g = su(5): [Braun, Grimm, Keitel ’13], [Lawrie, Schäfer-Nameki, Wong, ’15]

Argument derived with normalization � = 1 for Shioda map ) ‘preferred’ charge normalization
in F-theory: can read off global gauge group from fractional u(1) charges.

Equivalently:
MW-group finitely generated �! global gauge group structure, refined charge quantization.
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For g = SU(5) [Braun, Grimm, Keitel ’13; Lawrie, Scha ̈fer-Nameki, Wong ’15]
some aspects via KK-reduction [Grimm, Kapfer, Klevers ’15]

Consequences:

� (ŝQ) = BQ � BP �
X

i

li Ei + · · · (1)

li = C�1
ij (BQ � BP ) .P1

j (2)

ŝP (3)

�(ŝQ) (4)

P1 (5)

� (ŝQ) .P1 (6)

⇠(w) = (BQ � BP ) .P1 2 Z (7)

I. CURIR’S SPIN SYSTEM ANALOGY

Anna Curir regards a rotating black hole as a double system with contributions to the

thermodynamics from the outer and inner horizon. The outer horizon is taken to have

positive temperature and the inner horizon to have a negative temperature. The mass M

and angular momentum J are common to both systems.

Anna Curir claims 1[1].

⌦± =
4⇡J

MA±
, T± = ±A+ � A�

32⇡MA±
(8)

note that her T± is out by a factor of 1/4 from the standard formula

dM = T±dA± + ⌦±dJ (9)

Note that this lacks a factor of 1/4 in front of the first term compared with the Hawking

value .

1 Our J is Anna Curir’s L.

1

wi, vi –  rep. weights

Shioda map and the center of gauge groups

Non-trivial central element from Shioda map

(a) There is  2 N s.t. 8i :  li 2 Z =) qu(1) =
n
 , n 2 Z (pick smallest such ).

(b) Two weights w, v in the same g-rep Rg: liwi = livi mod Z =: L(Rg) ()  L(Rg) 2 Z).

Construct non-trivial central element of U(1)⇥ G :

Charge of state w 2 Rg from a fibral curve � satisfies q(w) = (S � S0 + li Ei ) · �
=) q(w)� li (Ei · �) = q(w)� li wi =: ⇠(w) = (S � S0) · � 2 Z.

C (w) := [e2⇡iq(w) ⌦ (e�2⇡i li wi ⇥ 1)]w
(b)
= [e2⇡iq(w) ⌦ (e�2⇡i L(Rg) ⇥ 1)]w

defines element in centre of U(1)⇥ G ; (a) ) C
 = 1.

But also: C (w) = exp(2⇡i ⇠(w)|{z}
2Z

)w = w.

=) Gglobal =
U(1)⇥ G

hC i
⇠=

U(1)⇥ G

Z
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Exemplify for SU(5) GUT’s  and Standard Model constructions
Including for globally consistent three family SM

Global Constraint on Gauge Symmetry: 

More later



I.c  Discrete Abelian Gauge Symmetries Zn 

In Standard Model one often introduces  Z2 (R-parity) 
to prevent baryon number violating couplings
 



Earlier work: [Witten; deBoer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi;…] 

Recent extensive  efforts’14-’16: [Braun, Morrison; Morrison, Taylor; 
Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter; Anderson,Garcia-Etxebarria, 
Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand;  M.C., Donagi, Klevers, 
Piragua, Poretschkin; Grimm, Pugh, Regalado; M.C., Grassi, Poretschkin;…]

I.c  Discrete Abelian Gauge Symmetries -  Zn 
Geometric origin: torus fibrations that do not admit a section, but a             
                             multi-section 
 
 Z2

Standard Model with Z2 matter parity [M.C., Lin, Liu, Oehlmann 1807.01320]                                                    



 

     
        

blow-down
(P1 in the geometry w/
 multiple sections collapses)

Deformation
(S3  glues several sections 
to a multi-section)

Transition between continuous and discrete symmetry: 
                                  U(1)àZ2 example  

Singular codim-2 locus
I2 -fiber

deformation

U(1)

Z2

Massless field
 ϕ  with charge 2

ϕ acquires VEV 
   <ϕ>≠0

Field theory Geometry



I.c  Discrete Abelian Gauge Symmetries 

Geometries with n-section  Tate-Shafarevich Group Zn

Z2  [Anderson,Garcia-Etxebarria,  Grimm; 
        Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand’14]

Z3   [M.C.,Donagi,Klevers,Piragua,Poretschkin 1502.06953]

No time, but



Tate-Shafarevich group and Z3

X1 with tri-section
     (cubic in P2)Jacobian

Jacobian
J(X)

Only two geometries: X1 w/ trisection and Jacobian J(X1)   

x
P

[M.C., Donagi, Klevers, Piragua, Poretschkin 1502.06953]

X1 with tri-section
     (cubic in P2)There are three different elements of theTS group!

Shown to be in one-to-one correspondence with three M-theory vacua.
 



II. Particle physics Constructions



Model Constructions:
                      [Donagi,Wijnholt’09-10]…[Marsano,Schäfer-Nameki,Saulina’09-11]…
                                                                                           Review: [Heckman]

Initial focus: F-theory with SU(5) Grand Unification           
                                   [Donagi,Wijnholt’08][Beasley,Heckman,Vafa’08]…

[Blumehagen,Grimm,Jurke,Weigand’09][M.C., Garcia-Etxebarria,Halverson’10]…  
[Marsano,Schäfer-Nameki’11-12]…[Clemens,Marsano,Pantev,Raby,Tseng ’12]…

                                                                              
Progress on Standard Model:

Standard Model building blocks  (via toric techniques) [Lin,Weigand’14]

local

global



II. Particle physics Constructions
Globally consistent models via torique techniques



Construction of elliptically fibered Calabi-Yau manifold 

i. Elliptic curve      
    Examples of constructions via toric techniques: 
           as a hypersurface in the two-dimensional toric variety      ,               
   (generalized weighted projective spaces, associated with16 reflexive polytopes    ):

    

     

  

✤ Combinatorics of      encodes geometry of toric variety                  
➡ representation as generalized projective space

✤ Genus-one curve as CY-hypersurfaces in                                 

✤ Three different types of        and curves 
1. cubics in       = blow-ups of       (14 cases)
2. quartic in       =                              (1 case)
3. biquadric in       =                          (1 case)

Toric varieties and their genus one curves

Fi

PFi

PFi

Dual Polytopes and Mirror Symmetry

the mirror dual polytopes are

F ⇤
i = {q 2 M ⌦ R|hy , qi � �1, 8y 2 Fi}

constructing the dual polytope for Fi leads to F17�i , 1  i  6

Fi , 7  i  10, are selfdual

smooth toric variety corresponding to polytopes defined by

PFi =
Cm+2\SR
(C⇤)m

= {xk ⇠
mY

a=1

�
`
(a)
k
a xk | x /2 SR ,�a 2 C⇤}

Calabi-Yau hypersurface obtained by Batyrev formula

pFi =
X

q2F⇤
i \M

aq
Y

k

x hvk ,qi+1
k

Jonas Reuter 9 / 28
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ii.  Elliptically fibered Calabi-Yau space:

   Impose Calabi-Yau condition: 
    coordinates in         and coeffs. of        lifted to
    sections of specific line-bundles on  B
     
    

1. Ambient space: fiber        over B

✤ Fibration completely determined by  
two divisors       and       on B 

‣ parametrize divisor classes of the two local coordinates on the fiber.

2. Calabi-Yau hypersurface eq. of        

✤ impose CY-eq.                 in fiber:

✤ impose CY condition on total space 

➡get discrete families of Calabi-Yau manifolds

3. Derive the effective theory of F-theory for all these        .

3.1 Three basic ingredients: the cubic, biquadric and quartic
3.1.1 Constructing Toric Hypersurface Fibration

In this section we explain the general construction of the Calabi-Yau manifolds XFi with toric
hypersurface fiber CFi and base B. The following discussion applies to Calabi-Yau n-folds XFi

with a general (n � 1)-dimensional base B. The cases of most relevance for F-theory and for
this work are n = 3, 4. We refer to [37,39] for more details on the following discussion.

The starting point of the construction of the genus-one fibered Calabi-Yau manifold XFi is
the hypersurface equation (2.23) of the curve CFi . In order to obtain the equation of XFi , the
coefficients aq and the variables xi of (2.23) have to be promoted to sections of appropriate line
bundles of the base B. We determine these line bundles, by first constructing a fibration of the
2D toric variety PFi , which is the ambient space of CFi , over the same base B,

PFi
// PB

Fi
(S7,S9)

✏✏
B

. (3.1)

Here PB
Fi
(D, D̃) denotes the total space of this fibration. The structure of its fibration is

parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that all
m + 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles on B.
Then, we can use the (C⇤

)
m-action of the toric variety PFi to set m variables to transform in

the trivial bundle of B. The divisors dual to the two remaining line bundles are precisely D, D̃.
Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in which

the coefficients aq have to take values in terms of the two divisors D and D̃. Then, we require
(2.23) to be a section of the anti-canonical bundle K

�1
PB
Fi

, which is the Calabi-Yau condition.

In addition, equation (2.23) imposed in PB
Fi
(D, D̃) clearly describes a genus-one fibration over

B, since for every generic point on B, the hypersurface (2.23) describes exactly the curve CFi

in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
// XFi

✏✏
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F

⇤
1 = F16. By means of (2.23),

this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a

17

Construction of toric hypersurface fibration     .        XFi

S7 S9

pFi = 0

XFi

CFi ⇢ PFi
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bundles of the base B. We determine these line bundles, by first constructing a fibration of the
2D toric variety PFi , which is the ambient space of CFi , over the same base B,

CFi ⇢ PFi
// XFi

✏✏
B

. (3.1)

Here PB
Fi
(D, D̃) denotes the total space of this fibration. The structure of its fibration is

parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that all
m + 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles on B.
Then, we can use the (C⇤

)
m-action of the toric variety PFi to set m variables to transform in

the trivial bundle of B. The divisors dual to the two remaining line bundles are precisely D, D̃.
Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in which

the coefficients aq have to take values in terms of the two divisors D and D̃. Then, we require
(2.23) to be a section of the anti-canonical bundle K

�1
PB
Fi

, which is the Calabi-Yau condition.

In addition, equation (2.23) imposed in PB
Fi
(D, D̃) clearly describes a genus-one fibration over

B, since for every generic point on B, the hypersurface (2.23) describes exactly the curve CFi

in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
// XFi

✏✏
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F

⇤
1 = F16. By means of (2.23),

this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a
certain specialization of the hypersurface of XF1 with some aq ⌘ 0. We will be more explicit
about this in the following subsection (Section 3.1.2).
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1 Introduction

n1, n2, n6, n7 2 Z EFi E (1)

Understanding black hole entropy at the microscopic level has been a major focus of

research in string theory and M-theory in the past years. While the microscopics of asymp-

totically flat PBS black holes in four and five dimensions is by now well understood [1]

(For review, see, e.g., [2] and references therein), the internal properties of general non-

extremal black holes are less understood. However, it has been known for a long time

that general asymptotically flat multi-charged rotating black holes in four [3] and five [4]

dimensions 1 have a tantalizing entropy formula [3] and the first law of thermodynamics

[7, 8, 9] associated with the inner and outer black hole horizons, which are highly sugges-

tive of a possible microscopic interpretation in terms of a two-dimensional conformal field

theory (CFT). Specifically, entropies S± of outer and inner horizon are of the form [3, 8, 9]:

S± = 2⇡(
p
NL ±

p
NR), where the quantities NL and NR may be viewed as the excitation

numbers of the left and right moving modes of a weakly-coupled two-dimensional conformal

field theory. The product S+ S� = 4⇡2(NL � NR) should therefore by quantised in an

integer multiple of 4⇡2 [7, 8, 9] (and re-emphasized in [10]). Indeed, one finds:

S+ S� = 4⇡2
⇣ 4Y

i=1

Qi + J2
⌘
, (2)

S+ S� = 4⇡2
⇣ 3Y

i=1

Qi + J1J2
⌘
, (3)

(4)

for four and five dimensional black holes, respectively. (These results were implicit in

[8, 9], though not explicitly evaluated.) These expressions are moduli independent and are

expressed solely in terms of the quantized duality invariant quartic (cubic) charge form and

quantised angular momenta.

In parallel developments Ansorg and collaborators (see, e.g., [11, 12] and references

therein) studied axi-symmetric solutions of Einstein-Maxwell gravity, with sources external

to the outside horizon. They obtained striking universal formulae expressing the entropy

1Those black hole solutions are generating solutions of maximally supersymmetric N = 4 (N =

8)supergravity theories obtained as toroidal compactifications of the heterotic string (or of Type IIA string

or M-theory). In addition to the mass M , these solutions are specified in four dimensions by four charges Qi

(i = 1, ,4) and one angular mementum J , and in five dimensions by three charges Qi (i = 1, 2, 3) and two

angular momenta J1,2. It turns out that in four-dimensions the complete generating solution is specified by

an additional fifth charge, which has been obtained only in the BPS [5] and static [6] cases.
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Fibration depends only on the anti-canonical divisor 
& two additional S7 and S9  divisor classes

c.f., [Klevers, Pena, Oehlmann, Piragua, Reuter ’14]          



iii. Chiral index for D=4 matter: 
Standard Model with three families of quarks and leptons



                     
      
a) construct G4 (=dC3) flux by computing 
    [so-called vertical fluxes – do not induce Gukov-Vafa-Witten potential] 
b) determine matter surface      (via resultant techniques)
       

4D'ma\er'spectrum:'summary'

4D>ma\er'representa+ons'the'same'(all'in'the'fiber)'
4D'ma\er'chirali+es!='codim.'2'ma\er'loci in'B'+'G4>flux:

Geometry:'I.Ma\er'surfaces:'

'''''''''''''''''''points'in'B2''ma\er'curves'''''''''in'B3'
''''''''''''''''''(2)'Ma\er'surfaces'found'

''''''''''''''''''(1)'Ma\er>hard'

'''''''''''''II.'G4>flux:''

'''''''''''''''''Construc+on'of'ver+cal'middle'homology''''''''''''''''''''''''

''''''''''''''''''First'construc+on'of'G4>flux'with'non>holomorphic'zero>sec+on''

⌃R

Here we extend this geometric analysis to fourfolds. The main di↵erence to the 6D
case is that matter is not localized anymore at points in B, but on in general rather
complicated matter curves. The determination of these matter curves and some of their
associated matter surfaces, along with the Yukawa points, is presented in section 3.1.
Then, in section 3.2 we present a method to determine the cohomology ring of the
fourfold X̂. We use these techniques to derive general expressions for the Euler number
of X̂ and its second Chern class. For the example of B = P3 we finally compute the full
vertical cohomology group. These calculations serve as a preparation for the computation
of 4D chiralities in section 4, which requires the construction of G4-flux.

3.1 Singularities of the Fibration: Matter Surfaces & Yukawa
Points

3.1.1 Matter: Codimension Two

In general, the determination of the matter sector in F-theory vacua with general gauge
group requires a detailed analysis of singularities of the elliptic fibration of the Calabi-Yau
fourfold at codimension two in the base B, where the elliptic fiber E becomes reducible.
Then one has to identify the isolated rational curve cw in the fiber over these loci,
since these correspond in F-theory to matter in a representation R from wrapped M2-
brane states. These curves are in one-to-one correspondence to the weights w of the
representations R and accordingly labeled. In the case of elliptically fibered Calabi-Yau
fourfolds, the codimension two matter loci are Riemann surfaces of genus g, the so-called
matter curves ⌃R in B conveniently labeled by the corresponding matter representation
R. In addition, for the determination of four-dimensional chirality, compare section ??,
we have to know the homology classes of the associated matter surfaces [?]

cmat
// CR

✏✏

⌃R

(3.1)

which are constructed as the fibration of the rational curve cw corresponding to a given
weight w of the representation R fibered over ⌃R.

In this section we determine the matter curves ⌃R and the matter surfaces Cw
R for the

six representations occurring in the Calabi-Yau fourfold X̂. As we demonstrate, their
determination is complicated by the fact that three of the six the codimension two loci in
the base B where the elliptic fiber E becomes reducible are themselves reducible curves.
Their irreducible components are multiple di↵erent matter curves ⌃R. Some of these
matter curves, denoted ⌃R0 , fail to be complete intersection and can only be described in
terms of their prime ideals. However, these prime ideals are straightforwardly constructed
from the two equations of the original reducible codimension two locus. However, the
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H
(2,2)
V (X̂)

[M.C.,Grassi,Klevers,Piragua]


�(R) = �1

4

Z

CR

G4

iv. Global consistency – D3 tadpole cancellation:
 

a) satisfied for integer and positive nD3 
b) constraint on integer valued flux G4
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Here we extend this geometric analysis to fourfolds. The main di↵erence to the 6D
case is that matter is not localized anymore at points in B, but on in general rather
complicated matter curves. The determination of these matter curves and some of their
associated matter surfaces, along with the Yukawa points, is presented in section 3.1.
Then, in section 3.2 we present a method to determine the cohomology ring of the
fourfold X̂. We use these techniques to derive general expressions for the Euler number
of X̂ and its second Chern class. For the example of B = P3 we finally compute the full
vertical cohomology group. These calculations serve as a preparation for the computation
of 4D chiralities in section 4, which requires the construction of G4-flux.

3.1 Singularities of the Fibration: Matter Surfaces & Yukawa
Points

3.1.1 Matter: Codimension Two

In general, the determination of the matter sector in F-theory vacua with general gauge
group requires a detailed analysis of singularities of the elliptic fibration of the Calabi-Yau
fourfold at codimension two in the base B, where the elliptic fiber E becomes reducible.
Then one has to identify the isolated rational curve cw in the fiber over these loci,
since these correspond in F-theory to matter in a representation R from wrapped M2-
brane states. These curves are in one-to-one correspondence to the weights w of the
representations R and accordingly labeled. In the case of elliptically fibered Calabi-Yau
fourfolds, the codimension two matter loci are Riemann surfaces of genus g, the so-called
matter curves ⌃R in B conveniently labeled by the corresponding matter representation
R. In addition, for the determination of four-dimensional chirality, compare section ??,
we have to know the homology classes of the associated matter surfaces [?]

cmat
// CR

✏✏

⌃R

(3.1)

which are constructed as the fibration of the rational curve cw corresponding to a given
weight w of the representation R fibered over ⌃R.

In this section we determine the matter curves ⌃R and the matter surfaces Cw
R for the

six representations occurring in the Calabi-Yau fourfold X̂. As we demonstrate, their
determination is complicated by the fact that three of the six the codimension two loci in
the base B where the elliptic fiber E becomes reducible are themselves reducible curves.
Their irreducible components are multiple di↵erent matter curves ⌃R. Some of these
matter curves, denoted ⌃R0 , fail to be complete intersection and can only be described in
terms of their prime ideals. However, these prime ideals are straightforwardly constructed
from the two equations of the original reducible codimension two locus. However, the
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quantization condition [81]:

G4 +
c2(X)

2
2 H

4(X,Z) . (2.1)

Second, the cancelation of M2-brane tadpoles, which lift to D3-brane tadpoles in Type IIB
strings and F-theory, requires the equality [82,83]

�(X)

24
= nD3 +

1

2

Z

X

G4 ^G4 , (2.2)

where nD3 denotes the number of D3-branes. As mentioned before, we will focus here on special
G4-flux that is entirely in the subgroup H

(2,2)
V

(X).3
For compatibility with the duality between M- and F-theory, we need to impose additional

conditions on the G4-flux. These are most easily formulated in terms of conditions on the
Chern-Simons (CS) terms for the three-dimensional vectors on the Coulomb branch of the
effective action of the M-theory compactification on the CY-fourfold X. On the M-theory side,
these CS-terms are given by [87]

⇥M
AB

=

Z

X

G4 ^DA ^DB , (2.3)

where here and in the following, Poincaré duality is always understood. We note that the 3D
CS-terms have obey the quantization condition ⇥M

AB
2 Z or Z/2, see e.g. [88, 89] for recent

discussions. We note that these quantization conditions are expected to be equivalent to the
G4-flux quantization conditions (2.1) [85].

In the dual F-theory side the same CS-terms, denoted now by ⇥F
AB

, have two contributions.
First, we can have classical CS-terms ⇥F

cl, AB
, which either descend from 4D to 3D from gaugings

of axions or which correspond to circle fluxes [90]. Second, CS-terms on the 3D Coulomb
branch receive one-loop corrections from integrating out massive fermions [91–93]. In the
duality between M- and F-theory, it is crucial to include all Kaluza-Klein (KK) states in the
loop [15,54],4 yielding the full loop corrected CS-terms expression

⇥F

AB
= ⇥F

cl, AB
+

1

2

X

q

n(q)qAqB sign(qA⇣A) . (2.4)

Here n(q) is the number of 3D fermions with charge vector q = (q0, q↵, qi, qm). It includes
the charge q0 w.r.t. the 3D graviphoton, i.e. the KK-level of states, the charges q↵, ↵ =
1, . . . , h(1,1)(B), under 3D vectors dual to the Kähler moduli of B, the charges qi, i = 1, . . . , rk(G),
and qm, m = 1, . . . , r, w.r.t. to 4D Cartan gauge fields of the non-Abelian gauge group G of
F-theory and the r U(1) gauge fields, respectively. The real parameters ⇣

A are the Coulomb
branch parameters.

Duality requires an identification of the CS-terms on the F-theory side with those in (2.3)
on the M-theory side [14,15,51,54,94,95],

⇥AB ⌘ ⇥M

AB

!
= ⇥F

AB
. (2.5)

3For recent analyses of horizontal G4-flux in F-theory, see [77,84–86].
4See also [57] for the case of CS-terms in 5D M-/F-theory duality.

6

This immediately leads to additional restrictions on the CS-terms in F-theory [15, 37, 51, 54],
because certain CS-terms ⇥F

AB
in F-theory computed according to (2.4) are identically zero.

Physically, the implied constraints on the G4-flux ensure the absence of circle flux in the circle
compactification from F- to M-theory, an unbroken non-Abelian gauge group in 4D due to the
absence of axion gaugings and the absence of non-geometric effects,

⇥0↵ = ⇥i↵ = ⇥↵� = 0 . (2.6)

Here we have to chose the basis DA of H(1,1)(X) so that index 0 corresponds to the zero section
ŝ0 of the fibration of X, ↵ = 1, . . . , h(1,1,)(B), labels the vertical divisors induced from the base
B, i = 1, . . . , rk(G) labels the Cartan divisors of X, where G as before is non-Abelian part of
the F-theory gauge group, and m = 1, . . . , r labels the r U(1)-factors corresponding to Shioda
maps �(ŝm) of the rank r Mordell-Weil (MW) group of rational sections ŝm of X.

Chiralities in F-theory and G4-flux quantization: In order to calculate the matter chiral-
ities �(R) for a given matter representation R in a four-dimensional F-theory compactification,
we need to integrate the G4-flux over a corresponding matter surface in X. The relevant matter
surface C

w

R is given as the rational surface constructed by fibering a P1 carrying the weight w
of the representation R over the corresponding matter curve in the base B. The 4D chirality
of R is computed as

�(R) = n(R)� n(R̄) =

Z

Cw
R

G4 , (2.7)

where n(R) denotes the number of left-chiral Weyl fermions in the representation R.
Technically, the determination of the C

w

R can be involved and requires the computation of
the homology class of prime ideals describing the given matter surface. This can be done using
the resultant technique that was applied first in [15, 56] for F-theory and will be exemplify for
the three examples studied in this work. As a consistency check of our geometric computations,
following [15, 51, 54], we use the matching condition (2.5) of the CS-terms to double-check the
4D chiralities calculated using (2.7).

Finally, let us comment on G4-flux quantization. In principal, in order to address G4-
flux quantization we have to expand G4 and c2(X) in an integral basis for H

(2,2)
V

(X) and
check the condition (2.1). This integral basis can be determined employing mirror symmetry
techniques [77, 84, 86]. Since this is beyond the scope of this work, we will apply an indirect
approach to ensure integral G4-flux.

Here we exploit that G4-flux quantization (2.1), the integrality of the number nD3 of D3-
branes, that is a necessary condition for quantized G4-flux [81], the integrality of the CS-terms
(2.3) and of the chiralities (2.7) are obviously linked to each other. Thus, our strategy will be
the following. First, we compute all chiralities �(R) using (2.7). Then, we parametrize the
coefficients in the expansion of the G4-flux w.r.t. a basis of H(2,2)

V
(X) in terms of these integral

chiralities. We then impose the necessary condition of integrality and positivity of nD3. This
will yield in turn constraints in form of lower bounds on the 4D chiralities. Next, we impose,
if possible, a family structure on our model. Finally, we check that for this phenomenologi-
cally preferred choice of G4-flux all CS-terms are integral, which ensures that the quantization
condition (2.1) is obeyed.
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1 Introduction

n1, n2, n6, n7 2 Z EFi E (1)

G4 +
1

2
c2(X̂) 2 H

4(Z, X̂) G4 +
1

2
c2(X) /2 H

4(Z, X̂) (2)

Understanding black hole entropy at the microscopic level has been a major focus of

research in string theory and M-theory in the past years. While the microscopics of asymp-

totically flat PBS black holes in four and five dimensions is by now well understood [1]

(For review, see, e.g., [2] and references therein), the internal properties of general non-

extremal black holes are less understood. However, it has been known for a long time

that general asymptotically flat multi-charged rotating black holes in four [3] and five [4]

dimensions 1 have a tantalizing entropy formula [3] and the first law of thermodynamics

[7, 8, 9] associated with the inner and outer black hole horizons, which are highly sugges-

tive of a possible microscopic interpretation in terms of a two-dimensional conformal field

theory (CFT). Specifically, entropies S± of outer and inner horizon are of the form [3, 8, 9]:

S± = 2⇡(
p
NL ±

p
NR), where the quantities NL and NR may be viewed as the excitation

numbers of the left and right moving modes of a weakly-coupled two-dimensional conformal

field theory. The product S+ S� = 4⇡2(NL � NR) should therefore by quantised in an

integer multiple of 4⇡2 [7, 8, 9] (and re-emphasized in [10]). Indeed, one finds:

S+ S� = 4⇡2
⇣ 4Y

i=1

Qi + J
2
⌘
, (3)

S+ S� = 4⇡2
⇣ 3Y

i=1

Qi + J1J2

⌘
, (4)

(5)

for four and five dimensional black holes, respectively. (These results were implicit in

[8, 9], though not explicitly evaluated.) These expressions are moduli independent and are

expressed solely in terms of the quantized duality invariant quartic (cubic) charge form and

quantised angular momenta.

In parallel developments Ansorg and collaborators (see, e.g., [11, 12] and references

therein) studied axi-symmetric solutions of Einstein-Maxwell gravity, with sources external

1Those black hole solutions are generating solutions of maximally supersymmetric N = 4 (N =

8)supergravity theories obtained as toroidal compactifications of the heterotic string (or of Type IIA string

or M-theory). In addition to the mass M , these solutions are specified in four dimensions by four charges Qi

(i = 1, ,4) and one angular mementum J , and in five dimensions by three charges Qi (i = 1, 2, 3) and two

angular momenta J1,2. It turns out that in four-dimensions the complete generating solution is specified by

an additional fifth charge, which has been obtained only in the BPS [5] and static [6] cases.
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Construction of Calabi-Yau four-fold

In Section 3.1 we elaborate on the basic geometrical properties of XF11 that encode the
gauge symmetry, including the U(1) generator, as well as the matter representations. While
these observations are model independent, we further specialize to the simple base B = P3. For
this specific case we compute the vertical cohomology H

(2,2)
V

(XF11) in Section 3.2. Using these
results, we explicitly construct G4-flux consistent with all F-theory consistency constraints.
We compute the induced 4D chiralities of the matter representations, that we double-check
employing 3D CS-terms and M-/F-theory duality. Next in Section 3.3 we discuss 4D anomaly
cancelation and the properties of models which exhibit a complete family structure, in particular
the existence of three family models with positive and integral D3-brane charge and quantized
G4-flux. In Section 3.4 we conclude with some comments on the phenomenology of the three
family models we found.

The elliptic fibration XF11 has been completely analyzed in [22], to which we refer for
more details on its codimension one, two and three singularities and the corresponding 6D
F-theory compactification. The relevant results are summarized in Section 3.1. The reader
less interested in the technical details can directly jump to the 4D chiralities in (3.17) and the
following discussions.

3.1 The Geometry of Gauge Symmetry and Particle Representations

Section Line Bundle
u O(H � E1 � E2 � E4 + S9 + [KB ])
v O(H � E2 � E3 + S9 � S7)
w O(H � E1)
e1 O(E1 � E4)
e2 O(E2 � E3)
e3 O(E3)
e4 O(E4)

Figure 1: The toric diagram of polyhedron F11 and its dual. The zero section is indicated by
the dot. In the accompanying table we indicate the divisor classes of the fiber coordinates.

The elliptic fiber which is used to engineer F-theory models that naturally exhibit the gauge
symmetry of the standard model is given as the CY-hypersurface

pF11 = s1e
2
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2e3e

4
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2e
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3e

2
4u
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3uv

2 + s5e
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1e2e

3
4u

2
w + s6e1e2e3e4uvw + s9e1vw

2

(3.1)

in the toric ambient space PF11 . Its toric data is summarized in Figure 1. The divisor classes
in PF11 are H, the hyperplane class of P2, as well as the four exceptional divisors E1, E2, E3

and E4.
Next, an elliptically fibered CY-fourfold XF11 with the elliptic fiber (3.1) is constructed by

promoting the coefficients si in the CY-equation to sections of the line bundles of B given in
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ŝP

Elliptic curve: 

Hypersurface constraint in PF11

C.f., Standard Model building blocks (via toric techniques)  initiated in  
       [Lin, Weigand’14] ; SM x U(1) [1604.04292] 

[u:v:w] with four non-generic   
  blow-ups [e1:e2:e3:e4]



Construction of Calabi-Yau four-fold

1. Ambient space: fiber        over B

✤ Fibration completely determined by  
two divisors       and       on B 

‣ parametrize divisor classes of the two local coordinates on the fiber.

2. Calabi-Yau hypersurface eq. of        

✤ impose CY-eq.                 in fiber:

✤ impose CY condition on total space 

➡get discrete families of Calabi-Yau manifolds

3. Derive the effective theory of F-theory for all these        .

3.1 Three basic ingredients: the cubic, biquadric and quartic
3.1.1 Constructing Toric Hypersurface Fibration

In this section we explain the general construction of the Calabi-Yau manifolds XFi with toric
hypersurface fiber CFi and base B. The following discussion applies to Calabi-Yau n-folds XFi

with a general (n � 1)-dimensional base B. The cases of most relevance for F-theory and for
this work are n = 3, 4. We refer to [37,39] for more details on the following discussion.

The starting point of the construction of the genus-one fibered Calabi-Yau manifold XFi is
the hypersurface equation (2.23) of the curve CFi . In order to obtain the equation of XFi , the
coefficients aq and the variables xi of (2.23) have to be promoted to sections of appropriate line
bundles of the base B. We determine these line bundles, by first constructing a fibration of the
2D toric variety PFi , which is the ambient space of CFi , over the same base B,

PFi
// PB

Fi
(S7,S9)

✏✏
B

. (3.1)

Here PB
Fi
(D, D̃) denotes the total space of this fibration. The structure of its fibration is

parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that all
m + 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles on B.
Then, we can use the (C⇤

)
m-action of the toric variety PFi to set m variables to transform in

the trivial bundle of B. The divisors dual to the two remaining line bundles are precisely D, D̃.
Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in which

the coefficients aq have to take values in terms of the two divisors D and D̃. Then, we require
(2.23) to be a section of the anti-canonical bundle K

�1
PB
Fi

, which is the Calabi-Yau condition.

In addition, equation (2.23) imposed in PB
Fi
(D, D̃) clearly describes a genus-one fibration over

B, since for every generic point on B, the hypersurface (2.23) describes exactly the curve CFi

in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
// XFi

✏✏
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F

⇤
1 = F16. By means of (2.23),

this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a
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n1, n2, n6, n7 2 Z EFi E (1)

Understanding black hole entropy at the microscopic level has been a major focus of

research in string theory and M-theory in the past years. While the microscopics of asymp-

totically flat PBS black holes in four and five dimensions is by now well understood [1]

(For review, see, e.g., [2] and references therein), the internal properties of general non-

extremal black holes are less understood. However, it has been known for a long time

that general asymptotically flat multi-charged rotating black holes in four [3] and five [4]

dimensions 1 have a tantalizing entropy formula [3] and the first law of thermodynamics

[7, 8, 9] associated with the inner and outer black hole horizons, which are highly sugges-

tive of a possible microscopic interpretation in terms of a two-dimensional conformal field

theory (CFT). Specifically, entropies S± of outer and inner horizon are of the form [3, 8, 9]:

S± = 2⇡(
p
NL ±

p
NR), where the quantities NL and NR may be viewed as the excitation

numbers of the left and right moving modes of a weakly-coupled two-dimensional conformal

field theory. The product S+ S� = 4⇡2(NL � NR) should therefore by quantised in an

integer multiple of 4⇡2 [7, 8, 9] (and re-emphasized in [10]). Indeed, one finds:

S+ S� = 4⇡2
⇣ 4Y

i=1

Qi + J2
⌘
, (2)

S+ S� = 4⇡2
⇣ 3Y

i=1

Qi + J1J2
⌘
, (3)

(4)

for four and five dimensional black holes, respectively. (These results were implicit in

[8, 9], though not explicitly evaluated.) These expressions are moduli independent and are

expressed solely in terms of the quantized duality invariant quartic (cubic) charge form and

quantised angular momenta.

In parallel developments Ansorg and collaborators (see, e.g., [11, 12] and references

therein) studied axi-symmetric solutions of Einstein-Maxwell gravity, with sources external

to the outside horizon. They obtained striking universal formulae expressing the entropy

1Those black hole solutions are generating solutions of maximally supersymmetric N = 4 (N =

8)supergravity theories obtained as toroidal compactifications of the heterotic string (or of Type IIA string

or M-theory). In addition to the mass M , these solutions are specified in four dimensions by four charges Qi

(i = 1, ,4) and one angular mementum J , and in five dimensions by three charges Qi (i = 1, 2, 3) and two

angular momenta J1,2. It turns out that in four-dimensions the complete generating solution is specified by

an additional fifth charge, which has been obtained only in the BPS [5] and static [6] cases.
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parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that all
m + 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles on B.
Then, we can use the (C⇤

)
m-action of the toric variety PFi to set m variables to transform in

the trivial bundle of B. The divisors dual to the two remaining line bundles are precisely D, D̃.
Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in which

the coefficients aq have to take values in terms of the two divisors D and D̃. Then, we require
(2.23) to be a section of the anti-canonical bundle K

�1
PB
Fi

, which is the Calabi-Yau condition.

In addition, equation (2.23) imposed in PB
Fi
(D, D̃) clearly describes a genus-one fibration over

B, since for every generic point on B, the hypersurface (2.23) describes exactly the curve CFi

in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
// XFi

✏✏
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F

⇤
1 = F16. By means of (2.23),

this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a
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NR), where the quantities NL and NR may be viewed as the excitation
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field theory. The product S+ S� = 4⇡2(NL � NR) should therefore by quantised in an
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for four and five dimensional black holes, respectively. (These results were implicit in

[8, 9], though not explicitly evaluated.) These expressions are moduli independent and are

expressed solely in terms of the quantized duality invariant quartic (cubic) charge form and

quantised angular momenta.

In parallel developments Ansorg and collaborators (see, e.g., [11, 12] and references

therein) studied axi-symmetric solutions of Einstein-Maxwell gravity, with sources external

to the outside horizon. They obtained striking universal formulae expressing the entropy

1Those black hole solutions are generating solutions of maximally supersymmetric N = 4 (N =

8)supergravity theories obtained as toroidal compactifications of the heterotic string (or of Type IIA string

or M-theory). In addition to the mass M , these solutions are specified in four dimensions by four charges Qi

(i = 1, ,4) and one angular mementum J , and in five dimensions by three charges Qi (i = 1, 2, 3) and two

angular momenta J1,2. It turns out that in four-dimensions the complete generating solution is specified by

an additional fifth charge, which has been obtained only in the BPS [5] and static [6] cases.
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Over the locus  s3 = 0 à fiber degenerates to I2 - fiber à  SU(2) 

Over the locus  s9 = 0 à fiber degenerates to I3 - fiber à SU(3) 
Cartan divisors of these gauge groups:

Two rational sections: 

- zero section
- section associated with U(1)

Standard Model gauge symmetry: SU(3) x SU(2) x U(1)

[u : v : w : e1 : e2 : e3 : e4]
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Global Standard Model Gauge Symmetry & Matter Reps.
 

Matter (at co-dim 2 singularities):

Construct G4 for chiral index & D3-tadpole constraint 

[M.C., Lin, 1706.08521]Shioda map: 

Global gauge group structure of F-theory compactifications

Example: F-theory ‘Standard Model’

Toric construction with gauge algebra su(3)� su(2)� u(1). [Klevers et al ’14], [Cvetič et al ’15]

'(�) = S � S0 +
1
2 E

su(2)
1 + 1

3(2E
su(3)
1 + E su(3)

2 ) ) C 6 = 1,
so Gglobal = [SU(3)⇥ SU(2)⇥ U(1)]/hC i ⇠= [SU(3)⇥ SU(2)⇥ U(1)]/Z6.
Rsu(3)�su(2) (3, 2) (3, 1) (1, 2) (1, 1)

L(R) 1/6 2/3 1/2 0

geometrically realized matter: (3, 2)1/6 , (1, 2)�1/2 , (3, 1)2/3 , (3, 1)�1/3 , (1, 1)1
= (physical) Standard Model representations.
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Compatible with the Z6 global constraint

1

C-central element



Base B = Divisors in the base:

n7\
n9 1 2 3 4 5 6 7

7 - (27; 16) - -
6 - (12; 81) (21; 42) - -
5 - - (12; 57) (30; 8) - (3; 46)

4 (42; 4) - (30; 32) - - - -
3 - (21; 72) - - - (15; 30)

2 (45; 16) (24; 79) (21; 66) (24; 44) (3; 64)

1 - - - -
0 - - (12; 112)

-1 (36; 91) (33; 74)

-2 -
Table 2: The entries (b, nD3) show the minimal number of families b for which the number
nD3 of D3-branes is integral and positive for integral 3D CS-terms. At the allowed points for
(n7, n9) marked as "-" the number of D3-branes is negative for all positive integral values of b.

and compute the individual numbers of left- and right-chiral fermions for the G4-flux (3.14).
Unfortunately, these techniques are not available as of now, see however [100] for promising
recent advancements in this direction. Thus, we work in the following under the assumption
that the desired vector-like pair is indeed part of the massless spectrum. Then it would be
possible to induce the following bilinear coupling

W ⇢ µHuHd + �
i
HuLi . (3.25)

These two terms could be generated by tuning the complex structure of our model to a model
with enhanced (non-Abelian or Abelian) gauge symmetry and a SM-singlet 1, that admits
Yukawa couplings with Hu, Hd and Li, respectively. Then if 1 acquires a VEV, which breaks
the enhanced gauge symmetry, the superpotential (3.25) could be generated. While the µ-
term has to be very small in order to be consistent with electroweak symmetry breaking, the
�
i terms are lepton violating and hence they must be adequately suppressed. We note that

both these coefficients are moduli dependent functions, that cannot be computed by known
techniques. However, we expect that in a sufficiently generic geometry the moduli of XF11

allow for appropriate tunings providing a phenomenologically viable scenario. At this point,
we must remark that the geometry of XF11 offers no obvious way by which we could assign a
quantum number to forbid the µ-term or the �

i terms.
Regarding the trilinear couplings we note that it was shown in [22] that all gauge invariant

trilinear couplings are realized geometrically, see Table 3.
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Solutions (#(families);nD3) for allowed (n7,n9):

Standard Model:

S7 = n7HP3

S9 = n9HP3

Hyperplane divisor class

1 Introduction

n1, n2, n7, n9 2 Z EFi E (1)

G4 +
1

2
c2(X̂) 2 H

4(Z, X̂) G4 +
1

2
c2(X) /2 H

4(Z, X̂) (2)

n7 n9 (3)

Understanding black hole entropy at the microscopic level has been a major focus of

research in string theory and M-theory in the past years. While the microscopics of asymp-

totically flat PBS black holes in four and five dimensions is by now well understood [1]

(For review, see, e.g., [2] and references therein), the internal properties of general non-

extremal black holes are less understood. However, it has been known for a long time

that general asymptotically flat multi-charged rotating black holes in four [3] and five [4]

dimensions 1 have a tantalizing entropy formula [3] and the first law of thermodynamics

[7, 8, 9] associated with the inner and outer black hole horizons, which are highly sugges-

tive of a possible microscopic interpretation in terms of a two-dimensional conformal field

theory (CFT). Specifically, entropies S± of outer and inner horizon are of the form [3, 8, 9]:

S± = 2⇡(
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NL ±
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NR), where the quantities NL and NR may be viewed as the excitation

numbers of the left and right moving modes of a weakly-coupled two-dimensional conformal

field theory. The product S+ S� = 4⇡2(NL � NR) should therefore by quantised in an

integer multiple of 4⇡2 [7, 8, 9] (and re-emphasized in [10]). Indeed, one finds:
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⇣ 4Y
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2
⌘
, (4)
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⇣ 3Y
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Qi + J1J2

⌘
, (5)

(6)

for four and five dimensional black holes, respectively. (These results were implicit in

[8, 9], though not explicitly evaluated.) These expressions are moduli independent and are

expressed solely in terms of the quantized duality invariant quartic (cubic) charge form and

quantised angular momenta.

1Those black hole solutions are generating solutions of maximally supersymmetric N = 4 (N =

8)supergravity theories obtained as toroidal compactifications of the heterotic string (or of Type IIA string

or M-theory). In addition to the mass M , these solutions are specified in four dimensions by four charges Qi

(i = 1, ,4) and one angular mementum J , and in five dimensions by three charges Qi (i = 1, 2, 3) and two

angular momenta J1,2. It turns out that in four-dimensions the complete generating solution is specified by

an additional fifth charge, which has been obtained only in the BPS [5] and static [6] cases.

H=4

Tip of the Iceberg?

Classify'all''vacua'with'fixed'E'in'dP2''&'chosen'base'B'in'D=6'and'D=4''
Example:'D=4,''

:'

1.''!X'''generic'[all'si'exist,'generic]:'U(1)'x'U(1)'

2.'!X''non>generic'[si,realize'SU(5)'at't=0]:'SU(5)'x'U(1)'x'U(1)'

S7 = n7HP3

S9 = n9HP3

s3 = t2s03

s2 = t2s02

s5 = ts05

s1 = t3s01

Construc+on'of'CY''Ellip+c'Fibra+ons'

B = P3

Can construct and  
study entire family  
of CY’s explicitly 



II. Landscape of Standard Models 
                                                      Toric analysis    



[M.C., J. Halverson, L. Lin, M. Liu and  J. Tian, 1903.0009]
 
 a) Take the same toric elliptic fibration as before:    

     hyperplane constraint in 2D reflexive polytope F11

    Gauge symmetry:
Global gauge symmetry

Toric hypersurface fibrations for 4D chiral F-theory models: In order to introduce
some notation used throughout this work, we conclude this introductory section with a very
brief review of CY-fourfolds X constructed as toric hypersurface fibrations. A detailed account
on this subject can be found in [22].

We consider here elliptically fibered Calabi-Yau manifolds XFi whose elliptic fiber is realized
as the general CY-hypersurface in a 2D toric variety PFi associated to one of the 2D reflexive
polyhedra Fi. Here we focus on the polyhedra F11, F13 and F16 in [22], that naturally yield
phenomenologically interesting models. In these cases, the corresponding toric ambient vari-
eties PFi of the elliptic fiber are blow-ups of P2. The elliptic curves in all considered cases is
consequently given as an appropriate specialization of the general cubic

p = s1u
3 + s2u

2
v + s3uv

2 + s4v
3 + s5u

2
w + s6uvw + s7v

2
w + s8uw

2 + s9vw
2 + s10w

3
. (2.8)

Here the coefficients si take values in a field K and [u : v : w] are projective coordinates on P2.
An elliptic fibration XFi with fiber given by (2.8) or specializations thereof is constructed by

first fibering the toric ambient space PFi over a chosen base B, then imposing (2.8) and finally
demanding the CY-condition. In this procedure, the coordinates [u : v : w] and the coefficients
si in (2.8) are lifted to sections of appropriate line bundles on B. The CY-condition fixes these
line bundles to the following:

section Line Bundle
u O(H + S9 + [KB])

v O(H + S9 � S7)

w O(H)

section Line Bundle
s1 OB(3[K

�1
B

]� S7 � S9)

s2 OB(2[K
�1
B

]� S9)

s3 OB([K
�1
B

] + S7 � S9)

s4 OB(2S7 � S9)

s5 OB(2[K
�1
B

]� S7)

s6 K
�1
B

s7 OB(S7)

s8 OB([K
�1
B

] + S9 � S7)

s9 OB(S9)

s10 OB(2S9 � S7)

(2.9)

Here, O(D) denotes the line bundle associated to a divisor D,5 H is the hyperplane on P2,
[K�1

B
] is the anti-canonical divisor of B and S7, S9 are the divisor classes of s7, s9, respectively.

We note that the table on the right hand side in (2.9) applies for all examples studied below.

3 Minimal Supersymmetric Standard Model:

GF11 = SU(3) ⇥ SU(2) ⇥ U(1)

In this section we discuss an F-theory compactification on the elliptically fibered CY-manifold
XF11 which yields precisely the gauge group and representation content of the Minimal Super-
symmetric Standard Model (MSSM) [22].

5A subscript indicates the space over which this line bundle is defined, e.g. OB(D) denotes a line bundle
over B. If a subscript is omitted, the line bundle lives on the ambient space of X.
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F0

pF2 = (b1 y
2 + b2 s y + b3 s

2) x2 + (b5 y
2 + b6 s y + b7 s

2) x t+ (b8 y
2 + b9 s y + b10 s

2) t2 .

x, y, s, t bi

[x] [y]

DZ2 =[x]

DU(1) = [x]� [y] .

U(1)⇥Z2

SU(2) : {e0, e1}
SU(3) : {f0, f1, f2}

b1 = e0f1f
2
2d1 b3 = e0f0f2d3 b6 = d6 b8 = e1f1d8 b10 = e1f

2
0 f1d10

b2 = e0f2d2 b5 = f1f2d5 b7 = f0d7 b9 = e1f0f1d9

DZ2 =[x]

DU(1) =[x]� [y]� 1

2
E1 � (

1

3
F1 +

2

3
F2)

G =
SU(3)⇥ SU(2)⇥ U(1)

Z6
⇥ Z2

[d1] = 3KB � S7 � S9 �W2 [d2] = 2KB � S9 �W2 [d3] = KB + S7 � S9 �W3 �W2

[d5] = 2KB � S7 [d6] = KB [d7] = S7 �W3

[d8] = KB + S9 � S7 [d9] = S9 �W3 [d10] = S9 + S7 �KB � 2W3

K
�1
B

W2

W3

S7, S9

b) Take bases B, associated with 3D reflexive polytopes 

                                                                                   

For each reflexive polytope, different bases B are associated
with different fine-star-regular triangulations of a chosen polytope
[Triangulations determine intersections of divisors]
Triangulations grow exponentially with the complexity of a polytope

E.g.,

[Batyrev;
Kreuzer-Skarke]

[M.C., Lin, 1706.08521]



c)  Specific choice of divisors:                  
      [anti-canonical divisor of the base B – fixed by the polytope]
     

      U(1) - (height-pairing) divisor volume               à
 
   

SU(3) an SU (2) divisors S9 and S3 with class            à 

Standard Model with gauge coupling unification! 

Connected torically to Pati-Salam Model SU(4)CxSU(2)LxSU(2)R

Non-torically connected to SU(5) GUT
[Taylor, Turner 1906.11092; & Ranghuram 1912.10991]

c.f., [M.C., Klevers, Peña, Oehlmann, Reuter,1503.02068]



d) Remaining conditions: 
    iii. 3-families of quarks and leptons (chiral index) 
    iv.  D3-tadpole constraints

    

• In the case                and nF – families, the D3 tadopole:

• Chirality, D3 tadpole and G4 integrality expressed in terms 
    of intersection numbers of divisors in the base B à 
    Geometric conditions!

• Construct G4 flux in terms of (1,1)-forms, Poincaré dual   
     to divisor classes 

Geometrized D3-tadpole condition 
Depends only on the polytope and not on triangulation à 

c.f., [Lin, Mayrhofer, Till,Weigand, 1508.00162]
        [M.C., Grassi, Klevers, Piragua, 1306.3987]

Universality of  the Standard Model

Technical, no time 



• Triangulation of polytopes can be handled combinatorially
    (each corresponds to a different basis B).
     It can be implemented on computer, e.g., in SageMath: 
  i) for 237 polytopes w/ < 15 lattice points à414310 MSSM models.
 ii) for 471 polytopes w/ ≥ 15 lattice points – exp. growing comp. time à       
     counting via fine-regular triangulation of facets & estimate regular fine-star triang.

• Out of 4319 3D reflective polytopes à 708 satisfy the constraint 
    (many of them with a large number of lattice points).

Landscape count for nF=3 families:

c.f., [Halverson, Tian, 1610.08864]

satisfied for
toric

• Provide a bound:



Summary

Globally consistent F-theory Standard Models 
    (Toric techniques w/elliptic fibration: hypersurface in F11)

     
    

Anticipated: tip of the iceberg 

Landscape of globally consistent Standard Models 
w/ exact chiral spectrum of three-families of quarks &leptons
& gauge coupling unification > quadrillion models 

Indeed, geometric advances

First three family Standard Models



III. Further AnalysisIII. Further Analysis



III.a Moduli stabilization 
 Related to issues of supersymmetry breaking, cosmological
         implications, dark matter candidates…

i) gauge coupling constraint: 
à Vol(   )
ii) all divisor and curves w/ volumes  (in string units) in order to 
suppress world-sheet and ED3 instanton contributions, 
c.f.,                ≪ 1.                

Moduli Stabilization for quadrillion Standard Models
                                           [M.C., Long, Halverson, Lin, 2004.00630]
Under which conditions moduli stabilization can be pursued via 
effective field theory techniques w/ gs perturbative 
(à la KKLT or Large Volume Scenario):



à Stretched Kähler cone 
•  where all divisors & curves w/volumes >1

•  Since             à  à Vol(    ) expected to be typically large

h(1,1)<7 à~104 out of quadrillion models satisfy constraints 

h(1,1)

Distribution of  Min(Vol(  )) 
[one triangulation per each of 4319 polytopes] 

Target volume~ 25



Comments: 

• Moduli stabilization scenarios, based on effective theory & 
perturbative gs  (KKLT,LVS), significantly reduces the number 
of viable Standard Models with gauge coupling unification. 

Further exploration of other Standard Model constructions
   

• Moduli stabilization could  take place in a regime where 
effective theory & perturbative string theory approaches fail. 

   à poorly explored/difficult to explore.

• Could abandon to have only Standard Model and/or gauge  
coupling unification à typically leads to additional D7-(p,q) 
sectors w/ interesting dark gauge sector implications.

c.f., Halverson, Long, Nelson, Salinas 1909.05257



[Bies, M.C., Donagi, Lin, Liu, Rühle 2007.00009] 

III.a  Counting of vector matter pairs

Depends on C3 potential, encoded in intermediate the Jacobian of Y4.

[…Donagi,Wijnholt ’08,…,Bies,Mayrhofer, Pehle, Weigand ‘14,’17]

When restricted to the matter  curve C, C3 defines a line bundle L w/

massless chiral modes ⊂ H0(C ; L) 
massless anti-chiral modes ⊂ H1(C ; L) 
[chiral index 𝛘 = h0 - h1 topological invariant (depends on G4 =dC3)]

Hi(C;L) – computation via algorithm implemented in computer algebra 
                                         system CAP [Bies ’17; Bies, Posur ’19]



For the quadrillion Standard Models the analysis difficult due to the 
complexity of the construction and high genera of matter curves. 

Goal: to determine the range of complex structure moduli 
of the F-theory compactification, for which we have the 
Minimal Supersymmetric Standard Model 
(one Higgs doublet pair, no other vector pair exotics). 
         

Counting of vector matter pairs  

Making progress…

[Martin Bies, M.C., Ron. Donagi, L. Lin, M. Liu, Fabian Rühle, 2007.0009]
[Bies,M.C. Donagi, Liu, 2102.10115, 2104.08297]  
[Bies,M.C. Donagi, Marielle Ong, 2205.00008, 2307.02535]



Outlook
 Particle physics models in F-theory compactifications
 have come a long way, but there is much more to go.

• Technical advances, to be pursued: 
     Exact matter spectrum for quadrillion Standard Models
      Yukawa couplings (some progress for a toy model) 
                                     [M.C., Lin, Liu, Zoccarato, Zhang 1906.10119]

      Systematic exploration of other particle physics models 
      (possibly beyond toric techniques) à

        
       c.f., W. Taylor’s et al. talk(s)



Thank you!


