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|. The program:
Globally consistent F-theory compactifications with the
gauge symmetry and matter spectrum of the Standard Model

Key building blocks: gauge symmetry; matter spectrum; global conditions
Upenn-centric

ll. Status of constructions: via toric geometry techniques

a) First globally consistent three-family Standard Model
[M.C., Klevers, Penia, Oehlmann, Reuter 1503.02068;

M.C., Lin, Liu, Oehlmann 1807.01320]

b) Landscape of three-family Standard Models
[M.C., Jim Halverson, Ling Lin, Muyang Liu, Jiahua Tian,
“A Quadrillion Standard Models from F-theory’” 1903.00009, PRL]

ll. Further analysis: _ - _ Time permitting
a) Constraints on moduli stabilization scenarios

[M.C., Cody Long, J. Halverson,L. Lin 2004.00630]
b) Toward charged vector matter pairs

[Martin Bies, M.C., Ron. Donagi, L. Lin, M. Liu, Fabian Riuhle 2007.0009]
[Bies,M.C. Donagi, Liu 2102.10115, 2104.08297]

[Bies,M.C. Donagi, Marielle Ong 2205.00008, 2307.02535]




Outline:
|. F-theory: Geometric Approach

Appearance of non-Abelian gauge symmetry,
matter and Yukawa couplings

Appearance of Abelian continuous and discrete
symmetries, global constraints

Il. Construction of Particle physics Models Highlight
Building blocks for consistent models via toric techniques
Landscape of three-family Standard Models

lll. Further Analysis: Time permitting

Constraints on moduli stabilization scenarios for Standard
Model constructions; toward vector-pair matter calculation

V. Outlook: work in progress & open issues



F-theory?

Type Il String

* back-reacted
D-branes

* regions with large
gs on non-CY space

gs —string coupling



F-theory?

F -theory = Type Il String
Coupling g part of * back-reacted
geometry (12dim) D-branes

« Torus fibered  regions with large
Calabi-Yau manifold gs on non-CY space

gs —string coupling



F-theory?

M-theory (11dim SG)

on S’
F-theory - Type 1B
Coupling g part of * back-reacted
geometry (12dim) D7-branes

* regions with large
gs on non-CY space

gs —string coupling



F-theory?

S
M-theory Type | on T2
imit vol(72)=>» 0
on S’
c.f. L. Anderson’s {dlk
E.XEg Het.

Certain

F-theory - Type 1IB
setups .
« Coupling g¢ part of * back-reacted
geometry (12dim) D7-branes

 regions with large
gs on non-CY space

Certain
setups

< > Type |
SO(32) Het. €5 =



|. F-theory basic ingredients
Type |IB string perspective



F-theory compactification
[Vafa’96], [Morrison,Vafa’96]

| | __ review FWei and 1806.01854]
Singular torus fibered Calabi-Yau manifold X (N=1 supersymmetry)

To B add torus:°

Modular parameter of torus
(elliptic curve)

T=CH+ igs_l
(SL(2,7Z) of Type |IB string)

B-3D Kahler

divisor
Weierstrass normal form for torus (elliptic) fibration of X
6

y’ = a° + fxz* + g2

[z:x:y] - homogeneous coordinates on P%(1,2,3) (z,y, 2) ~ (\2z, X3y, \2)
weighted projective space B
f, g —sections of K and Kz on B Kz -anti-canonical bundle on B



F-theory compactification

Singular elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus

(elliptic curve)
7= Co+ig, "

divisor- singular elliptic-fibration
g.~2> location of (p,q) 7-branes

Non-Abelian gauge symmetry
(co-dim 1) — ADE singularities



|.a Non-Abelian Gauge Symmetry
Standard Model has SU(2), x SU(3):



Non-Abelian Gauge Symmetry
[Kodaira],[Tate], [Vafa], [Morrison,Vafa],...[Esole,Yau],
[Hayashi,Lawrie,Schafer-Nameki],[ Morrison], ...

* Weierstrass normal form for elliptic fibration of X

y2 _ 333 _|_fo4 —|—gZ6

« Severity of singularity along divisor S in B
specified by [ord(f),ords(g),ords(4)]

e Resolution: structure of a tree of P! ‘s over S

Resolved /,-singularity <-> SU(n) Dynkin diagram :”

Kodaira classification (ADE classification) N=95

Cartan gauge bosons: supported by (1,1) form w; < P} on resolved X

(via M-theory Kaluza-Klein reduction of C; potential Cs D A’w; )

Non-Abelian gauge bosons: light M2-brane excitations on P*s
[Witten]



F-theory compactification

Singular elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus

(elliptic curve)
7= Co+ig, "

Matter (co-dim 2)

divisor- singular elliptic-fibration
g.~2> location of (p,q) 7-branes

Non-Abelian gauge symmetry

(co-dim 1) — ADE singularities
Abelian symmetries different
- More later



Matter

Standard Model SU(2), x SU(3): has
quarks Q ~( 2 , 3 )



Matter

Singularity at codimension-two in B:

l, fiber Singular fib

@



Matter

Singularity at codimension-two in B:

l, fiber Singular fib

@ -
at

<

w/isolated (M2-matter) curve wrapping P! = charged matter
(determine rep. via intersection theory)



F-theory compactification

Singular elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus

(elliptic curve)
7= Cy+ig; " S

Matter (co-dim 2)

Chirality: Should add G,-flux - More later
c.f., [Lin, Mayrhofer, Till,Weigand, 1508.00162]
[M.C., Grassi, Klevers, Piragua, 1306.398

Yukawa couplings
(co-dim 3) = No time

Non-Abelian gauge symmetry
Divisor- singular elliptic-fibration (co-dim 1) — ADE singularities
gs=2 location of (p,q) 7-branes Abelian symmetries different

- More later



l.b Abelian Gauge Symmetry - U(1)
Standard Model has SU(2), x SU(3):x U(1)y



l.b Abelian Gauge Symmetry - U(1)

Different: (1,1) forms w,,, supporting U(1) gauge bosons, isolated
& associated with /,-fibers, only

[ Morrison,Vafa’96]

[ (1,1) -form  w,y, “ rational section ofellipticfibration]




Abelian Gauge Symmetry & Mordell-Weil Group

[rational sections of elliptic fibr. s rational points of elliptic Curve]




Abelian Gauge Symmetry & Mordell-Weil Group

[rational sections of elliptic fibr. s rational points of elliptic CurveJ

Rational point Q on elliptic curve E with zero point P
. s solution (zqg,Yqg,%q) in field K of Weierstrass form

yz — 13 + fa:'z4 + ng »
« Rational points form group (addition) on E Q

» [I\/IordeII-WeiI group of rational points J E




U(1)'s-Abelian Symmetry &Mordell-Weil Group

Point (Q E induces a rational section $o : B — X of elliptic fibration
torus

» §Q gives rise to a second copy of B in X:

new divisor B, in X



U(1)’s-Abelian Symmetry &Mordell-Weil Group

Point () E induces a rational section 55 : B — X of elliptic fibration

» 50 gives rise to a second copy of B in X:

new divisor B, in X » Construct (1,1) form Wy, from Bgq

Shioda map of 5,5, complementary to B - zero section & E; - Cartan divisors:

0(3q) = Bg — Bp — li By + -
zi: [M.C., Lin, 1706.08521]

Implications for global constraints on gauge symmetries—> shortly



Earlier work: [Grimm,Weigand 1006.0226]...[Grassi,Perduca 1201.0930]
[M.C.,Grimm,Klevers 1210.6034]...

DI)Ef(pIi]cit Examples: (n+1)-rational sections — U(1)"
eligne

[via line bundle constr. on elliptic curve E- CY in (blow-up) of WIP™]
n=0:. with P - generic CY in P*(1,2,3) (Tate form)

n=1: with P, Q - generic CY in BI;P?(1,1,2) [Morrison,Park 1208.2695]...



Explicit Examples: (n+1)-rational sections — U(1)"

n=0: with P - generic CY in P*(1,2,3) (Tate form)

_q. : i} i in BLP%(1,1,2
n=1: with P, Q- generic CY in BLIP*(1,1,2) [Morrison,Park 1208.2695]...

n=2: with P, Q, R - specific example: generic CY in dP,

[Borchmann,Mayerhofer,Palti,Weigand
1303.54054,1307.2902]
[M.C.,Klevers,Piragua 1303.6970,1307.6425]
[M.C.,Grassi,Klevers,Piragua 1306.0236]

generalization to nongeneric cubic in P*[u : v : w] Scollisions of P,Q,R->
- gauge enhancement & higher index representations....

[M.C.,Klevers,Piragua,Taylor 1507.05954]

n=3: with P, Q R, S-CICY inBl;P’
n=4: determinantal variety in P*  [M.C.,Klevers,Piragua,Song 1310.0463

higher n, not clear... 4 me = ¢.£,[M.C. Lin,1809.00012] TASI review



[M.C. and Ling Lin 1706.08521]
c.f., review [M.C. Lin,1809.00012]

l.b U(1) & Non-Abelian Gauge symmetry

Shioda map of section 3, more involved than B:

a map onto divisor complementary to B, divisor of zero section Sp

& E;— resolution (Cartan) divisors of non-Abelian gauge symmetry

Ensures proper F-theory interpretation of U(1)
(via M-theory/F-theory duality)

l; = C'(Bg — Bp).P; - fractional # always an integer k s.t. Vi: kl; € Z

T 1

Cartan matrix Fiber of divisor E



Construct non-trivial central element of U(1) x G:

Employing (a) g1y = 2.n € Z & (b) liw; = fiv; mod Z = L(RY)

W, V; — rep. weights

C(w) = [e2™iaW) @ (e=2mi hwi 5 1)]w B) rg2mig(w) o (627 L(Re) 5 )] w
defines element in centre of U(1) x G; (a) = C* = 1.

& C(w) =exp(2mi&(w))w = w. ¢(w) = (Bg — Bp) . P € Z
o
2




Global Constraint on Gauge Symmetry:

c U xG6 U(1)xG
global — <C> — ZKJ

Exemplify for SU(5) GUT’s and Standard Model constructions
Including for globally consistent three family SM

More later



l.c Discrete Abelian Gauge Symmetries Z

In Standard Model one often introduces Z, (R-parity)
to prevent baryon number violating couplings



|.c Discrete Abelian Gauge Symmetries - Z,

Geometric origin: torus fibrations that do not admit a section, but a
multi-section

o Ay A ——_ Bisection 4
. / \ '91 U '92 ) / g /\ \\\‘l y // \\-. .‘

f I' | { "' \
| ' |
) .

Earlier work: [Witten; deBoer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi;...]

Recent extensive efforts’14-'16: [Braun, Morrison; Morrison, Taylor;

Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter; Anderson,Garcia-Etxebarria,
Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand; M.C., Donagi, Klevers,
Piragua, Poretschkin; Grimm, Pugh, Regalado; M.C., Grassi, Poretschkin,;...]

Standard Model with Z, matter parity [M.C., Lin, Liu, Oehlmann 1807.01320]



Transition between continuous and discrete symmetry:
U(1)>Z, example

Indenpendent Sections
Singular codim-2 locus

2 -fiber §; blow-down
(P'in the geometry w/
U(1 ) multiple sections collapses)

Massless field
¢ with charge 2

l deformation

¢ acquires VEV
<¢>#0 5 U, N Bisection
7 eformation
2 ; .
S3 glues several sections
"‘\ \“ / to a multi-section)

Field theory Geé_fﬁetry



|.c Discrete Abelian Gauge Symmetries

Geometries with n-section “= Tate-Shafarevich Group Z,

22 [Anderson,Garcia-Etxebarria, Grimm;
Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand’14]

Z3 [M.C.,Donagi,Klevers,Piragua,Poretschkin 1502.06953]
No time, but



Tate-Shafarevich group and Z;

[M.C., Donagi, Klevers, Piragua, Poretschkin 1502.06953]

~—

Jacobian action \ (CUbiC In P2)

differ
as elements
of III(J(X))

Jacobian J(X)

Haverse action

| X, with tri-section
There are three different elements of the TS group! (cubic in P2)

Shown to be in one-to-one correspondence with three M-theory vacua.

RN Z



ll. Particle physics Constructions



Initial focus: F-theory with SU(5) Grand Unification

[Donagi,Wijnholt’08][Beasley,Heckman,Vafa’08]...

Model Constructions:
local [Donagi,Wijnholt’09-10]...[Marsano,Schafer-Nameki,Saulina’09-11]...
Review: [Heckman]

global

[Blumehagen,Grimm,Jurke,Weigand’O9][M.C., Garcia-Etxebarria,Halverson’10]...
[Marsano,Schafer-Nameki’l1-12]...[Clemens,Marsano,Pantev,Raby,Tseng '12]...

Progress on Standard Model:

Standard Model building blocks (via toric techniques) [Lin,Weigand’14]

4




ll. Particle physics Constructions

Globally consistent models via torique techniques



Construction of elliptically fibered Calabi-Yau manifold

.. Elliptic curve E

Examples of constructions via toric techniques:
L'r, as a hypersurface in the two-dimensional toric variety P,
(generalized weighted projective spaces, associated with16 reflexive polytopes ).

c.f., [Klevers, Pena, Oehlmann, Piragua, Reuter '14]
EF,L-: {pFi — O} 1n IP)F,L

ii. Elliptically fibered Calabi-Yau space: Xp.

Impose Calabi-Yau condition:
coordinates in P, and coeffs. of EF lifted to

sections of specific line-bundles on B FEr C Pp —= Xp

Fibration depends only on the anti-canonical divisor K l
& two additional S; and Sq divisor classes B



lii. Chiral index for D=4 matter:
Standard Model with three families of quarks and leptons



. Chiral index for D=4 matter:

Cmat 7 CR

X(R) = Gy l

Cr

. 2R
a) construct G, (=dCs) flux by computing H<V2’2> (X)
[so-called vertical fluxes — do not induce Gukov-Vafa-Witten potential]
b) determine matter surface Cr (via resultant techniques)

Iv. Global consistency — D3 tadpole cancellation:

X 1
%ZRD3+§/XG4/\G4

a) satisfied for integer and positive np; |

b) constraint on integer valued flux G, Gy + 5cz(X) €HYZ,X)



C.f., Standard Model building blocks (via toric techniques) initiated in
[Lin, Weigand’14] ; SM x U(1) [1604.04292]

Standard Model

[M.C., Klevers, Pena, Oehlmann, Reuter,1503.02068]
el P F11

Uu
F,, polytope \ P2 [u:v:w] with four non-generic
€ blow-ups [e4:e5:e5:€,]

Elliptic curve: & v
PFr,, = sle%egegeiu?’ —+ 52ele§e§eiu2v —+ 53e§e§uv2 —+ 356%6262’&211} + Sg1€ae3e4UVW + 39elvw2

Hypersurface constraint in Pgq;

!

Construction of Calabi-Yau four-fold



Construction of Calabi-Yau four-fold
EFﬁC Pf“?a E Xf“?a

Coordinates and s; - sections of line-bundles of the base B l

[Toric techniques via Stanley-Reisner ideal] = B
section Line Bundle
Section Line Bundle S1 OB (3[K§1] — 87 — Sg)
u OH-E, —FE,—E;+8,+ K _
v ( OH-&, = s J:Sg -:‘E) o) 52 03(2[5(81] —So)
w O(H —E,) Sg Op([Kg'| + 87 — So)
e O(E1 — Ea) Og(2S, — S
& o Sy B( T 9)
e O(Es) S5 Op(2[Kp'] — &)
€4 O(E,) Sg Kgl
St Op(S;)
S8 OB([KIEI] + Sg — 87)
. _ Op(Se)
H - hyperplane divisor % B
yperp ’ 0 | 0828 - 8))

Kg™! - anti-canonical divisork

Fibration depends only on additional S; and Sq divisor classes.



Construction of Calabi-Yau four-fold = Divisors
EF{F Pf“?a E Xf“?a

Over the locus s; = 0 - fiber degenerates to |, - fiber 2> SU(2) l
Over the locus sq= 0 - fiber degenerates to |5 - fiber > SU(3) B
Cartan divisors of these gauge groups:

SU(2 SU(3 SU(3
EV? =[e)], E}"Y =[e) E}'® =y

Two rational sections:
U:VIW:.€q:€r:.€3: €]

So=Xp,N{v=0} : [1:0:s:1:1:—s5:1] - zero section
S$1=Xp,N{es=0}: [sg:1:1:—s3:1:1:0]-section associated with U(1)

$

Standard Model gauge symmetry: SU(3) x SU(2) x U(1)




Global Standard Model Gauge Symmetry & Matter Reps.

gauge algebra su(3) & su(2) @ u(1)

Shioda map: [M.C., Lin, 1706.08521]

C-central element

\ 4
Gglobal = [SU(3) x SU(2) x U(1)]/(C) = [SU(3) x SU(2) x U(1)]/Zs.
Matter (at co-dim 2 singularities):

(3,2)1, (1,2)_1, (3,1)_2, (3,1)1, (1,1),

1 L
6 2 3 3

Compatible with the Zg global constraint

4

Construct G, for chiral index & D3-tadpole constraint



Standard Model: Hyperplane divisor class

H=4C
Base B =P® Divisors in the base: S- =n-H
89 — 7”L9H
. - nr,ng € 7,
Solutions (#(families);np3) for allowed (n,,ny):
a1 2 3 4 5 6 7
7 - (27;16) - -

6 - (12;81)  (21;42) = -
5 - - (12;57)
4 (42;4) - (30; 32)
3 - @euT) -

o | (45:;16) (24;79)  (21;66)
1

0

1

2

- - (12;112)
(36;91) (33;74)

- Tip of the Iceberg?




ll. Landscape of Standard Models

Toric analysis



M.C., J. Halverson, L. Lin, M. Liu and J. Tian, 1903.0009]

a) Take the same toric elliptic fibration as before:
hyperplane constraint in 2D reflexive polytope F 4
SU(3) x SU(2) x U(1
Gauge symmetry: 3) ” 2) (L)
0 Global gauge symmetry
[M.C., Lin, 1706.08521]

b) Take bases B, associated with 3D reflexive polytopes

SCHINE P2 x P!

[Batyrev;
Kreuzer-Skarke]
For each reflexive polytope, different bases B are associated
with different fine-star-regular triangulations of a chosen polytope

[Triangulations determine intersections of divisors]
Triangulations grow exponentially with the complexity of a polytope



c) Specific choice of divisors: 579 = K
[anti-canonical divisor of the base B — fixed by the polytope]

SU(3) an SU (2) divisors Sgand S; withclass £ =
g3 = 2/vol(K) B

U(1) - (height-pairing) divisor volume 5K/6 -
S 2
39V = vol(K)

4

Standard Model with gauge coupling unification!
g; =85 =5/38}

Connected torically to Pati-Salam Model SU(4)-xSU(2), xSU(2)x
c.f.,, [M.C., Klevers, Pefia, Oehlmann, Reuter,1503.02068]

Non-torically connected to SU(5) GUT
[Taylor, Turner 1906.11092; & Ranghuram 1912.10991]



d) Remaining conditions:
lii. 3-families of quarks and leptons (chiral index)

Iv. D3-tadpole constraints
Technical, no time

* Construct G, fluxin terms of (1,1)-forms, Poincaré dual

to divisor classes c.f., [Lin, Mayrhofer, Till,Weigand, 1508.00162]
[M.C., Grassi, Klevers, Piragua, 1306.3987]

« Chirality, D3 tadpole and G, integrality expressed in terms
of intersection numbers of divisors in the base B -

Geometric conditions!
* Inthe case S; 9 = K and ng — families, the D3 tadopole:

- 5K 5)
npg(np,Kg) =12+ — — L = Z>0

8 oK’
Geometrized D3-tadpole condition

Depends only on the polytope and not on triangulation -
Universality of the Standard Model




Landscape count for ng=3 families:

toric

12 4 5/C 2IC53 € Z>p satisfied for K?’ € {2,/6, 10, 18, 30

90}

* QOut of 4319 3D reflective polytopes = 708 satisfy the constraint

(many of them with a large number of lattice points).

(each corresponds to a different basis B).
It can be implemented on computer, e.g., in SageMath:

Triangulation of polytopes can be handled combinatorially

) for 237 polytopes w/ < 15 lattice points 2414310 MSSM models.

i) for 471 polytopes w/ = 15 lattice points — exp. growing comp. time =
counting via fine-regular triangulation of facets & estimate regular fine-star triang.
c.f., [Halverson, Tian, 1610.08864]

4

- Provide a bound: 7.6 x 101 < N&He < 1.6 x 10'°



Summary

Globally consistent F-theory Standard Models
(Toric techniques w/elliptic fibration: hypersurface in F,,)

First three family Standard Models

Anticipated: tip of the iceberg

l Indeed, geometric advances

Landscape of globally consistent Standard Models
w/ exact chiral spectrum of three-families of quarks &leptons

& gauge coupling unification > quadrillion models



I1l. Further Analysis



lll.a Moduli stabilization
Related to issues of supersymmetry breaking, cosmological
implications, dark matter candidates...

\ 4

Moduli Stabilization for quadrillion Standard Models
[M.C., Long, Halverson, Lin, 2004.00630]

Under which conditions moduli stabilization can be pursued via

effective field theory techniques w/ g, perturbative
(a la KKLT or Large Volume Scenario):.

i) gauge coupling constraint: @1,2,3 = acur = (gsls)/Vol(K) ~ 1/25
> Vol(X) < 6(100),
i) all divisor and curves w/vol(C,) > 1 (in string units) in order to

suppress world-sheet and ED3 instanton contributions,
C.f., g72mvol©) K 1.



- Stretched Kahler cone

« where all divisors & curves w/volumes >1
- Since K=- ). D;-> Vol(X) expected to be typically large
Distribution of Min(Vol(K))

[one triangulation per each of 4319 polytopes]

logyo(min(vol(Kg)))
500; 10 |57 [20]25 < A1)
Target volume~ 25300} _ I
200} -
100} i s
0: —h—n_.—. N
1 2 3 4 5 6 |
h(1.1<7 >~104 out of quadrillion models satisfy constraints




Comments:

* Moduli stabilization scenarios, based on effective theory &
perturbative g, (KKLT,LVS), significantly reduces the number
of viable Standard Models with gauge coupling unification.

* Moduli stabilization could take place in a regime where
effective theory & perturbative string theory approaches fail.
- poorly explored/difficult to explore.

* Could abandon to have only Standard Model and/or gauge
coupling unification - typically leads to additional D7-(p,q)

sectors w/ interesting dark gauge sector implications.
c.f., Halverson, Long, Nelson, Salinas 1909.0525%7

¥

Further exploration of other Standard Model constructions



lll.a Counting of vector matter pairs

[...Donagi,Wijnholt ’08,...,Bies,Mayrhofer, Pehle, Weigand ‘14, 17]

Depends on C; potential, encoded in intermediate the Jacobian of Y.

When restricted to the matter curve C, C; defines a line bundle £ w/

massless chiral modes c HY(C'; 1)
massless anti-chiral modes c H(C; 1)

[chiral index x = hO - h topological invariant (depends on G, =dC;)]

H(; £) — computation via algorithm implemented in computer algebra
system CAP [Bies ’17; Bies, Posur ’19]



Counting of vector matter pairs

For the quadrillion Standard Models the analysis difficult due to the
complexity of the construction and high genera of matter curves.

g = 1+9/2K3

Goal: to determine the range of complex structure moduli
of the F-theory compactification, for which we have the
Minimal Supersymmetric Standard Model

(one Higgs doublet pair, no other vector pair exotics).

Making progress...

[Martin Bies, M.C., Ron. Donagi, L. Lin, M. Liu, Fabian Riihle, 2007.0009]
[Bies,M.C. Donagi, Liu, 2102.10115, 2104.08297]
[Bies,M.C. Donagi, Marielle Ong, 2205.00008, 2307.02535]



Outlook

Particle physics models in F-theory compactifications
have come a long way, but there is much more to go.

* Technical advances, to be pursued:

Exact matter spectrum for quadrillion Standard Models

Yukawa couplings (some progress for a toy model)
[M.C., Lin, Liu, Zoccarato, Zhang 1906.10119]

Systematic exploration of other particle physics models
(possibly beyond toric techniques) =

c.f., W. Taylor’s et al. talk(s)



Thank you.’



