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Chapter 1

Basic function spaces

In what follows, we will be interested in various properties of normed spaces consisting of
functions defined on a probability space (Ω, µ). The simplest norms we shall encounter are
the Lp norms.

Definition 1.1. Let (Ω, µ) be a probability space and let X be distributed according to µ. For
1 ≤ p <∞ and a measurable function f : Ω→ R set

‖f‖Lp(µ) = (E|f(X)|p)1/p =

(∫
Ω
|f(x)|pdµ(x)

)1/p

,

and let

‖f‖L∞(µ) = inf {a : µ(|f | > a) = 0}

be is the essential supremum of f . Thus, up to a set of measure 0, |f | ≤ ‖f‖L∞.

To ease notation, we often omit the measure µ and denote the Lp(µ) norm by ‖f‖Lp.

It is standard to verify that for 1 ≤ p ≤ ∞, the functionals ‖ ‖Lp are indeed norms.
Moreover, because (Ω, µ) is a probability space, the Lp norms form a hierarchy:

‖f‖Lp ≤ ‖f‖Lq if 1 ≤ p ≤ q ≤ ∞. (1.1)

The space of measurable functions with a finite Lp norm is denoted by Lp(µ). Again, we
often omit the dependence on the measure and write Lp instead of Lp(µ). Also, observe that
by (1.1), if 1 ≤ p ≤ q ≤ ∞, then Lq ⊂ Lp.

Another useful feature of the Lp norm is that it could be computed using tail integration:

Exercise 1. Show that for 1 ≤ p <∞,

‖f‖pLp = p

∫ ∞
0

tp−1Pr(|f | > t)dt. (1.2)

A significant part of these notes is devoted to the question of preservation of structure
through random sampling. In this chapter we present a very naive version of this question,
and for a single function/random variable, and use it to describe some of the important
features of the Lp norm.

7
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Let f be a function on (Ω, µ) and let X be distributed according to µ. One is given a
sample X1, ..., XN , consisting of N independent copies of the random variable X which is
distributed according to the underlying measure µ. One would like to see when the values

(f(X1), ..., f(XN ))

can be used to reconstruct ‖f‖Lp(µ), and for that reconstruction to be valid with high prob-
ability with respect to the given sample. The simplest attempt of reconstruction is by using
the empirical mean

1

N

N∑
i=1

|f |p(Xi),

and the reconstruction is successful if there are absolute constants c and C such that, with
high probability,

c‖f‖pLp(µ) ≤
1

N

N∑
i=1

|f |p(Xi) ≤ C‖f‖pLp(µ), (1.3)

which is an isomorphic reconstruction; when c = 1− ε and C = 1 + ε for 0 < ε < 1, (1.3) is
an almost isometric reconstruction.

In this chapter we shall not explore the question of whether the empirical means can by
used to reconstruct ‖f‖Lp . Rather, let us present two examples of cases in which this question
is of interest. In both cases the central object is Rd, though viewed in different ways. As a
result, the question of Lp norm preservation via empirical means is completely different.

Remark 1.2. The fact that the empirical mean have been chosen as a preliminary recon-
struction option should not lead the reader to expect it to be a wise choice. In fact, one of
the main aspects of this presentation is that using the empirical mean is, at least from certain
aspects, rather useless: unless f is particularly nice, the empirical mean is typically close to
‖f‖pLp only for samples that belong to an event that is not very big. To obtain estimates in
the very high confidence regime, a more sophisticated recovery methods are called for.

1.1 Two examples

The space Rd is featured in two natural ways in this presentation: sometimes it serves as a
space of functions on the probability space {1, ..., d} and sometimes as a probability space,
endowed with some natural measure; in that case one is interested in functions defined on Rd.

Rd as a space of functions

The vector space Rd can be viewed as a space of functions: each v ∈ Rd corresponds to a
function defined on Ω = {1, ..., d} by setting f(i) = vi for 1 ≤ i ≤ d. Let µ be the uniform
probability measure on {1, ..., d}, i.e., the measure that assigns the weight of 1/d to each i ∈ Ω
and set

‖f‖Ldp =

(
1

d

d∑
i=1

|vi|p
)1/p

=

(∫
Ω
|f(i)|pdµ(i)

)1/p

.
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It follows that

‖v‖p =

(
d∑
i=1

|vi|p
)1/p

= d1/p

(
1

d

d∑
i=1

|v|p(i)

)1/p

= d1/p‖v‖Ldp , (1.4)

and ‖ ‖Ldp is just a re-scaling of the `p norm ‖ ‖p. The space (Rd, ‖ ‖Ldp) is denoted by Ldp,

and the unit ball in `dp is a ‘scaled-down’ copy of the unit ball in Ldp:

Bd
p = {v ∈ Rd : ‖v‖p ≤ 1} = d−1/p{v : ‖v‖Ldp ≤ 1} = d−1/pB(Ldp). (1.5)

Also, for I ⊂ {1, ..., d} set

‖v‖LIp =

(
1

|I|
∑
i∈I
|vi|p

)1/p

.

Sampling in this case consists of a selection of a subset I ⊂ {1, ..., d} and one has access
to the values f(i) for i ∈ I. Clearly, there are various ways of selecting a subset in a
reasonable way, for example, by using selectors: let δ1, ..., δd be independent, {0, 1}-valued
random variables with mean δ, and set I = {i : δi = 1}. Another natural possibility is to
select a subset uniformly from all subsets of a fixed cardinality, etc.

Intuitively, the ideal behaviour of a reasonable sampling method is that for a typical
selection of I ⊂ {1, ..., d}, (

1

d

d∑
i=1

|vi|p
)1/p

∼

 1

|I|

|I|∑
i=1

|vi|p
1/p

; (1.6)

that is, ‖v‖Ldp ∼ ‖v‖LIp . Of course, understanding when that equivalence holds, and obtaining

quantitative estimates on the equivalence constants and the probability (relative to the choice
of I) for which (1.3) holds, is, at this point, a long way away.

Rd as a probability space

Let us turn to the other role that Rd plays—as a probability space. Let µ be a probability
measure on Rd and let X be a random vector, distributed according to µ. Hence, (Rd, µ)
is a probability space, and one may consider the Lp space of functions on (Rd, µ). For the
time being, our focus is on a rather particular choice on functions: the subspace of Lp(µ)
containing the linear functionals on Rd.

Clearly, there is a natural correspondence between Rd and those linear functionals: each
v ∈ Rd defines a linear functional by

fv(x) =
〈
v, x
〉

=

d∑
i=1

vixi.

Having said that, it is far from obvious that fv actually belongs to Lp. For that to happen,
‖f‖Lp must be finite, and here

‖fv‖Lp =
(
E|
〈
X, v

〉
|p
)1/p

=

(∫
Ω

∣∣∣∣∣
d∑
i=1

vixi

∣∣∣∣∣
p

dµ(x)

)1/p

<∞.
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Here, independent sampling means that N points, X1, ..., XN , each distributed according to
X are selected independently, and in the context of (1.3), one would like to ensure that

1

N

N∑
i=1

|
〈
Xi, v

〉
|p ∼ E|

〈
X, v

〉
|p.

Despite the natural correspondence between points in Rd and the linear functionals, there is
no reason to expect any connection between ‖v‖p and ‖fv‖Lp . Although both ‖ ‖p and ‖ ‖Lp
are norms on Rd, these norms can be totally different.

In what follows we abuse notation and write ‖v‖Lp instead of ‖fv‖Lp , and let us begin by
exploring the case p = 2, in which both norms are endowed by inner products.

Definition 1.3. A measure µ (resp. a random vector X) on Rd is isotropic if it is symmetric
and for every v ∈ Rd,

‖v‖2L2(µ) =

∫
Rd
|
〈
v, x
〉
|2dµ(x) = ‖v‖22;

in other words, E|
〈
v,X

〉
|2 = ‖v‖22.

Hence, when the measure is isotopic, not only does each fv ∈ L2(µ), but the mapping
v → fv is an isometric embedding of (Rd, ‖ ‖2) in L2(µ). Of course, this does not mean that
fv ∈ Lp(µ) for p > 2.

Exercise 2. Give an example of an isotropic random vector on Rd and some v ∈ Rd such
that

〈
X, v

〉
6∈ Lp for any p > 2.

In general, if every fv belongs to L2(µ) then the inner product in L2 endows an alternative
inner product of Rd. Set X = (x1, ..., xd) to be a random vector on Rd, let e1, ..., ed be the
standard basis in Rd and define

[ei, ej ] =

∫
Rd
fei(x)fej (x)dµ(x) =

∫
Rd

〈
ei, x

〉
·
〈
ej , x

〉
dµ(x) =

∫
Rd
xixjdµ(x).

The matrix ([ei, ej ])i,j is the covariance matrix of the random vector X and

[v, u] =
∑
i,j

viuj [ei, ej ] =
〈
Cov(X)v, u

〉
is an inner product on Rd. The unit ball of the norm that inner product endows on Rd is the
ellipsoid {

v ∈ Rd :
〈
Cov(X)v, v

〉
≤ 1
}
.

In the special case of an isotropic measure, Cov(X) = Id is the identity matrix,
〈
v, u
〉

= [v, u];
the `2 inner product

〈
·, ·
〉

and the inner product [·, ·] endowed by L2 coincide on Rd; and the
ellipsoid is the standard Euclidean ball. However, in general, ‖ ‖L2(µ) and ‖ ‖2 are different
norms.

The difference between ‖ ‖Lp(µ) and ‖ ‖p is even more obvious when considering the
standard gaussian vector G, whose density is proportional to c exp(−‖t‖22/2). Clearly, G has
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the same distribution as (g1, ..., gd) where the gi’s are independent, standard gaussian random
variables. Observe that for every v ∈ Rd,

E
〈
G, v

〉2
= E

∑
i,j

gigjvivj =

d∑
i=1

v2
i Eg2

i = ‖v‖22,

implying that G is an isotropic random vector, and in particular, the L2 norm it endows on
Rd coincides with the standard Euclidean norm ‖ ‖2. We show in what follows that for every
v ∈ Rd and any 1 ≤ p <∞,

(
E|
〈
G, v

〉
|p
)1/p

=

(
E

∣∣∣∣∣
d∑
i=1

givi

∣∣∣∣∣
p)1/p

∼ √p‖v‖2,

implying that {v : ‖
〈
G, v

〉
‖Lp ≤ 1} ∼ √pBd

2 . However, that set is a very different from the
unit ball in `dp.

Remark 1.4. Lp norm preservation (or reconstruction) in the gaussian case via the empirical
means implies that with high probability, if G1, ..., GN are independent copies of G,

(
E|
〈
G, v

〉
|p
)1/p ∼ ( 1

N

N∑
i=1

|
〈
Gi, v

〉
|p
)1/p

,

which is a completely different question than (1.6), although both setups deal with Rd.

1.2 Weak Lp spaces

Let f be a measurable function defined on the probability space (Ω, µ). Set

‖f‖Lp,∞(µ) = inf

{
A > 0 : sup

t∈R+

tpPr (|f | > tA) ≤ 1

}
, (1.7)

and at times we will omit the underlying measure µ and denote the norm by ‖f‖Lp,∞ .
The weak Lp space consists of all the functions for which ‖f‖Lp,∞ <∞, and it is denoted

by Lp,∞.

Remark 1.5. It should stressed that ‖f‖Lp,∞ is actually not a norm, as it does not satisfy
the triangle inequality. Having said that, we will keep referring to it as the weak Lp norm and
denote it by ‖ ‖Lp,∞ as if it were a norm.

Exercise 3. Show that indeed, ‖ ‖Lp,∞ need not satisfy the triangle inequality.

There is a true difference between the Lp norm and the weak Lp norm. Indeed, as was
noted previously,

‖f‖pLp = p

∫ ∞
0

tp−1Pr(|f | > t)dt. (1.8)

Moreover, a straightforward application of Chebyshev’s inequality shows that

Pr(|f | > t‖f‖Lp) ≤
1

tp
,
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and in particular,
sup
t∈R+

tpPr(|f | > t‖f‖Lp) ≤ 1,

i.e., ‖f‖Lp,∞ ≤ ‖f‖Lp . However, if f ∈ Lp,∞ then its tail probability Pr({|f | > t}) decays
faster than ∼ 1/tp, but that does not ensure integrability as in (1.8).

Exercise 4. Construct an example of a function on (Ω, µ) that belong to Lp,∞ but not to Lp.

Although the weak Lp norm is indeed weaker than the Lp norm, the next lemma shows
that it is only slightly weaker.

Lemma 1.6. If 1 ≤ p < q <∞, then

‖f‖Lp ≤
(

1 +
p

q − p

)1/p
‖f‖Lq,∞ .

Proof. Clearly, supt∈R+ tqPr(|f | > tA) ≤ 1 if and only if supt∈R+ tqPr(|f | > t) ≤ Aq. Hence,
by (1.8),

‖f‖pLp =p

∫ ∞
0

tp−1Pr(|f | ≥ t)dt

≤p
∫ ‖f‖Lq,∞

0
tp−1 + p

∫ ∞
‖f‖Lq,∞

tp−1−q · tqPrµ(|f | ≥ t)dt

≤‖f‖pLq,∞ + p‖f‖qLq,∞

∫ ∞
‖f‖Lq,∞

tp−1−qdt = ‖f‖pLq,∞

(
1 +

p

q − p

)
.
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Chapter 2

Orlicz norms and maximal
inequalities

Let us turn to a very important family of function spaces—the so-called Orlicz spaces, defined
on the probability space (Ω, µ).

Definition 2.1. Let Φ 6≡ 0 be an even, convex function that is increasing in R+ and satisfies
Φ(0) = 0. For f : Ω→ R, set

‖f‖Φ = inf {C > 0 : EΦ(f/C) ≤ 1} .

Denote by LΦ the set of all (measurable) functions that satisfy ‖f‖Φ <∞.

Example 2.2. Let Φ(t) = |t|p for 1 ≤ p < ∞. Then E(|f |p/Cp) ≤ 1 when ‖f‖Lp ≤ C,
implying that ‖f‖Φ = ‖f‖Lp and LΦ = Lp.

Lemma 2.3. Let Φ be an even, convex function that is increasing in R+ and satisfies Φ(0) =
0. Then ‖ ‖Φ is a norm on the space LΦ.

Proof. Clearly, ‖ ‖Φ is positive homogeneous and for every f ∈ LΦ, ‖f‖Φ ≥ 0. Observe
that if ‖f‖Φ = 0 then for every C > 0, EΦ(f/C) ≤ 1. Now, since Φ is even, it follows from
Jensen’s inequality that for every C > 0,

Φ(E|f |/C) ≤ EΦ(|f |/C) = EΦ(f/C) ≤ 1.

On the other hand, Φ is convex and increasing, and since Φ(0) = 0 and Φ 6≡ 0, one has that
limt→∞Φ(t) =∞. Therefore, if E|f | 6= 0 and C is small enough, then Φ(E|f |/C) > 1, which
is impossible—implying that E|f | = 0 and that f = 0 almost surely.

Finally, one has to establish the triangle inequality. Let f, h ∈ LΦ and set α > ‖f‖Φ and
β > ‖h‖Φ. Let us show that α + β is a ‘legal candidate’ in the definition of ‖f + h‖Φ, i.e.,
that

EΦ

(
f + h

α+ β

)
≤ 1.

To that end, note that
f + h

α+ β
=

α

α+ β
· f
α

+
β

α+ β
· h
β

13
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which is a convex combination of f/α and h/β. Hence,

Φ

(
α

α+ β
· f
α

+
β

α+ β
· h
β

)
≤ α

α+ β
Φ

(
f

α

)
+

β

α+ β
Φ

(
h

β

)
and taking the expectation on both sides,

EΦ

(
f + h

α+ β

)
≤ α

α+ β
+

β

α+ β
= 1.

An important choice of a family of Orlicz norms is Φα(t) = exp(|t|α) − 1 for 1 ≤ α ≤ 2.
The corresponding norms are called ψα norms and they play a significant role in what follows.

2.1 The Orlicz ψα norms

Recall that the natural hierarchy of Lp (probability) spaces implies that for 1 ≤ p ≤ q ≤ ∞,
‖f‖Lp ≤ ‖f‖Lq . And, by Chebyshev’s inequality, functions with a finite Lp norm exhibit
a polynomial tail decay. The ψα norms capture an exponential tail decay and thus ‘live’
between the Lp spaces for 1 ≤ p <∞ and L∞.

Definition 2.4. Let 1 ≤ α ≤ 2. The ψα norm of f : Ω→ R is

‖f‖ψα = inf {C > 0 : E exp(|f/C|α) ≤ 2} .

The space of all functions with a finite ψα norm is denoted by Lψα.

The most natural example of a function (or random variable) X that belongs to Lψα is the
one with density cβ exp(−|t|β) for some 1 ≤ β ≤ 2, where cβ is an appropriate normalization
constant. Observe that for C > 0,

E exp(|X|α/Cα) = 2cβ

∫ ∞
0

exp(−tβ + tα/Cα)dt,

implying that X ∈ Lψβ but X 6∈ Lψα for α > β.

Corollary 2.5. If X has density ∼ exp(−(|t|/L)α) then ‖X‖ψα ≤ cL for an absolute constant
c. In particular, if g is a centred gaussian random variable with variance σ2 then ‖g‖ψ2 ≤ cσ.

Because the belief is that random variables with densities cα exp(−|t|α) are a good example
of ψα random variables, let us explore their moments growths and tail decays.

Note that for t > e,

Pr(|X| > t) =2cα

∫ ∞
t

exp(−uα)du = 2cα

∞∑
j=0

∫ 2j+1t

2jt
exp(−uα)du

≤2cα

∞∑
j=0

2jt exp(−2αjtα) ≤ 4cα exp(−tα),

where the last inequality follows by comparing to an appropriate geometric progression.
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As for the moments of X, following a change of variables tα → u,

E|X|p = 2cα

∫ ∞
0

tp exp(tα)dt = 2cα

∫ ∞
0

u
p+1
α
−1 exp(−u)du,

where

cα = 1/2

∫ ∞
0

exp(−uα)du = 1/2

∫ ∞
0

u(1/α)−1 exp(−u)du.

Recall the definition of the Gamma function

Γ(x) =

∫ ∞
0

ux−1 exp(−u)du,

and thus,

E|X|p =
Γ(p+1

α )

Γ( 1
α)

.

It suffices to consider the case in which (p + 1)/α = m + 1 for an integer m. Recall that
Γ(m+ 1) = m! and that by Stirling’s approximation, for every integer m,

√
2πm

(m
e

)m
≤ m! ≤ e

√
2πm

(m
e

)m
, (2.1)

Hence, for 1 ≤ α ≤ 2,
c1p

1/α ≤ ‖X‖Lp ≤ c2p
1/α (2.2)

for suitable absolute constants c1 and c2.
It turns out that such tail estimates and moment growths actually characterize the ψα

norms:

Theorem 2.6. Each one of the following three conditions implies the other two:

(1) E exp(|f/L1|α) ≤ 2,

(2) Pr(|f | ≥ L2t) ≤ 2 exp(−|t|α) for every t ≥ 1,

(3) for every q ≥ 1, ‖f‖Lq ≤ L3q
1/α.

Moreover, for (1) =⇒ (2) one may select L1 = L2, for (2) =⇒ (3) one may select L3 = 2eL2

and for (3) =⇒ (1) one may select L1 = 2e2L3 (though all these choices are not optimal).

Theorem 2.6 implies that if f ∈ Lψα then it also belongs to Lq for every 1 ≤ q < ∞;
however, such functions need not be bounded. Thus, the Lψα hierarchy “lives” between all
the Lp spaces and L∞.

The proof of Theorem 2.6 requires an observation that was used previously: there is an
absolute constant c which satisfies that for every q ≥ 1 and any 1 ≤ α ≤ 2,

q

∫ ∞
1

uq−1 exp(−uα)du ≤ cq · qq/α. (2.3)

Proof of Theorem 2.6. (1) =⇒ (2) is an immediate outcome of Chebyshev’s inequality:
for t ≥ 0,

Pr(|f | ≥ L2t) = Pr (exp(|f/L1|α) ≥ exp((L2t/L1)α)) ≤ 2 exp(−|t|α)
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once one selects L2 ≥ L1.

Turning to (2) =⇒ (3), one may use tail integration:

E|f |q =q

∫ ∞
0

tq−1Pr(|f | > t)dt = Lq2q

∫ ∞
0

uq−1Pr(|f | > L2u)du

≤Lq2
(

1 + q

∫ ∞
1

uq−1 exp(−uα)du

)
.

Applying (2.3) one has that (E|f |q)1/q ≤ L2 · cq1/α, thus verifying (3) for any L3 ≥ cL2.

Finally, to show that (3) =⇒ (1), recall that exp(x) = 1 +
∑

q≥1 x
q/q!. By the monotone

convergence theorem,

E exp(|f/L1|α) = 1 +
∑
q≥1

E|f/L1|αq

q!
≤ 1 +

∑
q≥1

(
L3

L1

)αq
· q

q

q!
αq = (∗).

Since exp(q) ≥ qq/q! one has (qq/q!)1/q ≤ e, and

(∗) ≤ 1 +
∑
q≥1

(
Lα3 eα

Lα1

)q
≤ 2

provided that L1 ≥ 2e2L3.

The most significant outcome of Theorem 2.6 is that in a similar fashion to (2.2), a finite
ψα norm is actually equivalent to a tempered growth of moments: the Lq norm does not
grow faster than ∼ q1/α (though unlike (2.2), the lower estimate on the Lq norms need not
be true). Moreover, it follows that there are absolute constants c1 and c2 such that, for every
1 ≤ α ≤ 2,

c1 sup
q≥1

‖f‖Lq(µ)

q1/α
≤ ‖f‖ψα ≤ c2 sup

q≥1

‖f‖Lq(µ)

q1/α
. (2.4)

Remark 2.7. Recall that there is a real difference between the Lp norm and the weak Lp norm
as the latter is determined by a certain tail decay property. The situation is different when
it comes to ψα norms: the ‘weak-space’, characterized by a faster tail decay than exp(−|t|α),
actually coincides with having a finite ψα norm.

Exercise 5. Show that the is an absolute constant C, such that for every mean-zero random
variable,

‖X‖ψ2 ≤ CE exp(|X|2).

2.2 Subgaussian random variables

A significant fact (and a source of much confusion) is that there is a substantial difference
between the assumption that a function has a finite norm—say, ‖f‖Lp <∞ or ‖f‖ψα <∞—,
and assuming that two different norms of f are equivalent. The information that can be
derived from the two assumptions is of a completely different nature. In the context of these
notes, the most important notion of norm equivalence is called subgaussian1.

1It should be noted that in some places, being called “subgaussian” means having a bounded ψ2 norm.
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Definition 2.8. A function f defined on the probability space (Ω, µ) is L-subgaussian if
‖f‖ψ2 ≤ L‖f‖L2.

Clearly, the important factor in Definition 2.8 is the identity of the equivalence constant
L. Later we study L-subgaussian classes of functions, that is, classes that consist of functions
that share the same equivalence constant.

The origin of the name “subgaussian” is the characterization of the tail behaviour of
functions with a finite ψ2 norm. Indeed, recall that for a suitable absolute constant c and
every t > 0.

Pr(|f | ≥ ct‖f‖ψ2) ≤ 2 exp(−t2).

But if f is L subgaussian then ‖f‖ψ2 ≤ L‖f‖L2 , implying that

Pr(|f | ≥ t) ≤ 2 exp(−ct2/L2‖f‖2L2
).

In other words, the tail of f is dominated by the tail of a centred gaussian random variable
with variance ∼ (L‖f‖L2)2.

Moreover, if f is centred and L-subgaussian, then thanks to Theorem 2.6,

‖f‖ψ2 ∼ sup
q≥1

‖f‖Lq√
q
.

Thus, for a suitable absolute constant c1 and every q ≥ 2,

‖f‖L2 ≤ ‖f‖Lq ≤ c1
√
q‖f‖ψ2 ≤ c1L

√
q‖f‖L2 ,

implying that all the L2 and Lq norms of f are equivalent with the equivalence constant
∼ L√q.

Exercise 6. Show that if f is centred and L-subgaussian then

‖f‖L2 ≤ c(L)‖f‖L1

for a constant c that depends only on L.

It turns out that L-subgaussian functions/random variable appear frequently and in nat-
ural situations.

• A gaussian is subgaussian: Let g be a centred gaussian random variable with variance
σ2. Thus, ‖g‖L2 = σ and Pr(|g| ≥ tσ) ≤ c exp(−t2). Applying Theorem 2.6, ‖g‖ψ2 . σ,
and g is L-subgaussian for L that is an absolute constant.

• Stability under tensorization: Let Z1, ..., Zd be independent, centred L-subgaussian
variables with variance 1. Let x = (x1, ..., xd) ∈ Rd and put Zx =

∑d
i=1 xiZi. Clearly,

‖Zx‖L2 = ‖x‖2. We show in what follows that there is an absolute constant C such that

‖Zx‖ψ2
≤ C

(
d∑
i=1

xi‖Zi‖2ψ2

)1/2

,

implying that ‖Zx‖ψ2 ≤ cL‖x‖2 for an absolute constant c. Thus, for every x ∈ Rd
the random variable Zx is L-subgaussian, with a constant that is independent of the
dimension d and of the vector x.
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• Let a > 0 and set Z to be a symmetric, {−a, a}-valued random variable. It follows that
‖Z‖L2 = a, and Pr(|Z| ≥ ta) = 0 for any t > 1. Therefore, by Theorem 2.6, ‖Z‖ψ2 ≤ ca
for an absolute constant c.

• Let ε1, ..., εd be independent, symmetric, {−1, 1}-valued random variables. Let x =
(x1, ..., xd) ∈ Rd and put Zx =

∑d
i=1 εixi. Note that

‖Zx‖2L2
= E

d∑
i,j=1

xixjεiεj =
d∑
i=1

x2
i = ‖x‖22.

Since the ψ2 is stable under tensorization (which still has to be proved), one has that
‖Zx‖ψ2 ≤ c‖x‖2, implying that Zx is L-subgaussian with a constant that is independent
of the dimension d and the specific choice of the vector x.

Let us now give a direct proof of that fact—the so-called Höffding inequality.

Lemma 2.9. Let ε1, ..., εd be independent, symmetric, {−1, 1}-valued random variables and
let x = (x1, ..., xd) ∈ Rd. Then, for every t > 0,

Pr

(∣∣∣∣∣
d∑
i=1

εixi

∣∣∣∣∣ > t‖x‖2

)
≤ 2 exp(−t2/2).

The proof of Lemma 2.9 is based on an argument that is used frequently in what follows—
obtaining tail estimates using the moment generating function.
Proof. Since the random variables εi, 1 ≤ i ≤ d are symmetric and {−1, 1}-valued, then for
every xi ∈ R and λ > 0,

E exp(λεixi) =
1

2
exp(λxi) +

1

2
exp(−λxi) ≤ exp(λ2x2

i /2),

because exp(t) + exp(−t) ≤ 2 exp(−t2/2). Therefore, by the independence of ε1, ..., εd,

Pr

(
d∑
i=1

εixi ≥ t

)
=Pr

(
exp

(
λ

d∑
i=1

εixi

)
≥ exp (λt)

)

≤ exp (−λt) · E exp

(
λ

d∑
i=1

εixi

)

= exp (−λt)
d∏
i=1

E exp (λεix) ≤ exp (−λt)
d∏
i=1

exp
(
λ2x2

i /2
)

= exp

(
−λt+ (λ2/2)

d∑
i=1

x2
i

)
.

Optimizing the choice of λ one has that

Pr

(
d∑
i=1

εixi > t‖x‖2

)
≤ exp(−t2/2),

and the claim follows because
∑d

i=1 εixi is a symmetric random variable.
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The fact that
∑d

i=1 εixi is L-subgaussian for an absolute constant L—independent of d or
of x is a reformulation of a classical result known as Khintchine’s inequality.

Theorem 2.10. There exist absolute constants c1 and c2 for which the following holds. For
any integer d, any x ∈ Rd and any 1 ≤ p <∞,

c1

∥∥∥∥∥
d∑
i=1

εixi

∥∥∥∥∥
L2

≤

∥∥∥∥∥
d∑
i=1

εixi

∥∥∥∥∥
Lp

≤ c2
√
p

∥∥∥∥∥
d∑
i=1

εixi

∥∥∥∥∥
L2

.

Exercise 7. Construct an infinite-dimensional space E, consisting of functions defined on a
probability space (Ω, µ) such that E is closed in L2(µ) and on which all the Lp(µ) norms are
equivalent: for p ≥ 1 there are constants cp and Cp that depend only on p such that for any
f ∈ E,

cp‖f‖L2 ≤ ‖f‖Lp ≤ Cp‖f‖L2 .

Hint: construct a sequence of symmetric, {−1, 1}-valued that are independent εi : [0, 1]→ R.
Then use Theorem 2.10.

2.3 Maximal inequalities

The study of the supremum of a collection of random variable {Zt : t ∈ T} has been the
subject of extensive study over the years (see, for example [?]). We refer the reader to
Talagrand’s treasured manuscript [?] which is the most comprehensive one on this topic.

For now, let us consider a more modest goal:

Question 2.11. Let T be a finite set. Is there a simple way of obtaining (possibly crude)
estimates on

Pr(sup
t∈T

Zt ≥ u)?

As always, let us begin with an example. Assume that |T | = {1, ...,m} and that each Zi is
a standard gaussian random variable. Of course, there is likely to be a substantial difference in
the behaviour of the supremum, depending on the correlation between the random variables
Zi. In the simplest of situations, the random variables Zt are independent, and one has that

Pr (∃1 ≤ i ≤ m : |Zi| ≥ u) = 1− Prm(|g| ≤ u) = 1− (1− Pr(|g| > u))m .

Clearly, (1− Pr(|g| > u))m = 1/2 when Pr(|Z| > u) ∼ 1/m; hence, setting u = c1
√

logm,

Pr

(
max

1≤i≤m
|Zi| ≥ c1

√
logm

)
≥ 1/2.

On the other hand, if u &
√

logm then

Pr (∃1 ≤ i ≤ m : |Zi| ≥ u) ≤ mPr(|g| ≥ u) ≤ exp(logm− u2/2) ≤ exp(−u2/4).
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Exercise 8. Show that there is an absolute constant c such that for every p ≥ 1 and integer
m, (

E
(

max
1≤i≤m

|Zi|
)p)1/p

≤ c(
√

logm+
√
p)

This example happens to be more indicative than what one would expect: the upper
estimate on Pr(max |Zi| ≥ u) is based on the union bound, applied in a rather direct way. It
implies that

E sup
1≤i≤m

|Zi| ≤ c
√

logm

and that for larger values of u than
√

logm, the max1≤i≤m |Zi| decays as fast as a single
gaussian.

The reverse inequality is a different story: independence is used to generate the lower
bound and if the variables Zi were not independent, there would have been no reason to
expect that Emax1≤i≤m |Zi| ∼

√
logm—for example, if Z1 = Z2 = ... = Zm = g, the lower

bound is just an absolute constant.

In later parts of these notes we will present generic chaining : a general mechanism, in-
troduced by Michel Talagrand, which leads to upper bounds on E supt∈T Zt. The method
is based on identifying natural metric structures dp endowed on T by the process, followed
by the study of the geometry of the metric spaces (T, dp).

Although chaining leads, in many cases, to satisfactory upper bounds, obtaining
matching lower bounds turns out to be a formidable task which is still far from being
fully understood.

At this point, targeting modest goals and armed with a rather limited set of tools, one
can still derive the following general maximal inequalities which are used extensively in what
follows.

Theorem 2.12. There exists an absolute constant c1 for which the following hold. If Z1, ..., Zm
are random variables, then

(1) For any p ≥ logm, (Emax1≤i≤m |Zi|p)1/p ≤ emax1≤i≤m ‖Zi‖Lp.

(2) For every 1 ≤ α ≤ 2, ‖max1≤i≤m Zi‖ψα ≤ c1 log1/αm ·max1≤i≤m ‖Zi‖ψα.

The proof of Theorem 2.12 is based on the following observation: if p ≥ c logm then
(Rm, ‖ ‖∞) and (Rm, ‖ ‖p) are equivalent; in other words, for every x ∈ Rm,

‖x‖∞ ≤ ‖x‖p ≤ e‖x‖∞. (2.5)

Indeed, the first inequality is just the natural hierarchy of the `p norms. For the second
one, assume without loss of generality that xi ≥ 0 and x1 ≥ x2 ≥ ... ≥ xm. Since m1/p ≤
m1/ logm ≤ e,

‖x‖p =
( m∑
i=1

xpi
)1/p ≤ m1/px1 ≤ e‖x‖∞.
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Proof of Theorem 2.12. For every realization of Z1, ..., Zm, let Z = (Z1, ..., Zm). Thus,

max
1≤i≤m

|Zi| = ‖Z‖∞ ≤
( m∑
i=1

|Zi|p
)1/p

,

and

E max
1≤i≤m

|Zi|p ≤
m∑
i=1

E|Zi|p ≤ m · max
1≤i≤m

‖Z‖pLp .

The first part follows because m1/p ≤ e.
Turning to the second part, set K = max1≤i≤m ‖Zi‖ψα . Recall that for every p ≥ 1,

‖Z‖Lp ≤ Lp1/α‖Z‖ψα . Therefore, by the first part, for p ≥ logm,

‖ max
1≤i≤m

Zi‖Lp =

(
E max

1≤i≤m
|Zi|p

)1/p

≤ e max
1≤i≤m

‖Zi‖Lp ≤ eLp1/αK.

For p ≤ log1/αm,

Pr( max
1≤i≤m

|Zi| > u) ≤
m∑
i=1

Pr(|Zi| ≥ u) ≤ m exp(−cuα/Kα) ≤ exp(−c1u
α/Kα),

provided that u ≥ c2K log1/αm. Therefore, setting u0 = c3K log1/αm, it follows that

E max
1≤i≤m

|Zi|p =

∫ ∞
0

pup−1Pr( max
1≤i≤m

|Zi| > u)du ≤ up0 +

∫ ∞
u0

pup−1 exp(−c1u
α/Kα)du

≤up0 +

∫ ∞
u0

exp(−c4u
α/Kα)du,

provided that c1u
α/Kα ≥ 2(log p+ (p− 1)u) for any u ≥ u0. Since p ≤ logm, that is the case

for a suitable choice of the absolute constant c3; hence,

‖ max
1≤i≤m

|Zi|‖Lp ≤ cu0 ∼ K log1/αm,

and the claim follows by recalling that ‖X‖ψα ∼ supp≥1 ‖X‖Lp/p1/α.

It is instructive to see that the ψα estimate from Theorem 2.12 hides the true picture,
because ‖X‖ψα is equivalent to the largest ratio ‖X‖Lp/p1/α. While there are values of p for
which this ratio is attained, there could be others for which ‖X‖Lp is significantly smaller

than p1/α‖X‖ψα . The estimate on the maximum of Z1, ..., Zm is one such example: the ψα
estimate implies that for every p ≥ 1,

‖ max
1≤i≤m

Zi‖Lp ≤ cp1/α · ‖ max
1≤i≤m

Zi‖ψα . p1/α log1/αm max
1≤i≤m

‖Zi‖ψα ,

but in reality, the situation is much better. For p ≤ logm we have that

‖ max
1≤i≤m

Zi‖Lp ≤ log1/αm max
1≤i≤m

‖Zi‖ψα

(which, as indicated by the gaussian example, cannot be improved even for p = 2). In other
words, the estimate for ‖max1≤i≤m Zi‖L2 remains stable up to p = logm. Only at that
point does ‖max1≤i≤m Zi‖Lp begin to grow like a ψα random variable. The actual estimate
is summarized in the following corollary:
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Corollary 2.13. There exists an absolute constant c1 for which the following hold. If
Z1, ..., Zm are random variables, then for every p ≥ 1,

‖ max
1≤i≤m

|Zi|‖Lp ≤ c1 max{log1/αm, log1/α p} · max
1≤i≤m

‖Zi‖ψα .
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Independent random variables

As the proof of Lemma 2.9 shows, one may generate tail estimates for a sum of independent
random variables based on the behaviour of the moment generating function: if Z1, ..., ZN
are independent random variables, then for any λ > 0,

Pr

(
N∑
i=1

Zi ≥ t

)
= Pr

(
exp

(
λ

N∑
i=1

Zi

)
≥ exp (λt)

)

≤ exp(−λt)E exp

(
λ

N∑
i=1

Zi

)
= exp(−λt)

N∏
i=1

E exp(λZi). (3.1)

Therefore, by estimating each E exp(λZi) and optimizing the choice of λ one may derive
nontrivial tail bounds.

In what follows we show how certain assumptions on the random variable Z can be used
to bound its moment generating function E exp(λZ).

3.1 The sum of independent ψ2 random variables

Let Z1, ..., ZN be independent, centred random variables. If Zi ∈ Lψ2 and a = (a1, ..., aN ) ∈
RN , what can be said about the tail behaviour of the random variable

∑N
i=1 aiZi?

We answer this question using two different arguments. The first is based on estimates
on the moment generating function of Zi.

Lemma 3.1. There is an absolute constant c for which the following holds. If Z ∈ Lψ2 is a
centred random variable then for any λ > 0,

E exp(λZ) ≤ exp(cλ2‖Z‖2ψ2
).

The proof requires a simple idea that appears frequently in what follows—symmetrization,
which allows one to replace a mean-zero random variable Z with its symmetric counterpart,
εZ, where ε is a symmetric, {−1, 1}-valued random variable that is independent of Z.

Lemma 3.2. Let φ be a convex function and let Z be a mean-zero random variable. Then

Eφ(Z) ≤ Eφ(2εZ).

23
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Proof. Let Z1, Z2 be independent copies of Z. By Jensen’s inequality,

EZ1φ(Z1) = EZ1φ(Z1 − EZ2Z2) ≤ EZ1EZ2φ(Z1 − Z2) = (∗). (3.2)

The random variable Z1 − Z2 is symmetric, and in particular it has the same distribution as
−1 · (Z1 −Z2). Therefore, EZ1EZ2φ(Z1 −Z2) = EZ1EZ2φ(ε(Z1 −Z2)) for every realization of
the symmetric random variable ε that is independent of Z1 and Z2. Taking the expectation
with respect to ε and using the convexity of φ, Fubini’s Theorem, and that Z1 and Z2 have
the same distribution as Z,

(∗) = EεEZ1EZ2φ(ε(Z1 − Z2)) ≤ EεEZ1EZ2 ·
1

2
(φ(2εZ1) + φ(2εZ2)) = Eφ(2εZ). (3.3)

In particular, if Z is a mean-zero random variable then E exp(λZ) ≤ E exp(2λεZ), and so
from here on we may assume, if needed, that Z is a symmetric random variable.

Exercise 9. Use the same argument as in Lemma 3.2 to show the following: if Z1, ..., ZN
are independent, mean-zero random variables, then for any a1, ..., zN ∈ R,

Eφ

(
N∑
i=1

aiZi

)
≤ Eφ

(
2

N∑
i=1

εiZi

)
, (3.4)

where (εi)
N
i=1 are independent, symmetric, {−1, 1}-valued random variables that are also in-

dependent of Z1, .., ZN .

Proof of Lemma 3.1. Applying Lemma 3.2 to the convex function t→ exp(λt),

E exp(λZ) ≤ E exp(2λεZ) = E

1 + 2λεZ +
∑
j≥2

(2λ)j
(εZ)j

j!

 = (∗).

It is straightforward to verify (e.g., by the Monotone Convergence Theorem for the positive
and negative parts of εZ) that

(∗) ≤ 1 +
∑
j≥2

(2λ)2jEZ2j

(2j)!
≤ 1 +

∑
j≥2

(2λ)2j
‖Z‖jψ2

(2cj)j

j!jj
;

indeed, recall that ‖Z‖Lp ≤ c
√
p‖Z‖ψ2 and that (2j)! ≤ j!jj . Therefore,

E exp(λZ) ≤ 1 +
∑
j≥2

1

j!
·
(
c1λ

2‖Z‖2ψ2

)j ≤ exp(c1λ
2‖Z‖2ψ2

).

Lemma 3.1 leads to the wanted estimate on ‖
∑N

i=1 aiZi‖ψ2 .

Corollary 3.3. There is an absolute constant c for which the following holds. Let Z1, ..., ZN
be independent, centred, ψ2 random variables, and let a1, ..., aN ∈ R. Then∥∥∥∥∥

N∑
i=1

aiZi

∥∥∥∥∥
ψ2

≤ c

(
N∑
i=1

a2
i ‖Z‖2ψ2

)1/2

.
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Proof. Since a norm is a convex function of its argument, it follows from Exercise 3.4 that
one may assume without loss of generality that ai ≥ 0 and that each Zi is symmetric. Fix
λ > 0 to be named later and observe that by Lemma 3.1,

E exp

(
λ

N∑
i=1

aiZi

)
=

N∏
i=1

E exp (λaiZi) ≤
N∏
i=1

exp
(
cλ2a2

i ‖Zi‖2ψ2

)
= exp

(
cλ2

N∑
i=1

a2
i ‖Zi‖22

)
.

Therefore,

Pr

(
N∑
i=1

aiZi > t

)
≤ exp(−λt)E exp

(
λ

N∑
i=1

aiZi

)
≤ exp

(
−λt+ cλ2

N∑
i=1

a2
i ‖Zi‖22

)
.

Setting λ = t/2c
∑N

i=1 a
2
i ‖Zi‖22, it follows that for every t > 0,

Pr

(
N∑
i=1

aiZi > t

)
≤ exp

(
− t

2

2
c
N∑
i=1

a2
i ‖Zi‖22

)
,

and recalling that each Zi is symmetric, it is evident that

Pr

∣∣∣∣∣
N∑
i=1

aiZi

∣∣∣∣∣ > t ·

(
c1

N∑
i=1

a2
i ‖Zi‖2ψ2

)1/2
 ≤ 2 exp

(
−t2
)
.

The claim follows from the characterization Theorem 2.6.

Remark 3.4. The argument used in the proof of Corollary 3.3 is almost identical to the proof
of Lemma 2.9. This should not come as a surprise, as the latter is a particular instance of the
former. Moreover, Corollary 3.3 leads to a more general version of Khintchine’s inequality
(Theorem 2.10): if Z = (Z1, ..., ZN ) that has independent, mean-zero, variance 1 coordinates
that satisfy max ‖Zi‖ψ2 ≤M then∥∥∥∥∥

N∑
i=1

aiZi

∥∥∥∥∥
Lp

≤ cM√p

∥∥∥∥∥
N∑
i=1

aiZi

∥∥∥∥∥
L2

.

Let us present a different proof of Corollary 3.3, which is based on a comparison argument.
The idea is to find X1, ..., XN that on the one hand, ‘dominate’ Z1, ..., ZN in an appropriate
sense, and at the same time, one can compute (or at least estimate) ‖

∑N
i=1 aiXi‖Lp directly.

Lemma 3.5. Let X1, ..., XN be symmetric, independent random variables and assume that
for every 1 ≤ i ≤ N and any 1 ≤ p ≤ q, ‖Zi‖Lp ≤ ‖Xi‖Lp. Then for every a ∈ RN ,∥∥∥∥∥

N∑
i=1

aiZi

∥∥∥∥∥
Lq

≤ c1L

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
Lq

.
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Proof. Without loss of generality, assume that q is an even integer, and by a symmetrization
argument assume that Z1, ..., ZN are symmetric. Therefore,

E

(
N∑
i=1

aiZi

)q
= E

∑
c~β

N∏
i=1

aβii Z
βi
i =

∑ N∏
i=1

aβii EZβii ,

with the sum taken over all choices of ~β = (β1, ..., βN ) ∈ {0, ..., q} that sum to q, and c~β is
the appropriate multinomial coefficient. Since Z1, ..., ZN are symmetric, each product does
not vanish only when β1, ..., βN are even, and in that case,

N∏
i=1

aβii EZβii ≤
N∏
i=1

aβii L
βiEXβi

i .

Therefore, ∑ N∏
i=1

aβii EZβii ≤ L
q
∑ N∏

i=1

aβii EXβi
i = LqE(

N∑
i=1

aiXi)
q.

Proof of Corollary 3.3—version 2. Recall that if Zi ∈ Lψ2 then for every p ≥ 1,

‖Zi‖Lp ≤ c0
√
p‖Zi‖ψ2 ≤ c1‖Zi‖ψ2‖g‖Lp

for a standard gaussian variable g. Therefore, if g1, ..., gN are independent standard gaussian
random variables and selecting Xi = c1‖Zi‖ψ2gi in Lemma 3.5, it is evident that for every
p ≥ 1 and every a ∈ RN ,∥∥∥∥∥

N∑
i=1

aiZi

∥∥∥∥∥
Lp

≤

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
Lp

= c1

∥∥∥∥∥
N∑
i=1

ai‖Zi‖ψ2gi

∥∥∥∥∥
Lp

.

Finally, using the rotation invariance of the standard gaussian vector, it is evident that∑N
i=1 ai‖Zi‖ψ2gi has the same distribution as (

∑N
i=1 a

2
i ‖Zi‖2ψ2

)1/2g; therefore,∥∥∥∥∥
N∑
i=1

ai‖Zi‖ψ2gi

∥∥∥∥∥
Lp

≤ c2

(
N∑
i=1

a2
i ‖Zi‖2ψ2

)1/2
√
p,

and the claim follows.

3.2 Bernstein type inequalities

Let us return to more applications of (3.1), leading to Bernstein type inequalities.

Lemma 3.6. Let Z be a mean-zero random variable, and assume that there are constants M
and σ such that, for every integer p ≥ 2,

E|Z|p ≤ p! ·Mp−2σ2.

Then for every 0 < λ ≤ 1/2M ,

E exp(λZ) ≤ 1 + 2λ2σ2 ≤ exp(2λx).
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Before proving the lemma, let us examine the condition on the growth rate of the moments
of Z—which fits two standard situations.

• Let Z be a bounded random variable and set M = ‖Z‖L∞ and σ2 = EZ2. Observe that
EZp ≤ ‖Z‖p−2

L∞
EZ2 = Mp−2σ2, which is far better than the required condition (there is

no additional factor of p!).

• Let Z ∈ Lψ1 and recall that by Theorem 2.6, ‖Z‖Lp ≤ cp‖Z‖ψ1 for a suitable absolute
constant c. Since pp ≤ ep · p! (e.g. by induction), one may select σ = M = ec‖Z‖ψ1 .

Proof. Using Taylor’s expansion, exp(x) =
∑∞

i=0 x
p/p!, and by a standard argument, (e.g.

the monotone convergence theorem applied to the positive and negative parts of Z),

E exp(λZ) = E
∞∑
p=0

(λZ)p

p!
= 1 +

∞∑
p=1

λpEZp

p!
= (∗).

Recall that EZ = 0 and that E|Z|p ≤ p!Mp−2σ2; therefore, since λM ≤ 1/2,

(∗) ≤ 1 +
σ2

M2

∞∑
p=2

(λM)p ≤ 1 + 2λ2σ2.

The claim follows because 1 + x2/2 ≤ exp(x).

With Lemma 3.6 in place, one can derive various versions of Bernstein’s inequality.

Theorem 3.7. Let Z1, ..., ZN be independent, mean-zero random variables and assume that
there are constants M and σi, i = 1, ..., N , such that, for every 1 ≤ i ≤ N , E|Zi|p ≤
p!Mp−2σ2

i . If S2 =
∑N

i=1 σ
2
i then for every t > 0,

Pr

(
N∑
i=1

Zi > t

)
≤ exp

(
−min

{
t2

8S2
,
t

4M

})
.

Proof. Combining (3.1) and Lemma 3.6, it follows that for 0 < λ ≤ 1/2M ,

N∏
i=1

E exp(λZi) ≤
N∏
i=1

exp(2λ2σ2
i ) = exp(2λ2S2).

Therefore,

Pr

(
N∑
i=1

Zi > t

)
≤ exp(−λt+ 2λ2S2) ≤ exp(−λt/2),

provided that 2λ2S2 ≤ λt/2, i.e., λ ≤ t/4S2. Let

λ = min

{
t

4S2
,

1

2M

}
and thus

Pr

(
N∑
i=1

Zi > t

)
≤ exp

(
−min

{
t2

8S2
,
t

4M

})
.
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Remark 3.8. The constants appearing in Theorem 3.7 are not optimal, though this will be
of no importance in what follows. Because of that, from here on we will replace the constants
appearing in Theorem 3.7 with an unspecified constant c.

Corollary 3.9. There exists an absolute constant c for which the following holds. Let
Z1, ..., ZN be independent, mean-zero random variables.

• If Z1, ..., ZN are bounded almost surely by M (i.e., max1≤i≤N ‖Zi‖L∞ ≤ M), and σ2
i =

EZ2
i , then for every t > 0,

Pr

(
N∑
i=1

Zi > t

)
≤ exp

(
−cmin

{
t2∑N
i=1 σ

2
i

,
t

M

})
.

• If Z1, ..., ZN are uniformly bounded in Lψ1, i.e., if max1≤i≤M ‖Zi‖ψ1 ≤M , then

Pr

(
N∑
i=1

Zi > t

)
≤ exp

(
−cmin

{
t2

NM2
,
t

M

})
.

In particular, if Z1, ..., ZN are also identically distributed as Z then

Pr

(
1

N

N∑
i=1

Zi > t

)
≤ exp

(
−cN min

{
t2

‖Z‖2ψ1

,
t

‖Z‖ψ1

})
.

3.3 Sum of squares of ψ2 random variables

For reasons that will become clear in what follows, there is a special interest in the behaviour
of a sum of squares of independent random variables

1

N

N∑
i=1

Z2
i .

One can establish a rather accurate description of the behaviour of this average, highlighting
the difference between the upper estimate and the lower one and way the estimates are
connected with various properties of the random variables Zi. However, for the time being,
let us obtain a two-sided estimate of the from

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

Z2
i − EZ2

∣∣∣∣∣ > t

)

when Z1, ..., ZN are independent copies of a random variable Z that is L-subgaussian; that
is, it satisfies ‖Z‖ψ2 ≤ L‖Z‖L2 .

The starting point is the straightforward observation that ‖Z2‖ψ1 = ‖Z‖2ψ2
which follows

from the definition of the ψα norms. Also, because ‖ · ‖ψα are norms for 1 ≤ α ≤ 2,

‖Z2 − EZ2‖ψ1 ≤ ‖Z2‖ψ1 + ‖EZ2‖ψ1 ≤ 2‖Z2‖ψ1 ;

indeed, by the definition of the ψα norm and Jensen’s inequality it is evident that for a random
variable Y , ‖EY ‖ψα ≤ ‖Y ‖ψα .
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Thus, the random variable Z2 − EZ2 is centred and ‖Z2 − EZ2‖ψ1 ≤ 2‖Z‖2ψ2
. Applying

the ψ1 version of Bernstein’s inequality,

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

Z2
i − EZ2

∣∣∣∣∣ > t

)
≤ 2 exp

(
−cN min

{
t2

‖Z‖4ψ2

,
t

‖Z‖2ψ2

})
.

Setting t = εEZ2, it follows that with probability at least

1− 2 exp

(
−cN min

{
ε2

(
‖Z‖L2

‖Z‖ψ2

)4

, ε

(
‖Z‖L2

‖Z‖ψ2

)2
})

, (3.5)

(1− ε)EZ2 ≤ 1

N

N∑
i=1

Z2
i ≤ (1 + ε)EZ2. (3.6)

Now recall that ‖Z‖ψ2/‖Z‖L2 ≤ L for some L ≥ 1. Hence, if 0 < ε < 1 then (3.5) becomes

1− 2 exp

(
−cN min

{
ε2

L4
,
ε

L2

})
= 1− 2 exp(−c1(L)ε2N). (3.7)

Thus, on a high probability event, N−1
∑N

i=1 Z
2
i is almost-isometrically equivalent to EZ2.

As an example, let X be an isotropic, L-subgaussian random vector in Rd.

Definition 3.10. A random vector X taking values in Rd is L-subgaussian if it is symmetric
and for every t ∈ Rd,

‖
〈
X, t

〉
‖ψ2 ≤ L‖

〈
X, t

〉
‖L2 .

Thus, for any t ∈ Rd, the random variable Z =
〈
t,X

〉
is exactly as described previously:

it is mean-zero by the symmetry of X; it satisfies E
〈
X, t

〉2
= ‖t‖22 because X is isotropic; and

‖
〈
t,X

〉
‖ψ2 ≤ L‖

〈
X, t

〉
‖L2 because X is an L-subgaussian random vector.

Let T ⊂ Rn be a finite set. Let X1, ..., XN be independent copies of X, and consider the
random matrix

Γ =
1√
N

N∑
i=1

〈
Xi, ·

〉
ei.

The following result is the celebrated Johnson-Lindenstrauss embedding lemma:

Lemma 3.11. For L ≥ 1 there exist constants c1 and c2 that depend only on L and for which
the following holds. If T ⊂ Rd is a finite set, 0 < ε < 1 and N ≥ c1ε

−2 log |T |, then with
probability at least 1− 2 exp(−c2ε

2N), for every x, y ∈ T ,

(1− ε)‖x− y‖22 ≤ ‖Γ(x− y)‖22 ≤ (1 + ε)‖x− y‖22.

In other words, Lemma 3.11 implies that the random operator Γ almost preserves distances
in T , as long as there is ‘enough randomness’—sufficiently many independent copies of the
random vector X, which serve as the rows of the random matrix Γ.
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Remark 3.12. As will be clarified later, log |T | is a rather crude measure of complexity for
a set, and one may obtain better estimates on the number of rows required (i.e., the number
of sample points/linear measurements needed), as well as improved understanding on the way
a subgaussian operator acts on a set. Moreover, we show that the lower estimate

(1− ε)‖x− y‖22 ≤ ‖Γ(x− y)‖22

holds in far more general situations than the one considered here.

Proof. Observe that for every t1, t2 ∈ T ,

‖Γ(t1 − t2)‖22 =
1

N

N∑
i=1

〈
Xi, t1 − t2

〉2

and obviously, E
〈
Xi, t1 − t2

〉2
= ‖t1 − t2‖22. Hence, for 0 < ε < 1, with probability at least

1− 2 exp(−c(L)ε2N),

(1 + ε)‖t1 − t2‖22 ≤ ‖Γ(t1 − t2)‖22 ≤ (1 + ε)‖t1 − t2‖22. (3.8)

The number of different pairs of distinct points in T is at most |T |2, and by the union bound,
with probability at least

1− 2|T |2 exp(−c(L)ε2N),

for every ti 6= tj , ti, tj ∈ T , one has

(1 + ε)‖ti − tj‖22 ≤ ‖Γ(ti − tj)‖22 ≤ (1 + ε)‖ti − tj‖22. (3.9)

Therefore, ifN ≥ c1(L)ε−2 log |T | then (3.9) holds with probability at least 1−2 exp(−c2(L)ε2N).

3.4 Bennett’s Inequality

Let us return to the first part of Corollary 3.9, which deals with bounded random variables.
As can be immediately seen from the estimates on the moment generating function in that
case, there is some room for maneuvering, since E|Z|p ≤ Mp−2σ2—without the additional
factor of p!. This observation is at the heart of the following improvement to Bernstein’s
inequality in the bounded case, called Bennett’s inequality.

Before formulating and proving that inequality, let us improve the estimate on the moment
generating function of a bounded random variable.

Lemma 3.13. Let Z be a centred random variable. If ‖Z‖L∞ ≤M then for every λ > 0,

E exp(λZ) ≤ 1 +
EZ2

M2
(exp(λM)− 1− λM) .

Proof. Using the same argument as in Lemma 3.6 and recalling that EZ = 0 and that
E|Z|p ≤Mp−2EZ2,

E exp(λZ) ≤ 1 +
EZ2

M2

∞∑
p=2

λpMp

p!
= 1 +

EZ2

M2
(exp(λM)− 1− λM) ,

where the final step follows from Taylor’s expansion of exp(x) and the choice x = λM .
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Corollary 3.14. Let Z1, ..., ZN be independent mean-zero random variables. Assume that
max1≤i≤M ‖Zi‖L∞ ≤M , set S2 =

∑N
i=1 EZ2

i and put

Φ(x) = (1 + x) log(1 + x)− x.

Then, for every t > 0,

Pr

(
N∑
i=1

Zi ≥ t

)
≤ exp

(
− S2

M2
Φ

(
tM

S2

))
.

Proof. Combining (3.1) and Lemma 3.13, it follows that

exp(−tλ)

N∏
i=1

E exp(λZi) ≤ exp

(
−λt+

S2

M2
(exp(λM)− 1− λM)

)
= (∗).

One may optimize the choice of λ and verify that the minimum is attained for

λ =
1

M
log

(
tM

S2
+ 1

)
,

which yields the desired bound.

To understand the meaning of Corollary 3.14, one should study the behaviour of the
function Φ(x). It is straightforward to verify that for x ≥ 1, Φ(x) ≥ (1/2)x log(1 + x), and
that for 0 < x < 1, Φ(x) ≥ x2/4. Thus, the tail behaviour changes according to the value
of t: when 0 < t ≤ S2/M , the sum exhibits a subgaussian behaviour, and when t > S2/M
the tail behaviour is better than ∼ exp(−t): thanks to the extra logarithmic term, the tail is
actually similar to that of a Poisson random variable.

As an example, let Z1, ..., ZN be identically distributed according to the bounded, centred
random variable Z. Then S2 = NEZ2 = Nσ2 and therefore,

Pr

(
1

N

N∑
i=1

Zi > t

)
≤ exp

(
−Nt
M
−
(
Nt

M
+
Nσ2

M2

)
log

(
1 +

Mt

σ2

))
.

If 0 < t ≤ Nσ2/M then the tail is smaller than

exp(−t2/2Nσ2), (3.10)

while for every t > 0, it is smaller than

exp

(
− t

M

(
log

(
1 +

Mt

Nσ2

)))
. (3.11)

One very useful application of Bennett’s inequality is for the sum of independent selectors
– which are simply {0, 1}-valued random variables. Indeed, let (δi)

N
i=1 be independent, taking

values in {0, 1} and assume that for every 1 ≤ i ≤ N , Eδi = δ. Set Zi = δi − δ and note that
EZi = 0, ‖Zi‖∞ = 1 and EZ2

i = δ − δ2 ≥ δ/4 provided that δ ≤ 3/4. Therefore, applying
(3.10) and (3.11) to the random variables Zi and then to the random variables −Zi, the
following is evident: for t ≤ Nδ/4,

Pr

(∣∣∣∣∣
N∑
i=1

(δi − δ)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−c t

2

Nδ

)
(3.12)
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and for t ≥ Nδ/4,

Pr

(∣∣∣∣∣
N∑
i=1

(δi − δ)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−ct

(
log

(
1 +

t

Nδ

)
− 1

))
. (3.13)

Thus, with probability at least 1− 2 exp(−c1δN),

1

2
δN ≤ |{i : δi = 1}| ≤ 3

2
δN (3.14)

and for u ≥ 2, with probability at least 1− 2 exp(−c1δNu log u),

|{i : δi = 1}| ≤ uδN.

3.5 Symmetrization of Empirical Processes

We end this chapter with a symmetrization argument, due to Giné and Zinn [?], which shows
that E supf∈F |N−1

∑N
i=1 f(Xi) − Ef | is equivalent to N−1E supf∈F |

∑N
i=1 εif(Xi)|. This

generalizes the simple symmetrization arguments described previously, and it is one of the
main technical tools used in the study of empirical processes.

Theorem 3.15. There are absolute constants C1 and C2 for which the following holds. Let
F be a class of functions on (Ω, µ) and let X be distributed according to µ. If X1, ..., XN are
independent copies of X then

E sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)− Ef

∣∣∣∣∣ ≤ C1

N
E sup
f∈F

∣∣∣∣∣
N∑
i=1

εif(Xi)

∣∣∣∣∣ ≤ C2E sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)− Ef

∣∣∣∣∣+
r√
N
,

where r = supf∈F |Ef(X)|.

Proof. Let (Yi)
N
i=1 be an independent copy of (Xi)

N
i=1. Note that

EX sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)− EY f

∣∣∣∣∣ = EX sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)− EY f − EY

(
1

N

N∑
i=1

f(Yi)− EY f

)∣∣∣∣∣
Conditioning on X1, ..., XN followed by Jensen’s inequality with respect to EY and then
Fubini’s Theorem, one has

E sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)− Ef

∣∣∣∣∣ ≤ 1

N
EXEY sup

f∈F

∣∣∣∣∣
N∑
i=1

f(Xi)−
N∑
i=1

f(Yi)

∣∣∣∣∣
=

1

N
EXEY sup

f∈F

∣∣∣∣∣
N∑
i=1

εi (f(Xi)− f(Yi))

∣∣∣∣∣ ,
where the final equality holds for every (εi)

n
i=1 ∈ {−1, 1}N . Taking the expectation with

respect to (εi)
N
i=1 and by the triangle inequality,

1

N
EXEY Eε sup

f∈F

∣∣∣∣∣
N∑
i=1

εi (f(Xi)− f(Yi))

∣∣∣∣∣ ≤ 2

N
EXEε sup

f∈F

∣∣∣∣∣
N∑
i=1

εif(Xi)

∣∣∣∣∣ =
2

N
E sup
f∈F

∣∣∣∣∣
N∑
i=1

εif(Xi)

∣∣∣∣∣ .
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To prove the upper bound, one may apply the triangle inequality,

1

N
EXEε sup

f∈F

∣∣∣∣∣
N∑
i=1

εif(Xi)

∣∣∣∣∣ ≤ 1

N
EXEε sup

f∈F

∣∣∣∣∣
N∑
i=1

εi (f(Xi)− Ef)

∣∣∣∣∣+

∣∣∣∣∣sup
f∈F

Ef

∣∣∣∣∣ · Eε
∣∣∣∣∣ 1

N

N∑
i=1

εi

∣∣∣∣∣ .
Let (Zi)

N
i=1 be the stochastic process defined by Zi(f) = f(Xi) − Ef and let (Wi)

N
i=1 be an

independent copy of (Zi)
N
i=1. For every f ∈ F , EWi(f) = 0, thus,

EXEε sup
f∈F

∣∣∣∣∣
N∑
i=1

εi (f(Xi)− Ef)

∣∣∣∣∣ = EZEε sup
f∈F

∣∣∣∣∣
N∑
i=1

εiZi(f)

∣∣∣∣∣
= EεEZ sup

f∈F

∣∣∣∣∣
N∑
i=1

εi (Zi(f)− EWWi(f))

∣∣∣∣∣ .
For every realization of the Bernoulli random variables (εi)

n
i=1 and by Jensen’s inequality

conditioned on Zi,

EZ sup
f∈F

∣∣∣∣∣
N∑
i=1

εi (Zi(f)− EWWi(f))

∣∣∣∣∣ ≤ EZEW sup
f∈F

∣∣∣∣∣
N∑
i=1

εi (Zi(f)−Wi(f))

∣∣∣∣∣ ,
which is invariant for any selection of signs (εi)

N
i=1. Therefore,

EεEZ sup
f∈F

∣∣∣∣∣
N∑
i=1

εi (Zi(f)− EWWi(f))

∣∣∣∣∣ ≤ EZEW sup
f∈F

∣∣∣∣∣
N∑
i=1

(Zi(f)−Wi(f))

∣∣∣∣∣
≤ 2EZ sup

f∈F

∣∣∣∣∣
n∑
i=1

Zi(f)

∣∣∣∣∣ ,
as claimed.

Next, let us turn to an ‘in-probability’ symmetrization argument. The proof can be found
in [?].

Theorem 3.16. Let (Zi)
N
i=1 be an iid stochastic process, that is mean-zero (i.e., for every

f ∈ F , EZ(f) = 0). For every 1 ≤ i ≤ N , set hi : F → R to be an arbitrary function. Then,
for every x > 0(

1− 4N

x2
sup
f∈F

var (Z1(f))

)
Pr

(
sup
f∈F

∣∣∣∣∣
N∑
i=1

Zi(f)

∣∣∣∣∣ > x

)

≤2Pr

(
sup
f∈F

∣∣∣∣∣
N∑
i=1

εi (Zi(f)− hi(f))

∣∣∣∣∣ > x

4

)
.

Let us consider its implications to the standard empirical process. Set Zi(f) = f(Xi)−Ef
and put hi(f) = −Ef . Also, set v2 = supf∈F var(f), and note that if x ≥ 2

√
2
√
Nv then

1− 4N

x2
sup
f∈F

var (Z1(f)) ≥ 1/2.
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Therefore, for such a choice of x,

Pr

(
sup
f∈F

∣∣∣∣∣
N∑
i=1

(f(Xi)− Ef)

∣∣∣∣∣ > x

)
≤ 4Pr

(
sup
f∈F

∣∣∣∣∣
N∑
i=1

εif(Xi)

∣∣∣∣∣ > x

4

)
.

Now, fix any ε > 0 and let x = Nε. If N ≥ 8v2/ε2 then

Pr

(
sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)− Ef

∣∣∣∣∣ > ε

)
≤ 4Pr

(
sup
f∈F

∣∣∣∣∣
N∑
i=1

εif(Xi)

∣∣∣∣∣ > Nε

4

)
. (3.15)

Theorem 3.15 and Theorem 3.16 give a different way of addressing questions related to
empirical processes. Instead of analyzing the collection of the random variables {Zf : f ∈ F},
where each Zf is the empirical mean (centred or not) of f , one can study the behaviour of a
random subset of RN , the random coordinate projection, defined for a given F and a sample
σ = (Xi)

N
i=1 by

PσF =
{

(f(Xi))
N
i=1 : f ∈ F

}
.

By a symmetrization argument, the expectation of the supremum of the empirical process
indexed by F is equivalent to

EX

(
Eε sup

v∈PσF

∣∣∣∣∣
N∑
i=1

εivi

∣∣∣∣∣
)
,

and understanding objects like Eε supt∈T

∣∣∣∑N
i=1 εiti

∣∣∣ and the way they depend on the indexing

set T takes one a significant step forward towards a sharp analysis of empirical processes.
A significant part in these notes is the long journey towards a better understanding of

the connections between Eε supt∈T

∣∣∣∑N
i=1 εiti

∣∣∣ and the geometry of the indexing set T . A

crucial part of this journey is the study of how much of the structure of the indexing class F
is reflected in the geometry of a typical PσF .
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Vectors with iid coordinates

One of the most significant objects that appears in what follows is a random vector in RN
whose coordinates are independent copies of a fixed random variable. This is a natural
feature of sampling: given a function f one ‘sees’ the sample (f(Xi))

N
i=1 and uses the sample

to address statistical questions on properties of f . In other words, the belief behind sampling
is that with high probability (f(Xi))

N
i=1 encodes information that is important in the context

of statistical questions.
Of course, another way of looking at the same object is as a random vector in RN with

iid coordinates. If the idea behind sampling is indeed true, then the location of a typical
realization of the random vector (f(Xi))

N
i=1 must contain important information. That leads

us to the following fundamental question:

Question 4.1. If Z is a random variable and Z1, ..., Zd are independent copies of Z, what is
the typical location of the random vector Z = (Z1, ..., Zd)?

As outlined in Section 1.1, the two notions of location we focus on are when Z is viewed
as a function on Rd endowed with the natural probability measure; the other is when Z
endows a probability measure on Rd, and we study the linear functionals

〈
t, ·
〉

defined on
that probability space. Specifically,

• What is the typical behaviour of ‖Z‖ for various natural norms on Rd, like Ldp and ψdα?
And does Z necessarily have many ‘nontrivial coordinates’?

• Given t ∈ Rd, what are the moments of the linear form
〈
Z, t

〉
? In a more geometric

language, what is the structure of the set

B(Lp(Z)) = {t ∈ Rd : ‖
〈
Z, t

〉
‖Lp ≤ 1}?

Both notions of location will turn out to be very important in what follows, and at times, the
study of the location can be highly nontrivial. At this point, the machinery at our disposal
is somewhat limited, and Question 4.1 will accompany us for a while. Still, some very useful
facts can still be derived, and we present some of them in what follows.

To get a better feeling of what is going on, we study two special cases: when Z is the
standard gaussian random variable, implying that Z = (g1, ..., gd) is the standard gaussian
random vector in Rd (denoted in what follows by G; and when Z is a symmetric, {−1, 1}-
valued random variable, implying that Z = (ε1, ..., εd)—the uniform distribution on the d-
dimensional combinatorial cube. In what follows we refer to this vector as the (standard)

35
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Bernoulli vector and denote it by E . Before getting one’s hopes too high, even in these very
special cases we will be far from a complete answer.

4.1 The gaussian vector in Rd

The standard gaussian vector is of extreme significance for the theory we present. We do not
present all its basic properties in this presentation.

A very useful fact is that the gaussian random vector is rotation-invariant, meaning that
for any measurable set A and any orthogonal matrix O, Pr(G ∈ A) = Pr(OG ∈ A) i.e., the
distribution of G and of OG coincide.

Two facts immediately follow from this observation:

• For t ∈ Rd,
〈
t, G

〉
has the same distribution at ‖t‖2g: indeed, let O be the orthogonal

matrix that satisfies O−1t = e1‖t‖2. Since G and OG have the same distribution then〈
t, G

〉
is distributed as

〈
t, OG

〉
=
〈
O−1t, G

〉
= ‖t‖2g1, as required.

• Let X = G/‖G‖2. Then X is a probability measure on the sphere Sd−1 which is invariant
to rotations: for every orthogonal operator O and a measurable set A ⊂ Sd−1,

Pr(X ∈ OA) = Pr(O−1G/‖O−1G‖2 ∈ A) = Pr(G/‖G‖2 ∈ A),

because G and ‖G‖2 are rotation invariant. A deep fact is that the there is only one
probability measure on the sphere that is rotation invariant—the surface area. This is
an example of the notion of the Haar measure.

Thanks to the first observation, we can identify the Lp structure endowed on Rd by G: for any
t ∈ Rd,

〈
t, G

〉
has the same distribution as g1‖t‖2, and therefore, by the standard estimate on

moments of a gaussian random variable, ‖
〈
t, G

〉
‖Lp = ‖t‖2‖g‖Lp = c

√
p‖t‖2. We thus have

that the Lp unit ball endowed on Rd by the gaussian vector,

B(Lp(G)) =
{
t ∈ Rd : ‖

〈
t, G

〉
‖Lp ≤ 1

}
=

1

c
√
p
Bd

2

and is just a re-scaling of the standard Euclidean ball.

A far more subtle question is the ‘location’ in Rd of a typical realization of G. Let us
start by a simple question: examining the Euclidean norm of G. It turns out that typically,
G ‘lives’ in some well specified shell in Rd. While this may sound strange at first, it becomes
straightforward once presented in a more probabilistic language: the event {α ≤ ‖G‖2 ≤ β}
is simply {α2 ≤

∑d
i=1 g

2
i ≤ β2}, and we have obtained sharp estimates on the sum of inde-

pendent subgaussian random variables in Chapter 3.3. Since ‖g2‖ψ1 = ‖g‖2ψ2
it follows by the

ψ1 version of Bernstein’s inequality that with probability at least 1− 2 exp(−c0dmin{u2, u}),∣∣∣∣‖G‖22d
− 1

∣∣∣∣ ≤ u;

In other words,

‖G‖2 ∈ (
√
d− c1

√
m,
√
d+ c1

√
m) (4.1)

with probability at least 1− 2 exp(−c2m).
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Even this sharp shell bound does not give precise enough information on the location
of G: as noted previously, from the perspective of sampling, the vector (

√
d, 0, ..., 0) is (at

least intuitively) terrible because it is ‘peaky’, while (1, ..., 1) is great—being ‘well spread’.
However, both these vectors belong to the shell (4.1).

To complement the shell picture, we need to derive more information on the distribution
of the coordinates of G, and show that a typical G has to be well spread. Recall that in the
sense that a proportional number of its coordinates are of the order of ‖G‖2/

√
d,

Lemma 4.2. There exists absolute constants c1 and c2 for which the following holds: with
probability at least 1− 2 exp(−c1d)∣∣∣∣{i : |gi| ≥ c2

‖G‖2√
d

}∣∣∣∣ ≥ 0.98d.

One useful fact is that a standard gaussian variable satisfies a small-ball property: for
a suitable absolute constant κ, Pr(|g| ≥ κ) ≥ 0.99. Therefore, with probability at least
1− 2 exp(−c0d),

|{i : |gi| ≥ κ}| ≥ 0.98d,

which means that typically, G is well-spread: there is∼ d coordinates larger than∼ ‖G‖2/
√
d ≥

c1 which by (4.1) holds with probability at least 1− 2 exp(−c2d).
Note that the coordinate small-ball estimate does not exclude the fact that many of the

coordinates of G are big — say that there a constant number of them is of the order of
√
d.

To exclude that option one has to obtain an upper estimate on ‖G‖ for norms that are more
restrictive that the `2 one.

Lemma 4.3. There are absolute constants c1 and c2 for which the following holds: ‖E‖G‖ψd2 ≤
c1, and for u > 4, Pr(‖G‖ψd2 ≥ u) ≤ exp(−c2u

2 log d).

Before we prove Lemma 4.3, let us explain its meaning. As observed previously, with
probability at least 1 − 2 exp(−c0d), d/2 ≤ ‖G‖2 ≤ 2d and G has d/2 coordinates that are
larger than a suitable absolute constant c1, and, in fact, that a proportional number of the
coordinates belong to an interval [c2, c3]. Now, by Lemma 4.3 we have that with super-
polynomial probability,

g∗i ≤ c2

√
log(ed/i),

showing that the coordinates of (gi)
d
i=1 cannot be too big: ‖G‖∞ ≤ c3

√
log d and for any

k ≤ d,
∑

i≤k(g
∗
i )

2 ≤ c3k log(ed/k).

Remark 4.4. Recall that G/‖G‖2 is distributed as the uniform measure of Sd−1. Therefore,
we have that ‘most’ of the mass is concentrated on regular vectors:

|{i : |xi| ∈ [c5/
√
d, c6/

√
d]}| ≥ c7d, and |x∗i | ≤ c8

√
log(ed/i)

d
.

Before we proceed with the proof, let us mention the following standard fact about bino-
mial coefficients:

Lemma 4.5. If 1 ≤ m ≤ N then(
N

m

)
≤

m∑
k=1

(
N

k

)
≤
(eN
m

)m
.
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Proof. Observe that

m∑
k=1

(
N

k

)
=
(N
m

)m
·
m∑
k=1

(
N

k

)(m
N

)m
· 1N−k ≤

(N
m

)m
·
N∑
k=1

(
N

k

)(m
N

)m
· 1N−k

=
(N
m

)m(
1 +

m

N

)N
≤
(eN
m

)m
,

as claimed.

Proof. Recall that for a random variable X on a probability space we have that ‖X‖ψ2 ≤
CE exp(|X|2). Consider the probability space {1, ..., d} endowed with the uniform measure
and put X = G/R for a fixed realization of G. Therefore,

‖X‖ψd2 ≤ E exp(|G|2/R2) =
1

d

d∑
i=1

exp(g2
i /R

2).

Hence, taking the expectation with respect to G, if we set R = ‖g‖ψ2 , it follows that

E‖X‖ψd2 ≤
1

d

d∑
i=1

E exp(|gi|2/R2) ≤ 2,

implying that E‖G‖ψd2 ≤ 2R = 2‖g‖ψ2 ≤ 10.
Next, let us estimate the monotone rearrangement of the coordinate of G. By Lemma 4.5

and the tail estimate of the gaussian,

Pr(g∗i ≥ t) ≤
(
d

i

)
Pri(|g| > t) ≤

(
ed

i

)i
Pr(|g| > t) ≤ 2 exp(i(log(ed/i)− t2/2)).

If we set t = u
√

log(ed/i) for u > 4, then

Pr(g∗i ≥ u
√

log(ed/i)) ≤ 2 exp(−(u2/4) · i log(ed/i)).

The claim follows by taking the union bound over 1 ≤ i ≤ d.

4.2 The Bernoulli vector in Rd

Let ε1, ..., εd be d independent, symmetric {−1, 1}-valued random variables. Let E = (ε1, ..., εd),
where in what follows we do not specify the dimension of the underlying space.

While for the gaussian vector G the structure of linear functionals
〈
G, t

〉
is simple but the

study of the coordinate structure of G required some work, the situation for E is quite the
opposite: the coordinate structure of E is very simple since every realization is just a point
in the combinatorial cube, but the behaviour of linear forms is more complex.

For t ∈ Rd, let

Et =
〈
E , t
〉

=

d∑
i=1

εiti.

An immediate outcome of Höffding’s inequality (Lemma 2.9) is that Et is a subgaussian
random vector:

‖Et‖ψ2 ≤ c‖Et‖L2 = c‖t‖2,
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and the constant c is independent of t or of the dimension d. Therefore, the ψ2 and L2 norms
are equivalent in Rd, with the standard identification of each t ∈ Rd with Et. Moreover, by
the characterization of the ψ2 norm, one has that for every p ≥ 2 and every t ∈ Rd,

‖
〈
E , t
〉
‖Lp ≤ c1

√
p‖
〈
E , t
〉
‖L2 = c1

√
p‖t‖2. (4.2)

While (4.2) is straightforward, it is far from sharp. It leads to the same estimate as for the
standard gaussian vector in Rd, although clearly there are vectors t ∈ Rd for which

〈
E , t
〉

is
‘much nicer’ than

〈
G, t

〉
. For example, if t = e1, then Et = ε1 which is a bounded random

variable, and ‖
〈
E , t
〉
‖Lp ≤ 1 for every p, while

〈
G, t

〉
= g1, implying that ‖

〈
G, t

〉
‖Lp ∼

√
p.

The fact is that contrary to the rotationally invariant gaussian
〈
G, t

〉
,
〈
E , t
〉

is ‘direction
dependent’, and at the same time its moment growth is always better than that of the
corresponding gaussian. And the corresponding Lp(E) balls endowed on Rd will be larger sets
than Lp(G) as the next lemma shows:

Lemma 4.6. For every t ∈ Rd and every p ≥ 1, ‖
〈
E , t
〉
‖Lp ≤ ‖

〈
G, t

〉
‖Lp

Proof. Clearly,
∑d

i=1 εiti = 1
E|g1|

∑d
i=1 εiE|gi|ti. Therefore, by Jensen inequality,

E

∣∣∣∣∣
d∑
i=1

εiti

∣∣∣∣∣
p

=

(
1

E|g1|

)p
E

∣∣∣∣∣
d∑
i=1

εiE|gi|ti

∣∣∣∣∣
p

≤
(

1

E|g1|

)p
EgEε

∣∣∣∣∣
d∑
i=1

εi|gi|ti

∣∣∣∣∣
p

=

(
1

E|g1|

)p
E

∣∣∣∣∣
d∑
i=1

giti

∣∣∣∣∣
p

,

because (gi)
d
i=1 and (εigi)

d
i=1 have the same distribution.

A geometric way of formulating Lemma 4.6 is that the Lp unit balls endowed on Rd by G
and E imply that

1
√
p
Bd

2 = Bp(G) ⊂ 1

E|g|
Bp(E).

The different behaviour of linear forms
〈
E , t
〉

and
〈
G, t

〉
plays a crucial role in what

follows. And at this point, let us quantify the moment growth of each linear form (i.e., one
dimensional marginal)

〈
E , t
〉

and as an outcome, identify Bp(E).
In what follows let (t∗i )

d
i=1 be the nonincreasing rearrangement of (|ti|)di=1 and set

‖t‖E,p =

p∑
i=1

t∗i + c
√
p
(∑
i>p

(t∗i )
2
)1/2

.

The ‖ ‖E,p is a ‘mixture’ of two norms—the `1 norm and an appropriate multiple of the `2
one; such mixtures are studied in Interpolation Theory (see e.g. [?]). Let us mention that at
this point using ‖ ‖E,p is a terrible abuse of notation, since at this point, it is not clear that
‖ ‖E,p has anything to do with a norm.

The motivation behind the definition is the main result of this section:

Theorem 4.7. There exist absolute constants c1 and c2 for which for any t ∈ Rd,

c1‖t‖E,p ≤ ‖
〈
t, E
〉
‖Lp ≤ c2‖t‖E,p

Moreover, set K to be the convex hull of Bd
1 and (1/

√
p)Bd

2 . Then, there are absolute constants
c3 and c4 such that

c3K ⊂ Bp(E) ⊂ c4K.
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Note that indeed K is a larger set than B(Lp(G)), which is (c/
√
p)Bd

2 . In contrast Bp(E)
is attained by taking the convex hull of what is effectively B(Lp(G)) with Bd

1 .

Remark 4.8. It is instructive to see for what directions t ∈ Sd−1 ‖
〈
t, G

〉
‖Lp is equivalent to

‖
〈
t, E
〉
‖Lp: since it always holds that∑

i≤p
t∗i ≤

√
p
(∑
i≤p

(t∗i )
2
)1/2

then equivalence is satisfies when either

•
∑

i≤p t
∗
i ≥ c

√
p
(∑

i≤p(t
∗
i )

2
)1/2

, or when

•
(∑

i>p(t
∗
i )

2
)1/2 ≥ c(∑i≤p(t

∗
i )

2
)1/2

.

We will return to this fact when we explore empirical processes where we explore vectors t of
the form t = (f(Xi))

N
i=1.

Let us begin the proof of the second part of Theorem 4.7 assuming that its first part is.
The proof requires the application of some basic notions from the theory of normed spaces
which will be used again in what follows.

If K ⊂ Rd is a convex body (that is, a bounded, convex, centrally-symmetric subset of Rd
with a nonempty interior). It is standard to verify that K is the unit ball of a norm on Rd;
and, if we set

K◦ = {t :
〈
x, t
〉
≤ 1 for all x ∈ K}

then K◦ is the unit ball of its dual norm. For example, if 1 ≤ p ≤ ∞ and K = Bd
p—the unit

ball of (Rd, ‖ ‖p)—then K◦ = Bd
q , where q is the conjugate index of p.

K◦ is called the polar body of K.
The following facts are standard and their proofs are left to the reader as an exercise.

Lemma 4.9. Let K, K1 and K2 be convex bodies in Rd.

(1) For c > 0, (cK)◦ = c−1K◦.

(2) If c, C > 0 and cK1 ⊂ K2 ⊂ CK1 then C−1K◦1 ⊂ K◦2 ⊂ c−1K◦1 .

(3) (conv(K1 ∪K2))◦ = K◦1 ∩K◦2 .

Exercise 10. Prove Lemma 4.9.

The claim is that the unit ball of the norm Bp(E) endowed on Rd is equivalent to

conv
(
Bp

1 ∪ 1√
pB

d
2

)
. By Lemma 4.9, it suffices to show that the dual ball is equivalent to(

conv

(
Bp

1 ∪
1
√
p
Bd

2

))◦
= Bd

∞ ∩
√
pBp

2 ;

that is, there are absolute constants c and C such that for every t ∈ Rd

c‖
〈
t, E
〉
‖Lp ≤ sup

x∈Bd∞∩
√
pBp2

〈
t, x
〉
≤ C‖

〈
t, E
〉
‖Lp .

Now, if the first part is to be believed, all that is left is demonstrate the following:
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Lemma 4.10. There exist absolute constants c1 and c2 such that for every t ∈ Rd,

c1‖t‖E,p ≤ sup
x∈Bd∞∩

√
pBp2

〈
t, x
〉
≤ c2‖t‖E,p. (4.3)

Proof. Fix t ∈ Rd and without loss of generality assume that (ti)
d
i=1 is non-increasing and

nonnegative. Fix x ∈ Bd
∞ ∩
√
pBp

2 and note that by the `1 − `∞ Hölder inequality and the
Cauchy-Schwarz inequality,

〈
x, t
〉

=
∑
i≤p

tixi +
∑
i>p

tixi ≤ ‖x‖∞
p∑
i=1

ti + ‖x‖2
(∑
i>p

t2i
)1/2

≤
p∑
i=1

ti +
√
p
(∑
i>p

t2i
)1/2 ≤ ‖t‖E,p.

Taking the supremum with respect to x ∈ Bd
∞ ∩

√
pBp

2 it follows that the left-hand side of
(4.3) holds with c2 = 1.

As for the right-hand side, let R2 =
∑

i>p t
2
i , and consider two cases. Let if

∑p
i=1 ti ≥

√
pR,

then set x =
∑p

i=1 ei. Hence, x ∈ Bd
p ∩
√
pBd

2 , and

〈
x, t
〉

=

p∑
i=1

ti ≥
1

2

(
p∑
i=1

ti +
√
pR

)
=

1

2
‖t‖E,p.

Otherwise,
∑p

i=1 ti <
√
pR, and set

x =

√
p

R

∑
i>p

tiei.

Then

‖x‖∞ ≤
√
p

R
tp ≤

√
p

R
· 1

p

p∑
i=1

ti ≤ 1

and 〈
x, t
〉
≥ √pR ≥ 1

2
‖t‖E,p,

showing that the right-hand side holds with constant c1 = 1/2.

Next, we shall establish the first part of Theorem 4.7, by considering the upper and lower
estimates separately.

Lemma 4.11. There exists an absolute constant c for which the following holds. For every
t ∈ Rd and every p ≥ 2,

‖
〈
E , t
〉
‖Lp ≤

p∑
i=1

t∗i + c
√
p

∑
i>p

(t∗i )
2

1/2

,
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Proof. By the Lp triangle inequality, followed by the triangle inequality for the first term
and (4.2) for the second — applied to (t∗i )i>p, it is evident that(

E

∣∣∣∣∣
d∑
i=1

εiti

∣∣∣∣∣
p)1/p

≤

(
E

∣∣∣∣∣
p∑
i=1

εit
∗
i

∣∣∣∣∣
p)1/p

+

E

∣∣∣∣∣∣
∑
i>p

εit
∗
i

∣∣∣∣∣∣
p1/p

≤
p∑
i=1

t∗i + c
√
p

∑
i>p

(t∗i )
2

1/2

. (4.4)

While the proof of Lemma 4.11 is simple, it is far from obvious that this upper bound is
optimal. That requires a lower bound on ‖

〈
E , t
〉
‖Lp , and obtaining such a lower bound is a

considerably harder task.

Lemma 4.12. There exists an absolute constant c for which the following holds. For every
t ∈ Rd and every p ≥ 2,(

E

∣∣∣∣∣
d∑
i=1

εiti

∣∣∣∣∣
p)1/p

≥ c

 p∑
i=1

t∗i +
√
p

∑
i>p

(t∗i )
2

1/2
 . (4.5)

The proof of Theorem 4.12 requires some preparation.

Lemma 4.13. Let a ∈ Rd. If ‖a‖∞ ≤ ‖a‖2/16
√
s, then there is a decomposition of {1, ..., d}

to coordinate blocks I1, ...Is, and for every 1 ≤ j ≤ s,

‖a‖2
4
√
s
≤

∑
i∈Ij

|ai|2
1/2

≤ ‖a‖2
2
√
s

Proof. Without loss of generality, we may assume that a1 ≥ a2 ≥ ... ≥ ad ≥ 0. Let j1 be

the smallest integer for which
∑j1

i=1 a
2
i ≥

‖a‖22
16s . Since a1 ≤ ‖a‖2/16

√
s it follows that j1 > 1.

Moreover, since
∑j1−1

i=1 a2
i <

‖a‖22
/ 16s, it is evident that

j1∑
i=1

a2
i < a2

1 +
‖a‖22
16s

≤ ‖a‖
2
2

8s

and setting I1 = {1, ..., j1},

‖a‖2
4
√
s
≤

∑
i∈I1

a2
i

1/2

≤ ‖a‖2
2
√
s
,

as required.
We continue along the same lines and construct k coordinate blocks: the process termi-

nates when
∑d

i=jk
a2
i ≤

‖a‖22
16s , implying that

k
‖a‖22
4s
≥

k∑
`=1

∑
i∈I`

a2
i ≥
‖a‖22

4
;

hence, k ≥ s, as claimed.
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Proof of Lemma 4.12. Without loss of generality we may assume that t1 ≥ t2 ≥ ... ≥ td ≥ 0.

First, consider the case
∑p

i=1 ti ≥
√
p

16 (
∑

i>p t
2
i )

1/2. Clearly, with probability at least 2−p,
ε1 = ε2 = ... = εp = 1, and in particular,

E

∣∣∣∣∣
p∑
i=1

εiti

∣∣∣∣∣
p

≥ 2−p

(
p∑
i=1

ti

)p
.

Moreover, by Jensen’s inequality and since Eεi = 0,

E

∣∣∣∣∣
d∑
i=1

εiti

∣∣∣∣∣
p

= E(εi)i≤pE(εi)i>p

∣∣∣∣∣
d∑
i=1

εiti

∣∣∣∣∣
p

≥ E(εi)i≤pE

∣∣∣∣∣
p∑
i=1

εiti

∣∣∣∣∣
p

, (4.6)

implying that

‖
〈
E , t
〉
‖Lp ≥

1

2

p∑
i=1

ti ≥ c

 p∑
i=1

ti +
√
p

∑
i>p

t2i

1/2
 .

Next, assume that
∑p

i=1 ti <
√
p

16 (
∑

i>p t
2
i )

1/2 and consider the vector a = (ti)i≥p. Observe
that

‖a‖∞ ≤
1

p

p∑
i=1

ti ≤
‖a‖2
16
√
p
,

and the condition of Lemma 4.13 holds with s = p. Let I1, ..., Ip be the decomposition of
{p + 1, ..., d} guaranteed by that Lemma. Recall that there is an absolute constant c1 for
which

‖
∑
i∈Ij

εiti‖Lp ≤ c1
√
p‖
∑
i∈Ij

εiti‖L2 = c1
√
p
(∑
i∈Ij

t2i
)1/2

;

thus, by the Paley-Zygmund inequality, there are absolute constants c2 and c3 such that

Pr


∣∣∣∣∣∣
∑
i∈Ij

εiti

∣∣∣∣∣∣ ≥ c2

∑
i∈Ij

t2i

1/2
 ≥ c3.

Note that the p random variables
∑

i∈Ij εjti are independent and symmetric. Therefore, with

probability at least (c3/2)p, for every 1 ≤ j ≤ p,

∑
i∈Ij

εiti ≥ c2

∑
i∈Ij

t2i

1/2

≥ c4√
p

∑
i>p

t2i

1/2

for a suitable absolute constant c4. Thus,E

∣∣∣∣∣∣
∑
i>p

εiti

∣∣∣∣∣∣
p1/p

≥ c5
√
p

∑
i>p

t2i

1/2

,

and the claim follows using a similar argument to (4.6).
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Chapter 5

Introduction

The underlying theme of these notes is structure, and specifically, the way randomness may
be used to expose hidden structures in sets. Using randomness to expose structure has been
one of the central ideas of Asymptotic Geometric Analysis, an area devoted to the study of
convex sets in Rd. What is less widely known is that connections between randomness and
structure are at the heart of Statistical Learning Theory.

Statistical Learning Theory, and more generally, Nonparametric Statistics, are areas that
focus on prediction and estimation problems. Roughly put, a random sample is used to
generate an approximation of an unknown random variable by (wisely) selecting a function
from a given class of functions. Because of the nature of the given data, randomness obviously
plays an essential role in learning problems, but connecting this with ‘structure’ seem a little
far-fetched at this point.

To give some indication of why problems involving sampling are connected with structure,
let us begin by describing a toy example: selecting randomly a subset of the coordinates of a
single vector in Rd. This example captures many of the issues one has to contend with in what
follows, though, obviously, difficulties will have to be addressed not just for a single vector in
Rd (or for a single function), but rather uniformly—for an infinite family of vectors/functions.

Contrary to what one might think, the fact that a vector (or a function for that matter) is
bounded with respect to some natural norm says very little on the effectiveness of sampling,
and the outcome of a sampling procedure may be totally distorted. To illustrate this obser-
vation let v ∈ Rd (and d is very large). One has access to set of N coordinates I ⊂ {1, ..., d}
selected randomly. and the hope is that the sampled vector (vi)i∈I ‘inherits’ the significant
properties of the vector (vi)

d
i=1—for example, that the `2 norm of v,

‖v‖2 =

(
d∑
i=1

|vi|2
)1/2

,

is reflected by the values (vi)i∈I .
Clearly, the best outcome one can hope for is when v is the constant vector, in which case,

for every I ⊂ {1, ..., d}, if PIv = (vi)i∈I then

‖v‖2 =

(
d

|I|

)1/2

‖PIv‖2.

Therefore, if |I| is very close to N (as would be the case in any reasonable of choosing a random

47
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subset I), a successful outcome of sampling is that ‖PIv‖2 is ‘very close’ to (|N |/d)1/2‖v‖2; in
other words, sampling shrinks the Euclidean norm by a factor that is very close to (|I|/d)1/2.

Now, consider the following vectors

v1 = (1, 0, ..., 0) and v2 = (1/
√
d, ..., 1/

√
d).

Both vectors belong to the Euclidean unit sphere, but respond in very different ways to a
choice of a random subset of their coordinates. Indeed, for any reasonable definition of a
random subset I ⊂ {1, ..., d}, and even if N is large, the typical outcome is that the first
coordinate is not be selected. Therefore, ‖PIv1‖2 = 0, which is very far from the benchmark
value of

√
N/d. In contrast, since v2 is a constant vector, ‖PIv2‖2 =

√
|I|/d.

The way the two vectors respond to sampling happens to be an outcome of their different
structures. Although the two have the same Euclidean norm, the norm of v1 is due to a single
coordinate, and in that sense, v1 is a peaky vector. In contrast, v2 is well-spread, as all of its
coordinates are the same1. Clearly,

Having some information on the Euclidean norm of a vector says absolutely nothing about
the success of sampling. And, like-wise, having information on the vector being bounded
with respect to other `p norms is equally useless. Meaningful information has to provide
more information than just “being bounded”.

Intuitively and somewhat inaccurately, independent sampling works reasonably well when
the wanted property is captured by a ‘large set’ of Ω, and in this case, by a set consisting of
many coordinates. Indeed, a natural way of ensuring that ‖PIv‖2 is large enough, say of the
order of

√
|I|/d‖v‖2 is that the set of coordinates

Jα,β =

{
i : ‖v‖2

α√
d
≤ |vi| ≤ ‖v‖2

β√
d

}
(5.1)

has cardinality that is proportional to d, for α and β that are absolute constants. In that case,
a typical random choice of I ⊂ {1, ..., d} of cardinality N satisfies that |I ∩Jα,β| ∼ N , leading
to the wanted outcome: the shrinking of the `2 norm by a factor of (N/d)1/2. However, the
property that Jα,β is large is not captured by some natural norm of v.

At this point, a word of warning is called for: the first step in exploring sampling problems
is to identify the property one wishes sampling to preserve. For example, let

v =

(
1√
2
,

1√
2d
, ...,

1√
2d

)
,

note that ‖v‖2 = 1 and that for p > 2,

‖v‖p =

(
d∑
i=1

|vi|p
)1/p

=
1√
2

(
1 +

d− 1

dp/2

)1/p

, (5.2)

which is of the order of 1. Set α = 1/2 and β = 2, and thus |Jα,β| = d − 1, implying, at
least intuitively, that a random choice of coordinates does not ‘collapse’ the `2 norm. But as

1Although the terms “peaky” and “well-spread” are used rather freely, one should take care when using
them. For example, is the vector (1/

√
2, 1/

√
2M, ...1/

√
2M) peaky or well-spread?
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it happens, the same is not true for the `p norm for any p > 2. Indeed, for a typical subset
I ⊂ {1, ..., d}, say of cardinality N � d,(

d

N

)1/p
(∑
i∈I
|vi|p

)1/p

∼
(

1

d

)1/2−1/p

� 1,

and the p-norm of PIv is much smaller than what we would like it to be.
The reason behind the collapse of the `p norm after sampling is simple—as relative to the

p-norm, v is peaky: the main contribution to the `p norm comes from a single coordinate and
all the other coordinates are negligible. In such a situation, sampling is useless. Upon some
reflection it is straightforward to verify that the correct p-analogue of the set Jα,β is{

i : ‖v‖p
α

d1/p
≤ |vi| ≤ ‖v‖p

β

d1/p

}
, (5.3)

and for the vector v and constant values of α and β that set contains just a single coordinate.

Having large level sets like (5.1) or (5.3) has strong ties with the so-called small-ball
condition and such a property helps guarantee that the norm of a sampled object does not
collapse. In contrast, ensuring that the sampled object is not too big—for example, in this
case, that

√
d/|I|(

∑
i∈I |vi|2)1/2 is not significantly larger than ‖v‖2, is based on a totally

different property: a tail estimate, captured in this case by the cardinality of the sets{
i : |vi| ≥ t

‖v‖2√
d

}
(5.4)

for t ≥ 1.

One of the key observations used throughout these notes is that obtaining good tail es-
timates, and thus ensuring that the sampled object is not ‘too large’, requires rather
restrictive assumptions. In contrast, the small-ball estimate which guarantees that the
sampled object is not ‘too small’ is almost universally true and requires minimal assump-
tions.

5.1 A question

Let F be a class of functions defined on a probability space (Ω, µ). In a subtle twist that
will become clearer in what follows, assume that very little is known about the measure µ.
As a result, if X is distributed according to µ, there is no information on the L2(µ) distance
between any f1, f2 ∈ F ; i.e.,

‖f1 − f2‖2L2(µ) =

∫
Ω
|f1 − f2|2(x)dµ(x) = E|f1(X)− f2(X)|2

is not known. Instead of information on µ, one receives as data a sample X1, ..., XN , selected
independently according to µ, and uses the empirical means(

1

N

N∑
i=1

|f1 − f2|2(Xi)

)1/2

(5.5)

as a ‘guess’ of E|f1(X)− f2(X)|2.
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Question 5.1. Are the empirical means (5.5) a good guess of L2(µ) distances? In a more
geometric language, is the original L2 structure of F preserved via the empirical means?

Remark 5.2. Clearly, a version of Question 5.1 is valid for any Lp(µ) rather than just for
p = 2.

As an example, let Ω = Rd and set µ to be some probability measure on Rd. For T ⊂ Rd
let FT = {

〈
t, ·
〉

: t ∈ T} be the class of linear functionals defined by T . As noted previously,
each t ∈ T has a two roles: as a vector in Rd, and as a linear functional on Rd. Clearly,
for u, v ∈ T one may easily compute various distances between u and v, for example, the `dp
distances,

‖u− v‖p =

∥∥∥∥∥
d∑
i=1

(ui − vi)ei

∥∥∥∥∥
p

=

(
d∑
i=1

|ui − vi|p
)1/p

,

where (ei)
d
i=1 is the standard basis in Rd. However, the Lp(µ) distance between u and v, via

their identification as a linear functionals is a completely different story. Since the measure
µ is not known, it is impossible to compute

‖u− v‖pLp =

∫
Rd
|
〈
u− v, x

〉
|pdµ(x) = E|

〈
u− v,X

〉
|p.

Remark 5.3. Let us stress again that there is no reason why ‖u− v‖p should have anything
to do with ‖u− v‖Lp; these are completely different objects.

An assumption that is encountered frequently is that the measure µ is isotropic, i.e., it is
symmetric and if for every u ∈ Rd, ‖u‖2L2(µ) = E

〈
u,X

〉2
= ‖u‖22. Thus, when µ is isotropic,

the L2 norm endowed on linear functionals in Rd coincides with the ‖ ‖2 norm.

Given X1, ..., XN , let

Φ
(
(Xi)

N
i=1, f, h

)
=

1

N

N∑
i=1

(f − h)2(Xi), (5.6)

and the hope is that with high probability, at least for most of the pairs in F ,

A‖f − h‖2L2
≤ 1

N

N∑
i=1

(f − h)2(Xi) ≤ B‖f − h‖2L2
;

moreover, one would like the constants A and B to be as close to 1 as possible.
Keeping in mind that there could be (and will be) a fundamental difference between upper

estimates and lower ones, it makes sense to split Question 5.1 to two parts.

Question 5.4. Given the functional Φ, find the best possible choices of 0 < δN < 1,
AN , BN , rN , r

′
N > 0 for which the following holds: with probability at least 1− δN , if h, f ∈ F

and ‖f − h‖L2 ≥ rN then

Φ
(
(Xi)

N
i=1, f, h

)
≥ AN‖f − h‖2L2

, (5.7)

and if h, f ∈ F and ‖f − h‖L2 ≥ r′N then

Φ
(
(Xi)

N
i=1, f, h

)
≤ BN‖f − h‖2L2

. (5.8)
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The optimal values of the parameters should be determined by the structure of F , the
measure µ and the sample size N .

Remark 5.5. One can ask a more fundamental question: what is the best choice of a func-
tional Φ? Although (5.6) is the obvious candidate, is it the right one? As it happens, the
answer to that question is a resounding “no”, and far better alternatives are explored in what
follows.

Alternatively, one may formulate the same question not for distances between every pair
of functions in F , but rather for the norm of each f ∈ F . Namely, when, with probability
1− δN , if ‖f‖L2 ≥ rN then

Φ
(
(Xi)

N
i=1, f, 0

)
≥ AN‖f‖2L2

; (5.9)

and if ‖f‖L2 ≥ r′N then

Φ
(
(Xi)

N
i=1, f, 0

)
≤ BN‖f‖2L2(µ). (5.10)

To put Question 5.4 in some context, let us present three examples of problems that may be
resolved once the question is answered. The first example originates in asymptotic geometric
analysis; the second is from random matrix theory; and the third one is from statistics/signal
processing.

Almost isometric Embedding of a finite subset of Rd

Let T ⊂ (Rd, ‖ ‖2) be a finite set. One would like ‘reduce the dimension’ of T , while preserving
all of its metric structure: i.e., to map T to Rk for k that is, hopefully, significantly smaller
than d, in a way that (almost) preserves the Euclidean distances between the points in T .
Thus, the goal is to find a mapping ψ : T → Rk which satisfies that for every u, v ∈ T , and
ε > 0 as small as possible,

1− ε ≤ ‖ψ(u)− ψ(v)‖2
‖u− v‖2

≤ 1 + ε; (5.11)

here ‖ ‖2 denotes the Euclidean norm in both Rd and Rk.
This problem has been studied extensively since the mid-80’s, when Johnson and Lin-

denstrauss proved their celebrated lemma. They showed that with high probability, a cor-
rectly normalized random orthogonal projection2 onto a k-dimensional subspace of Rd for
k = cε−2 log |T | satisfies (5.11).

Remark 5.6. It should be noted that despite its popularity, the Johnson-Lindenstrauss Lemma
was just that, a component in the proof of a different result, on extending a function between a
finite subset of a metric space X and `2, to the entire space X, without distorting the Lipschitz
constant by much.

There has been significant progress in the study of linear operators that satisfy (5.11) over
the last 30 years. One class of such operators that is of particular interest in the context of
these embeddings consists of random matrices with independent rows.

2The notion of randomness Johnson and Lindenstrauss used was relative to the Haar measure on the
appropriate Grassmann manifold.
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Let X be an isotropic random vector in Rd, set X1, ..., XN to be independent copies of X,
and define

Γ =
1√
N

N∑
i=1

〈
Xi, ·

〉
ei,

i.e., the matrix whose rows are X1, ..., XN .
Observe that on average, Γ preserves the Euclidean norm of u ∈ Rd, because

E‖Γu‖22 = E
1

N

N∑
i=1

〈
Xi, u

〉2
= ‖u‖22.

Of course, having a well-behaved mean does not imply that ‖Γu‖22 is close to that mean with
high probability, nor that uniform control over a large collection of points is possible.

To see the connection the embedding problem has with Question 5.4, let FT = {
〈
t, ·
〉

: t ∈
T}. Note that by selecting Φ as in (5.6), Question 5.4 implies that for every u, v ∈ T ,

Φ
(
(Xi)

N
i=1, fu, fv

)
=

1

N

N∑
i=1

(fu − fv)2(Xi) =
1

N

N∑
i=1

〈
u− v,Xi

〉2
= ‖Γ(u− v)‖22,

and ‖fu − fv‖2L2
= E

〈
u − v,X

〉2
= ‖u − v‖22. Thus, (5.11) follows from a positive answer to

Question 5.4 for the right value of N that suffices to ensure that 1 − δN > 0, and with the
choices of AN = 1− ε and BN = 1 + ε and rN = r′N = 0.

An estimate for a finite set T was presented in Lemma 3.11, but the real reason why
N = cε−2 log |T | is a suitable choice might appear mysterious at this point; in fact, the
technical argument used in the proof of Lemma 3.11 is far from the complete picture. Once
the necessary machinery is developed it will become clear that the logarithm of the cardinality
of a set is a actually a rather crude measure of the set’s complexity, and considerably sharper
alternatives can be established.

Extremal singular values of a random matrix

The spectral theory of random matrices has attracted considerable attention in recent years.
One well studied question has to do with the largest and smallest singular values of a random
matrix Γ, and those have a very simple geometric description according to the way Γ acts on
the Euclidean unit sphere Sd−1:

λmax = sup
x∈Sd−1

‖Γx‖2 and λmin = inf
x∈Sd−1

‖Γx‖2.

In other words, the largest and smallest singular values of Γ are the outer radius and the
inner radius, respectively, of the ellipsoid ΓBd

2 .
Let us consider once again the random matrix Γ mentioned previously: a matrix whose

rows are independent copies of an isotropic random vector in Rd. It follows that

λ2
max = sup

x∈Sd−1

1

N

N∑
i=1

〈
Xi, x

〉2
, and

λ2
min = inf

x∈Sd−1

1

N

N∑
i=1

〈
Xi, x

〉2
,
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corresponding to (5.10) and (5.9), respectively.
The fact that the upper estimate and the lower one have been separated will prove to

be significant. For example, one may show that under minimal assumptions on X, and with
high probability,

λmin ≥ 1− c
√

d

N
.

On the other hand,

λmax ≤ 1 + c

√
d

N

is true, but only under more restrictive conditions. Moreover, these estimate hide what is
the natural complexity parameter associated with the Euclidean unit sphere:

√
d. The ‘error

term’
√
d/N happens to be the ratio between the ‘complexity’ of the indexing set—in this

case, of the unit sphere Sd−1—and the square root of the cardinality of the given sample.
This will prove to be a general phenomenon. Why

√
d captures the complexity of sphere

Sd−1 has to be explained. And also, since the sphere is a very special set, one has to identify
the right complexity parameters of more general classes of functions and their roles in ‘error
terms’.

Simple exact recovery

Let T ⊂ Rd and assume that some t0 ∈ T is selected but is kept concealed. The goal is to
identify t0, or, if that is impossible, to approximate it with respect to the `2 norm. To perform
that task, the information one is provided consists of linear measurements, (

〈
Xi, t0

〉
)Ni=1, with

X1, ..., XN selected independently, according to an underlying measure µ.
Given that information, an obvious guess is to select any t ∈ T that agrees with the given

measurements; that is, take any t ∈ T for which
〈
t,Xi

〉
=
〈
t0, Xi

〉
for every 1 ≤ i ≤ N .

Now, assume that Question 5.4 may be answered in this case. Specifically, that with
probability at least 1− δ, if u, v ∈ T and ‖u− v‖2L2

= E
〈
u− v,X

〉2 ≥ rN then

1

N

N∑
i=1

〈
u− v,Xi

〉2 ≥ AN‖u− v‖2L2

for some AN > 0. Clearly, on that event, if
〈
t,Xi

〉
=
〈
t0, Xi

〉
for 1 ≤ i ≤, then ‖t−t0‖2L2

≤ rN ;
moreover, if µ happens to be an isotropic measure, then

‖t− t0‖22 = ‖t− t0‖2L2
≤ rN .

Finally, if rN = 0 then no other point in T agrees with t0 on the measurements. As a result,
the system of equations 〈

t,Xi

〉
=
〈
t0, Xi

〉
for every 1 ≤ i ≤ N

has a unique solution in T , and that solution is t0.
These observations have different names in different fields. In a naive version of sparse

recovery, the set T consists of all the vectors in Rd that are s-sparse; that is, supported on at
most s coordinates relative to the standard basis in Rd. In learning theory, this is an example
of a realizable learning problem, or a noise-free problem when the class of functions consists
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of linear functionals in Rd. And, in asymptotic geometric analysis, for T that is convex and
centrally symmetric, the argument leads to a bound on the so-called random Gelfand widths
of T , i.e., on the Euclidean diameter of ker(Γ) ∩ T .

All these examples are explored in some detail in what follows. For now, their role is to
convince the reader that Question 5.4 is a nontrivial question and has far-reaching implications
in modern areas of mathematics, statistics, computer science and engineering—even if one
only considers the restricted setup of classes of linear functionals in Rd and iid sampling is
performed according to an isotropic measure. Because it is such a fundamental question, it
should not be surprising that developing the machinery necessary for addressing it requires
some effort. At the same time, as a learning problem, Question 5.1 is almost “as simple as
it gets”. One should keep in mind that general learning problems are far more complex and
addressing them requires much more than an answer to Question 5.1.

5.2 A Learning problem

Let us turn to the “main event” of these notes: the definition of a learning problem. The
starting point is the same as in the previous section: a class of functions defined on a prob-
ability space (Ω, µ), where the measure µ is not known and X is a random variable taking
values in Ω which is distributed according to µ.

Let Y be a collection of admissible targets, consisting of the random variables from which
the (unknown) target is selected. Obviously, one would like to keep that set as large as
possible.

Thus, a learning problem is naturally associated with a triplet (F,X, Y ), where the class
F is known, but X and Y are not—other than, perhaps, some minimal assumptions on their
general properties (e.g. that Y ∈ Y).

Consider some (fixed but unknown) Y ∈ Y. The goal in a learning problem is to find
some f ∈ F that is as close to Y as possible. For obvious reasons, the notion of similarity is
up to the learner, and is calibrated using a loss function. In what follows we only consider
the following collection of loss functions:

Definition 5.7. A loss is a function ` : R → R+ that is even, convex, increasing in R+

and satisfies `(0) = 0.
What is arguably the most important example of a loss function is the squared loss

`(t) = t2, and it is the focus of these notes.

Given y ∈ R and x ∈ Ω, the loss incurred by predicting f(x) instead of y is `(f(x) − y),
and for the squared loss, it is (f(x)− y)2. Hence, the best function one can find in the class
F is the minimizer in F of the risk functional,

f → E` (f(X)− Y ) ≡ R(f),

with the expectation taken with respect to the joint distribution (X,Y ). We assume in what
follows that the minimizer exists and is unique, which happens to be the case under rather
minimal assumptions. That unique minimizer is denoted by f∗.
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The obvious difficulty in identifying f∗ is that both X and Y are not known, and therefore
it is impossible to solve the risk minimization problem

argminf∈FE (f(X)− Y )2 .

This lack of information is the key difference between standard problems in approximation
theory and the ones in statistical learning theory. In the latter, all the information one has
access to, other than the identity of the class F , is a random sample D = (Xi, Yi)

N
i=1, selected

according to the joint distribution (X,Y ). Using that random sample the learner is expected
to produce some f̂ and ensure that for most samples, f̂ approximates f∗ in an appropriate
sense.

Naturally, there are various notions of approximation one may consider. In all of them the
objective is to make the error as small as possible and to do that with the highest confidence
(i.e., probability estimate) possible. Here are a few important notions:

(1) f̂ is selected from F , and one would like f̂ to be close to f∗ in the L2(µ) sense; that is,
ensure that with high probability with respect to the given sample,

‖f̂ − f∗‖2L2
= E

(
(f̂ − f∗)2(X)|D

)
≤ Ee.

Ee is called the estimation error.

(2) f̂ is selected from F and one would like the risk of f̂ to be almost the best possible in
F . In other words, with high probability with respect to the given sample,

R(f̂) ≤ inf
f∈F

R(f) + Ep.

Ep is called the prediction error, and it is important to note that the constant in front
of inff∈F R(f) is 1. The prediction problem becomes much easier if one is allowed to
change it to a constant that is larger than 1.

(3) Procedures taking values in F are called proper. One can be allowed more freedom if the
restriction that f̂ ∈ F is removed. Still, the goal is to select f̂ whose risk is not much
larger than the best in F ; that is, with high probability,

R(f̂) ≤ inf
f∈F

R(f) + Eagg.

Eagg is called the aggregation error3 and such parameters are called unrestricted.

(4) It is possible to show that if the class F is ‘too rich’, the estimation error and prediction
error are too big to be of any use, regardless of the way f̂ is selected. Instead of
restricting the problems one can reasonably address to small classes, an alternative is
to invoke regularization methods. The idea behind regularization is that some functions
within F are preferred to others: each class member has a ‘price-tag’ attached to it by
the learner. If two functions fit the random data to a similar extent, preference is given
to the function with the smaller price-tag. The hope is that with a well-chosen penalty
one may find a procedure f̂ that has a small estimation/prediction error, despite the
fact that F is seemingly too large.

3The name “aggregation error” is not standard; it comes from problems involving finite classes of functions
(or “dictionaries”) consisting of reasonable estimators. One can show that by combining the estimators—and
as a result leaving the original class—one can produce an even better estimator.
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There are many questions that one could ask at this point, but the most fundamental one
is probably this:

Question 5.8. What determines the prediction error and the estimation error? Specif-
ically, how do the estimation error and prediction error scale with sample size N , the
probability estimate one is aiming for, the structure of F , the underlying measure µ and
the class of admissible targets Y? And, finally, what is the right choice of a learning
procedure f̂?

The main goal of these notes is to address Question 5.8, or, rather, give the reader a
flavour of what is needed for addressing it.

The accuracy/confidence tradeoff is the term used here to describe the way Ee and Ep
depend on the confidence parameter δ, the sample size N and some features of F , X and Y .
It is the notion more frequently used in statistical literature (though it is usually called the
error rate of the problem). The emphasis is on the best tradeoff one can hope for when given
a fixed sample size N , which is a natural point of view when data is expensive. At the same
time, computer science literature uses the notion of sample complexity, in which one is given
the wanted accuracy and confidence levels and has to produce a sample size N that suffices
to ensure recovery with those accuracy and confidence levels.

To a certain extent the two notions are equivalent. The one subtle point that should be
kept in mind is the information that the learning procedure requires as input: whether it is
the sample size, or, rather, the wanted accuracy and confidence levels. We use both notions
in various parts of this exposition.

Before presenting a formal definition of a learning problem, let us give an example of a
prediction problem and of an estimation problem, both in Rd and with respect to the squared
loss.

Example 5.9. Let µ be the standard gaussian measure on Rd: i.e., the measure whose density
is proportional to exp(−‖t‖22/2) (in what follows we do not use any of the special properties
of the gaussian measure—other than the fact that it is isotropic).

Let T = Bd
1 = {x :

∑d
i=1 |xi| ≤ 1} be the unit ball of the normed space `d1 = (Rd, ‖ ‖1) and

set

FT = {
〈
t, ·
〉

: t ∈ T}.

As always, one may identify each t ∈ T with the linear functional ft =
〈
t, ·
〉
.

Let t0 ∈ Rd (not necessarily in Bd
1) and set Y =

〈
t0, X

〉
+ W , for W that is a centred

random variable that has variance σ2 and is independent of X. Because W and X are
independent, W is mean-zero, and X is isotropic, it is evident that for every t ∈ T ,

R(t) = E(Y −
〈
t,X

〉
)2 = E

〈
t0 − t,X

〉2
+ σ2 = ‖t0 − t‖22 + σ2.

Hence, the minimizer in FT of the risk is attained by f∗ =
〈
t∗, ·
〉

for t∗ that is closest to t0
with respect to the Euclidean distance.



D
RA
FT

5.2. A LEARNING PROBLEM 57

In an attempt to identify or approximate t0 the data one is given consists of a random
sample

(Xi, Yi)
N
i=1 = (Xi,

〈
Xi, t0

〉
+Wi)

N
i=1

for X1, ..., XN that are independent and distributed according to µ, and Wi that are indepen-
dent copies of W and are also independent of (Xi)

N
i=1. The goal in the proper setup is to use

that given sample to produce some t̂ ∈ Bn
1 ; thus, the learning procedure assigns to each sample

(Xi, Yi)
N
i=1 a function f̂ =

〈
t̂, ·
〉
∈ F . The success of the procedure is measured, for a given

confidence parameter δ, by

(1) the estimation error of f̂ =
〈
t̂, ·
〉
, which is

Eε = ‖f̂ − f∗‖2L2
= ‖t̂− t∗‖22; and

(2) the prediction error of f̂ =
〈
t̂, ·
〉

which is

Ep = R(f̂)−R(f∗) = ‖t̂− t0‖22 − ‖t∗ − t0‖22

that the procedure achieves with confidence of 1−δ with respect to the given samples (Xi, Yi)
N
i=1.

In the unrestricted setup one is allowed to select f̂ =
〈
t̂, ·
〉

for t̂ ∈ Rd that need not
belong to Bd

1 . The success of the procedure is measured by the tradeoff between the excess risk
R(f̂)−R(f∗) and the confidence with which that prediction error can be achieved.

With Question 5.8 in mind, how should t̂ be selected? How is the fact that T = Bn
1

reflected in the accuracy/confidence tradeoff of the estimation problem and of the predic-
tion problem? And how would the tradeoff change for different X or Y—for example, if
X happen to be more ‘heavy tailed’ than gaussian?

Even in the restricted setup of linear regression in Bd
1 , giving a complete answer to all

these questions is highly nontrivial. Doing so for an arbitrary problem seems to be asking for
too much. Still, as the reader will discover, a highly satisfactory answer can be obtained in
very general situations. That answer requires the development of a suitable machinery, which
will be done gradually.

5.2.1 Some Definitions

As always, let (Ω, µ) be a probability space; the probability measure µ is fixed, but not known,
and let X be distributed according to µ. Let F be a class of real-valued functions defined on
Ω, and set Y to be a collection of admissible targets.

Definition 5.10. A set of admissible targets is minimal if it contains all targets of the form
{f(X) +Wσ : f ∈ F, σ ≥ 0}, where Wσ is a centred gaussian random variable with variance
σ2 that is independent of X. With a slight abuse of notation we will denote a minimal set of
targets by Ymin.

The idea is that a reasonable class of admissible targets must at least contain what are
arguably the most natural and simplest of all targets: realizable targets, i.e., targets of the
form Y = f0(X) for some f0 ∈ F , and additive shifts of realizable targets by independent
gaussian noise, Y = f0(X) +W .
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Definition 5.11. Given a sample size N , a (proper) learning procedure is a collection of
functions ΦN : (Ω × R)N → F . In other words, ΦN assigns to each (xi, yi)

N
i=1 some f ∈ F .

An unrestricted procedure is allowed to take values outside the class F .

In what follows we ease notation and write Φ instead of ΦN .

Remark 5.12. For the time being, we shall focus our attention to proper procedures. We
explain in what follows why it is essential in a generic learning problem to allow the procedure
to take values outside F .

Next, let us formally define the estimation error and prediction error of a learning problem,
both with respect to the squared loss. The modifications needed for the analogous definitions
relative to more general loss functions are obvious and are omitted.

Definition 5.13. Given a class F , a set of admissible targets Y and an integer N , a
procedure Φ performs with estimation accuracy Ee and confidence parameter δ if for any
Y ∈ Y, with probability at least 1− δ,

‖Φ
(
(Xi, Yi)

N
i=1

)
− f∗‖L2 ≤ Ee (5.12)

where f∗ denotes the minimizer in F of the true risk functional f ∈ E(f(X) − Y )2 and
the probability is with respect to the N product of the joint distribution of X and Y .

The procedure Φ performs with prediction accuracy Ep and confidence parameter δ if
for any Y ∈ Y, with probability at least 1− δ,

R
(
Φ
(
(Xi, Yi)

N
i=1

))
≤ inf

f∈F
R(f) + Ep. (5.13)

The functions Ee and Ep depend on δ, N and some features of the known target Y (for
example, the noise level ‖Y − f∗(X)‖L2).

Alternatively, given ε > 0 and 0 < δ < 1, the sample complexity of the procedure Φ
is the minimal sample size N0 such that for any N ≥ N0, with probability 1− δ,

‖Φ
(
(Xi, Yi)

N
i=1

)
− f∗‖L2 ≤

√
ε resp. R

(
Φ
(
(Xi, Yi)

N
i=1

))
≤ inf

f∈F
R(f) + ε.

Follows Definition 5.13, the performance of a procedure is measured by its success when
faced with any admissible target Y ∈ Y and that success is measured via the accuracy/confidence
tradeoff (i.e., the error a procedure may guarantee and the probability with which it can guar-
antee it), or, equivalently, according to its sample complexity.

The obvious way of deciding if a procedure is useful is by comparing the accuracy/confidence
tradeoff it achieves with the benchmark performance of a hypothetical procedure: the theo-
retical limitations on the accuracy/confidence tradeoff. And to make this comparison more
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interesting, the hypothetical procedure only has to contend with a minimal set of admissible
targets Ymin. This type of an error rate is often called the minimax error rate, though in
some places its meaning is slightly different than the way the notion is used here.

Definition 5.14. Given a class of functions F on a probability space (Ω, µ), a set of admissible
targets Y and a given sample size N , a procedure Φ performs with the γ-minimax accuracy
for a confidence parameter δ if

• For every Y ∈ Y, with probability at least 1 − δ, (5.12) (resp. (5.13)) holds, with an
estimation error Ee (resp. prediction error Ep).

• If Ψ is any learning procedure, then there is some Y ∈ Y for which the event

‖Ψ
(
(Xi, Yi)

N
i=1

)
− f∗‖L2 ≤ γEe

(resp. R
(
ΦN

(
(Xi, Yi)

N
i=1

))
≤ inff∈F R(f) + γEp) holds only with probability that is

smaller than 1− δ.

Because it is rather optimistic to hope that one can identify the best possible procedure,
the parameter γ gives one some freedom. Thus, a procedure is optimal in the minimax sense
if for a given degree of confidence, the accuracy with which it performs when faced with
any Y ∈ Y is proportional to the theoretical limitations relative to that set of targets and
for γ that is an absolute constant. Also, from here on all the sets of admissible targets Y
considered contain at least Ymin — i.e., the set of all realizable targets Y = f(X) for f ∈ F ,
and targets consisting of independent, additive gaussian noise, that is Y = f(X) +W where
W is a centred gaussian random variable that is independent of X.

Unfortunately, we shall not discuss the question of the optimality and minimax rates in
these notes. A more detailed exposition can be found in the appendix of [?] and in [?].

5.3 What estimates should one expect?

An intuitive way of viewing estimation and prediction problems is as structure preservation.
In the case of the squared loss (which is the one we shall focus on here), one would like
to compare E(f(X) − Y )2 to E(h(X) − Y )2 for every pair (f, h) ∈ F and to be able to
decide which of the two is bigger given only the values (Xi, Yi)

N
i=1. Unfortunately, such

a uniform comparison is likely to be impossible: even taking the most optimistic view of
statistical recovery, one should expect inaccuracies caused by the incomplete information at
one’s disposal—as a sample does not capture the entire picture. Therefore, what is a more
realistic goal is to be able to compare E(f(X)− Y )2 to E(h(X)− Y )2 when f and h are ‘far
enough’, allowing for the true distance between f and h overcome the fluctuations caused
by the data (and what is meant by ‘far enough’ has to be made explicit). Also, one should
only be concerned about such comparisons when either f or h is the true minimizer of the
functional f → E(f(X) − Y )2: the goal is identify a function whose ‘predictive capabilities’
are comparable with the performance of the best function in the class. Naturally, one has
to be able to do that without knowing beforehand which function is the best in the class,
making the task more challenging.

As will become clearer, such a comparison is possible in a direct way only when the set
of ‘almost minimizers’ in F has a small diameter; i.e., for an acceptable error of ε, the set

{f ∈ F : E(f(X)− Y )2 ≤ E(f∗(X)− Y )2 + ε}
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consists only of functions that are close to f∗. The difficulty in dealing with situations
where the set of almost minimizers has a large diameter occurs because of massive ‘statistical
fluctuations’ in estimates of R(f) − R(f∗) = E(f(X) − Y )2 − E(f∗(X) − Y )2 when f is an
almost minimizer (meaning that R(f)−R(f∗) is close to 0) but at the same time, ‖f − f∗‖L2

is large. We refer to such issues as geometric obstructions; they are connected to the so-called
convexity condition explored in Section 5.5.

Remark 5.15. It should be stressed that the ability to accurately identify from data the smaller
of E(f(X)−Y )2 or E(h(X)−Y )2 when h = f∗ and f is far from f∗ is an approach that leads
to a sufficient condition for recovery, resulting in an upper estimate on the sample complexity
or on the accuracy/confidence tradeoff. Because it is enough to identify, for a typical sample,
just one function that is close enough to f∗, the fact that a method can be used to identify
many such functions, is, at least in principle, a source of looseness.

The question of whether “separation analysis” is an optimal approach is still open. In
almost any noisy learning scenario it leads to the best known bounds and in most cases, to a
bound that is optimal in the minimax sense. A discussion on that issue can be found in [?].

For now, let us assume that one is dealing with the simpler case, in which the set of
‘almost minimizers’ of the risk functional consists only of functions that are close to the true
minimizer. To see how Question 5.8 can be addressed in such a scenario, let us attempt to
speculate on when uniform separation is possible.

At the heart of this discussion is the following crucial observation: that the difficulty
of learning problems is ‘coded’ in the geometry of a random subset of F that is naturally
associated with F and σ = (X1, ..., XN ).

Definition 5.16. Given a class F and a sample σ = (Xi)
N
i=1, the random coordinate projec-

tion associated with F and σ is the set

PσF = {(f(X1), ..., f(XN )) : f ∈ F} ⊂ RN .

Example 5.17. Let T ⊂ Rd and let X be a random vector in Rd. If Γ =
∑N

i=1

〈
Xi, ·

〉
ei :

Rd → RN is the random matrix whose rows are X1, ..., XN , and FT = {
〈
t, ·
〉

: t ∈ T}, then
PσFT = ΓT .

The most important part of this presentation is the study of the way in which the
difficulty of statistical problems involving the class F and the underlying distribution X
is reflected in the geometry of the sets PσF . We will explain how statistical problems can
be translated to questions on the structure of the sets PσF , and then solve these ques-
tions using the machinery of asymptotic geometric analysis—thus resolving the original
statistical problem.

5.3.1 Two regimes

Let us try to split the description of a generic problem, consisting of a triplet (F,X, Y ) (and
under the assumption that there are no geometric obstructions) to two regimes: the low-noise
regime and the high-noise regime, by making educated guesses on the reasons why a statistical



D
RA
FT

5.3. WHAT ESTIMATES SHOULD ONE EXPECT? 61

recovery procedure might make mistakes in each regime. We will make these guesses more
concrete in the next section.

At the extreme end of low-noise problems is the (seemingly) simple case, in which the
there is no noise at all: Y ∈ F , and in particular f∗(X) = Y . Continuing the separation
analogy of the previous section, one has to be able to distinguish between

E(f(X)− Y )2 = E(f(X)− f∗(X))2 and E(h(X)− f∗(X))2,

using only the given sample as data. And, restricting to the important case, in which either
f = f∗ or h = f∗, the question becomes distinguishing E(f(X) − f∗(X))2 from 0 uniformly
in f ∈ F ,—at least when ‖f − f∗‖L2 is not too small.

As always, one has to contend with only having access to partial information in the
form of a sample (Xi, Yi)

N
i=1 = (Xi, f

∗(Xi))
N
i=1 and the natural problematic object is the

corresponding version space:

Definition 5.18. For f∗ ∈ F and a sample σ = (Xi)
N
i=1, the version space associated with

F , f∗ and σ is a random subset of F defined by

Vf∗,σ = {f ∈ F : f(Xi) = f∗(Xi) for all 1 ≤ i ≤ N} .

Thus, functions in Vf∗,σ are indistinguishable from f∗ on the given sample; therefore,
if, for a given sample σ the L2 diameter of Vf∗,σ is at least r, there is no hope to of being
able to separate f∗ and every f ∈ F that satisfies ‖f − f∗‖L2 ≥ r/2 using only the data
(Xi, f

∗(Xi))
N
i=1.

Example 5.19. Let us return to the case in which T ⊂ Rd and FT = {
〈
t, ·
〉

: t ∈ T} is
the class of linear functionals defined by T . Let X be a centred random vector in Rd, set
t∗ ∈ T and put Y =

〈
t∗, ·
〉
. Thus, the triplet (FT , X, Y ) defines a noise-free problem. Given

the sample (Xi, Yi)
N
i=1 = (Xi,

〈
t∗, Xi

〉
)Ni=1, let Γ =

∑N
i=1

〈
Xi, ·

〉
ei be the random matrix whose

rows are X1, ..., XN , and note that

Vt∗,σ =
{〈
t, ·
〉

: t ∈ T,
〈
t− t∗, Xi

〉
= 0 for every 1 ≤ i ≤ N

}
=
{〈
t, ·
〉

: t ∈ T, Γ(t− t∗) = 0 for every 1 ≤ i ≤ N
}
.

Thus,
Vt∗,σ ⊂

〈
t∗, ·
〉

+
{〈
u, ·
〉

: u ∈ ker(Γ) ∩ (T − T )
}
.

If T is convex and centrally-symmetric, then T − T = 2T . Hence, for every possible t∗ ∈ T ,

Vt∗,σ ⊂
〈
t∗, ·
〉

+
{〈
u, ·
〉

: u ∈ ker(Γ) ∩ 2T
}
.

Finally, if X happens to be isotropic, implying that ‖
〈
t, ·
〉
‖L2 = ‖t‖2 for every t ∈ Rd, the

maximal L2 diameter of a version space in T is at most the `2 diameter of ker(Γ)∩ 2T . This
parameter appears frequently in the study of the Gelfand widths of a convex body [?], and we
will encounter it again in what follows.

Intuitively, a large version space appears when F is ‘rich’ around f∗, since distinguishing
when f 6= f∗ becomes easier the larger ‖f − f∗‖L2 is. Indeed, under mild assumptions, the
differences between f and f∗ are easier to expose using random sampling the further f and f∗



D
RA
FT

62 CHAPTER 5. INTRODUCTION

are from each other. Therefore, one should expect a balancing act between the radius r and the
‘size’ of the set {f ∈ F : ‖f −f∗‖L2 = r}: the larger r is, and unless {f ∈ F : ‖f −f∗‖L2 = r}
is ‘very rich’, it is likely that set does not intersect Vf∗,σ. Having said that, identifying the
right notion of size and obtaining quantitative estimates on the ‘critical level’ r is a highly
nontrivial task. As we explain in what follows, that notion is based on a fixed point, denoted
by rQ, which finely balances the radius r and the ‘size’ of the set {f ∈ F : ‖f − f∗‖L2 ≤ r}.
We show that the fixed point is determined by the geometry structure of a typical coordinate
projection PσF (see Section 5.4 for more details).

The role of rQ is to upper bound the smallest distance between an arbitrary f and f∗ that
still guarantees one can distinguish between the functions using the given data. More accu-
rately, we show that there is a data-dependent procedure Φ, such that, with high probability,
for any f ∈ F that satisfies ‖f − f∗‖L2 ≥ crQ, one has

Φ((Xi)
N
i=1, f, f

∗) & ‖f − f∗‖2L2
.

Thus, not only is the L2 diameter of a typical version space V(f∗, σ) smaller than cr, but, in
fact, one has much more: for larger distances one can derive a uniform one-sided estimate of
‖f − f∗‖L2 using the given data.

Remark 5.20. These observation, in themselves, do not imply that the typical diameter of
the version space is a lower bound on Ee in noise-free problems. In fact, there are known
examples where that is not the case, though in general the situation is not fully understood.
We refer the reader to the appendix of [?] for more details.

Once the target Y ‘moves away’ from F , there are other reasons why statistical errors are
likely to occur when trying to determine the signs of E(f(X)−Y )2−E(h(X)−Y )2 using the
sample (Xi, Yi)

N
i=1. Again, when considering only ‘interesting pairs’ where h = f∗, one has

that for every f ∈ F ,

(∗) = E(f(X)− Y )2 − E(f∗(X)− Y )2 = E(f − f∗)2(X) + 2E(f∗(X)− Y ) · (f − f∗)(X).

In other words, exhibiting that the difference is positive can be achieved by obtaining an
accurate data-dependent estimate on the two terms: the quadratic term E(f − f∗)2(X) and
the multiplier term 2E(f∗(X)− Y ) · (f − f∗)(X).

One can easily be convinced that the reason why statistical estimates of (∗) are correct
(i.e. positive) is the domination of (estimates of) the quadratic term over (estimates of) the
multiplier one. Indeed, the latter could easily be 0, for example, when Y = f∗(X) +W for a
centred W that is independent of X. In such a case, when the problem consists of independent
additive noise, statistical estimates of the multiplier term are likely to fluctuate around 0 and
in particular can be negative with constant probability. Thus, the only reason why one can
“guess” the signs of (∗) correctly is because the positive contribution of the quadratic term
is dominant.

The quadratic term is the same as in the noise-free problem, and the intuition behind
rQ is that one can accurately “guess” E(f − f∗)2(X) using the given sample when the l2(µ)
distance between f and f∗ is at least ∼ rQ. With that in mind, satisfactory control of
the multiplier term means that for a well chosen rM, if ‖f − f∗‖L2 ≥ rM, there is a way
of “guessing” E(f∗(X) − Y ) · (f − f∗)(X) sufficiently accurately. To that end one has to
capture the way the “noise” ξ = f∗(X)−Y interacts with the functions (f−f∗)(X): a strong
interaction can cause fluctuations that prevent any procedure from accurately guessing the
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means E(f∗(X)−Y )·(f−f∗)(X). And, one has to keep in mind that “guess” means uniformly
in f ∈ F .

Clearly, the noise level, captured by ‖ξ‖L2 should have an important effect on the inter-
action between ξ and functions in F ; and one should expect the signal-to-noise ratio to come
into play as well.

We show that just as in the noise-free case, rM is reflected through the geometry of (subsets
of) PσF .

A problem is considered “low-noise” if rQ dominates rM; it belongs to the “high -noise”
regime if the reverse inequality holds. And, at least at the intuitive level, once the noise
level ‖ξ‖L2 is small enough, that is, once Y is close enough to F , the error should tend to
the noise-free solution. Specifically, when exact recovery in the noise-free case is possible
(i.e., when it is possible to have Ee = 0), the error should tend to 0 with ‖ξ‖L2 .

The formal definition of rQ and rM is presented in the next section, as are some insights
regarding a geometric interpretation of the two. The statistical motivation behind their
definition is explained in Section 5.5.

It will be a long journey before one is able to justify in full why these parameters are
the right choices, and discuss whether they lead to a sharp characterization of the accu-
racy/confidence tradeoff in learning problems.

5.4 Complexity terms and fixed points

The question “what is the right way of measuring the size of a set?” does not have a single
answer. As one might expect, an answer depends on the context in which the question is
asked. Before we defined rQ and rM formally, let us describe a natural way of measuring
the size of a subset of RN . The notion in question has originated from asymptotic geometric
analysis and is based on the idea of a mean width.

Definition 5.21. Let T ⊂ RN and set Z to be a centred random vector. The mean-width of
T with respect to Z is

E sup
t∈T

∣∣〈Z, t〉∣∣ . (5.14)

The reason for the name “mean-width” is simple: for any z ∈ SN−1, 2 supt∈T |
〈
z, t
〉
| is

the width of T in the direction defined by z. If one would give equal weight to every direction
on the Euclidean unit sphere and average the width over all directions, the natural notion of
mean-width is ∫

SN−1

sup
t∈T

∣∣〈z, t〉∣∣ dσ(z), (5.15)

with integration performed with respect to the Haar measure on the Euclidean unit sphere.

There is no reason to restrict oneself to directions, nor to a uniform distribution on the
sphere. Instead, (5.14) is natural analogue when considering a general random vector Z
instead of the uniform distribution on the Euclidean unit sphere.
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Example 5.22. A natural random vector that closely resembles the uniform measure on
the sphere (up to normalization) is the standard gaussian vector G = (gi)

N
i=1. By rotation

invariance and the uniqueness of the Haar measure, G/‖G‖2 is uniformly distributed on SN−1,
and one may verify that ∫

SN−1

sup
t∈T

∣∣〈z, t〉∣∣ dσ(z) ∼ 1√
N

E
∣∣〈G, t〉∣∣ .

Exercise 11. Complete the details of Example 5.22.

The most important random vector from the perspective of statistical learning theory is
the Bernoulli random vector, E = (εi)

N
i=1, that has independent, symmetric {−1, 1}-valued

random variables as coordinates (i.e., it is uniformly distributed in {−1, 1}N . The random
vector E is isotropic and its Euclidean norm is ‖E‖2 =

√
N . One should note that the mean-

width of T with respect to G and the mean width with respect to E need not be equivalent.
For one, the Bernoulli mean-width is obtained by averaging the width with respect vectors
that are the vertices of the combinatorial cube {−1, 1}N , implying that it is far from being
rotationally invariant.

Exercise 12. Give an example of a set T ⊂ RN for which E supt∈T
∣∣〈E , t〉∣∣ and E supt∈T

∣∣〈G, t〉∣∣
are not equivalent.

Remark 5.23. For a set T ⊂ RN set

T ◦ =

{
u ∈ RN : sup

t∈T
|
〈
t, u
〉
| ≤ 1

}
.

It is straightforward to verify that if T is bounded and the symmetric convex hull of T has
a nonempty interior in RN then that convex hull is the unit ball BX of a normed space
X = (RN , ‖ ‖). In that case, T ◦ is the unit ball of the dual space X∗, and in particular,
E supt∈T |

〈
Z, t

〉
| = E‖Z‖X∗. At times we denote the latter by E‖Z‖T ◦.

The sets T that are of interest in statistical learning theory are not arbitrary subsets of
RN ; they are the random coordinate projections of localizations of F around f∗, and since
they are the result of iid sampling, they have a rather special structure. To define those sets,
let

star(F, h) = {λf + (1− λ)h : f ∈ F, and 0 ≤ λ ≤ 1},

which is the star-shaped hull of F and h; i.e., the set star(F, h) consists of all the intervals
whose end-point are h and any point in F .

Taking the star-shaped hull of a set around a designated point might appear strange at
a first glance. It is actually a technical trick used to increase the regularity of F around f∗

while at the same time not increasing the size of F by too much. At an intuitive level, one
may think of the star-shaped hull as adding one extra dimension to F , and as a result, other
standard notions of size (e.g. the covering numbers) do not increase by much. At the same
time, the added regularity is very useful: taking the star-shaped hull makes the set relatively
richer closer to its centre. Indeed, if ρ ≥ r, any point in star(F, h) whose distance from h is
ρ, has a “scaled-down copy” whose distance from h is r (this is very easy to see when h = 0:
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if u ∈ star(F, 0) and ‖u‖L2 = ρ, then since 0 < r/ρ < 1, (r/ρ)u ∈ star(F, 0) and its norm is
r). In other words, the subsets of the sphere

{u/‖u‖L2 : u ∈ star(F − h, 0) ∩ ρS(L2)}

become bigger as ρ decreases.
This regularity plays an important role in many of the results we present. A useful

observation to keep in mind is as follows:

If the goal is to show that a certain property is satisfied by any function in F whose
distance from f∗ is at least r, and if that property is homogeneous in f − f∗ in some
appropriate sense, it is enough to show that the property holds for any function in star(F−
f∗, 0) ∩ rS(L2).

Indeed, consider u = f − f∗ such that ‖u‖L2 = ‖f − f∗‖L2 = ρ ≥ r. Then v = (r/ρ)u ∈
star(F−f∗, 0)∩rS(L2); therefore, v satisfies the wanted property. If the property is preserved
by multiplying v by α > 1, then u must satisfy the property as well.

After one makes the sets more regular by taking the star-shaped hull around a designated
centre (f∗), the next step is to shift that centre to 0 and localize the resulting set by inter-
secting it with balls in L2(µ). For the next definition recall that D denotes the unit ball in
L2(µ).

Definition 5.24. For f∗ ∈ F set

Ff∗,r = star(F − f∗, 0) ∩ rD = {h = λ(f − f∗) : 0 ≤ λ ≤ 1, ‖h‖L2 ≤ r}.

Let E = (εi)
N
i=1 be the standard Bernoulli vector, and assume that it is independent of

X1, ..., XN . Consider the functions

φQ(r, f∗, N) = E sup
u∈Ff∗,r

∣∣∣∣∣ 1

N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ , (5.16)

and for ξi = f∗(Xi)− Yi, 1 ≤ i ≤ N , put

φM(r, f∗, N) = E sup
u∈Ff∗,r

∣∣∣∣∣ 1

N

N∑
i=1

εiξiu(Xi)

∣∣∣∣∣ . (5.17)

Thus, φQ is the expectation of the generalized mean-width—relative to the Bernoulli
vector—, of the random coordinate projection PσFf∗,r of the localization Ff∗,r. Indeed,

φQ(r, f∗, N) =
1

N
EX

(
Eε sup

v∈PσFf∗,r

∣∣∣∣∣
N∑
i=1

εivi

∣∣∣∣∣
)
.

At the same time, φM(r, f∗, N) is the generalized mean-width of a weighted version of
PσFf∗,r, with the weights (ξi)

N
i=1 calibrating the effect of the noise.

As we explain in the next section, the critical levels rQ and rM are given by the fixed
point conditions φQ(r, f∗, N) ∼ r and φM(r, f∗, N) ∼ r2, respectively. Before diving into
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more technicalities, let us give a geometric interpretation of those conditions. Although at
this point the interpretation will seems like hand-waving, the reader is invited to take a leap
of faith with us; this interpretation will prove to be very useful and quite accurate.

The idea of structure preservation loosely implies that at the right scale, what one “sees”
in the real-world of L2(µ) is exhibited by a typical random coordinate projection, and

‖f − h‖Lσ2 =

(
1

N

N∑
i=1

(f − h)2(Xi)

)1/2

∼ ‖f − h‖L2 .

Armed with that belief, and because Ff∗,r ⊂ rD, the “complexity” of N−1/2PσFf∗,r should
not exceed that of a Euclidean ball of radius proportional to r. If the complexity happens to
be larger, that would hint that the sample σ, which is used to define the mapping from L2(µ)
to Lσ2 , distorts the structure of Ff∗,r ⊂ rD by too much to be of any use. Since the Bernoulli
mean-width of rBN

2 is ∼ r
√
N , the intuitive condition on rQ is that it is the smallest r for

which

EX

(
Eε sup

v∈PσFf∗,r

∣∣∣∣∣
N∑
i=1

εi
vi√
N

∣∣∣∣∣
)

.
√
Nr. (5.18)

And that is precisely the fixed point condition that is used to define rQ:

The fixed point rQ is the smallest radius r such that, for a typical sample σ, N−1/2PσFf∗,r
is not “richer” than the Euclidean ball in RN of radius cr. Moreover, by the star-shape
property, if r > rQ then N−1/2PσFf∗,r will be “less rich” than ∼ rBN

2 , and if r < rQ, it
will be at least as rich as ∼ rBN

2 .

Naturally, one may ask if the fact that at the level rQ, N−1/2PσFf∗,r becomes as rich as
crBN

2 has anything to do with geometry; specifically, if N−1/2PσFf∗,r has the same Bernoulli
mean-width as crBN

2 implies that one can find a Euclidean ball of radius r “living inside”
N−1/2PσFf∗,r. The remarkable answer to that is yes4—up to the right understanding of what
“living inside” means.

The situation regarding rM is a little more subtle, even at the level of hand-waving, because
of the normalization of r2 in the fixed point condition. Again, let us write that condition as

EX

(
Eε sup

v∈PσFf∗,r

∣∣∣∣∣
N∑
i=1

εi
ξi
‖ξ‖L2

vi√
N

∣∣∣∣∣
)
∼ r

‖ξ‖L2

√
Nr

and consider the differences between it and (5.18). The Bernoulli mean-width is of the set

W =

{(
ξi
‖ξ‖2

vi√
N

)N
i=1

: v ∈ pσFf∗,r

}
;

the weights (ξi/‖ξ‖L2)Ni=1 distort the geometry of N−1/2PσFf∗,r in coordinate directions when
either ξi/‖ξ‖L2 is very large or when it is very close to 0. Having said that, one may show that

4The “yes” is valid under some additional assumptions on F and X; and a slightly weaker statement is true
in full generality—though we conjecture that the weaker statement could be improved.
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fundamentally, that distortion is not devastating (although it could still have a meaningful
impact). A more significant issue is the extra multiplicative factor of r/‖ξ‖L2 appearing in
the definition of the fixed point. It captures the worst signal-to-noise ratio one encounters
when ‖f − f∗‖L2 ≥ r. As a result, the fixed point is not defined by comparing the Bernoulli
mean width of W with that of a Euclidean ball of radius ∼ r, but rather with a Euclidean
ball whose radius is multiplied by the worst signal-to-noise ratio.

In the next section we will explain the statistical motivation behind the definitions of the
fixed points rQ and rM, and formulate the main result we shall present in these notes.

5.5 The satisfactory sample complexity

In this section we give further insights to the reasons behind the definitions of the fixed
points, and following that, formulate the main result of these notes. The key notion here is
the satisfactory sample complexity.

The satisfactory sample complexity is defined using a list of obstructions, which are, in
some sense, trivial. Overcoming each one of those obstacles is something one would expect of
any reasonable learning procedure. On the other hand, overcoming each obstruction comes
at a price:

• A certain geometric obstruction on the class F forces one to consider procedures that need
not take values in F .

• Overcoming some trivial statistical obstructions requires a minimal number of sample
points.

At an intuitive level, the main result of [?] is that the sample complexity needed to
overcome the trivial statistical obstructions actually suffices (up to some absolute mul-
tiplicative constant) for the solution of an (almost) arbitrary learning problem. And
because of the geometric obstruction, the solution is carried out using a procedure that
is allowed to take values outside the given class.

Here, for the sake of simplicity, we only explore the case in which F is convex, which, as
we show in what follows, implies that no geometric obstructions exist.

Let us begin by describing the trivial obstructions we have in mind.

A geometric obstruction

In the standard (proper) learning model the procedure is only allowed to take values in the
given class F . At a first glance this restriction seems to be completely reasonable; after all,
the learner’s goal is to find a function that mimics the behaviour of the best function in F ,
and there is no apparent reason to look for such a function outside F . However, a more
careful consideration shows that this restriction comes at a high cost:

Example 5.25. Let F = {f1, f2} be defined on a probability space (Ω, µ), and as always, X is
distributed according to µ. Fix an integer N and set Y to be a ‘noisy’ ∼ 1/

√
N -perturbation
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of the midpoint (f1(X)+f2(X))/2, that is slightly closer in L2 to f1(X) than to f2(X). Then,
given samples (Xi, Yi)

N
i=1, any proper procedure Φ will necessarily make the wrong choice with

probability 1/10; that is, with probability at least 1/10, Φ((Xi, Yi)
N
i=1) = f2 and on that event,

the excess risk is Ep ∼ 1/
√
N . Thus, the best sample complexity estimate one can hope for

when using a proper learning procedure is ∼ 1/ε2.

A proof of this standard fact may be found, for example, in [?, ?].

Example 5.25 serves as a strong indication of a general phenomenon: there are seemingly
innocent-looking problems, including ones involving classes with a finite number of functions
(in this example, only two functions...), in which the sample complexity is significantly higher
than what one would expect given the size of the class. The reason for such slow rates, or
equivalently, for large sample complexities, is that the ‘location’ of the target relative to the
class is not favourable. As will be clarified in Section 5.6, the notion of a favourable location
is characterized by a convexity condition on the excess risk functional:

Definition 5.26. A triplet (F,X, Y ) satisfies a convexity condition with constant B > 0 with
respect to the squared loss, if for every f ∈ F ,

‖f − f∗‖2L2
≤ B

(
E(f(X)− Y )2 − E(f∗(X)− Y )2

)
.

Note that the convexity condition implies that the minimizer in F of the risk functional
f → E(f(X)−Y )2 is unique. And, one may also verify that under a convexity condition, the
set of functions in F that ‘almost minimize’ the risk consists only of perturbations of f∗. For
more information on the convexity condition, see [?] and Section 5.6.

If F happens to be convex then for any target Y , the triplet (F,X, Y ) satisfies the convexity
condition with B = 1. In particular, there is no geometric obstruction when dealing with
a convex class F , which makes the analysis of learning problems involving convex classes
significantly simpler than in the general case.

The following exercise requires some knowledge of Functional Analysis:

Exercise 13. Show that if F ⊂ L2(µ) is closed and convex and Y ∈ L2, then:

(1) f∗ = argminf∈FE(f(X)− Y )2 exists and is unique.

(2) The triplet (F,X, Y ) satisfies the convexity condition with constant B = 1.

(3) What features of the L2 norm are used in (1) and (2)? Can you deduce a similar result
with respect to other loss functions?

Remark 5.27. The focus of [?] is on general triplets (F,X, Y ), making it is impossible to
guarantee that the unknown target Y is in a favourable location, and therefore, there is no
convexity condition at one’s disposal. As a result, to have any hope of addressing the geometric
obstruction one must remove the restriction that the procedure is proper.

Statistical obstructions

A natural way of finding generic statistical obstructions is by identifying reasons why a statis-
tical procedure may make mistakes. As was explained in Section 5.3.1, there are two simple
sources of error:
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• Intrinsic errors and the low-noise regime: When F is ‘rich’ close to the true minimizer f∗,
it is difficult to ‘separate’ class members with the limited data the learner has, even if
Y = f∗(X). The problem is compounded with the introduction of low-level noise, e.g.,
by setting Y = f∗(X) +W where W is a centered random variable that is independent
of X and has a small variance relative to the wanted accuracy. One way of addressing
learning problems with low-level noise is by ensuring that in the noise-free (realizable)
problem, the version space has a small diameter in L2.

• External errors and the high-noise regime: When the noise level becomes significant and
‖f∗(X)−Y ‖2L2

is larger than the wanted accuracy ε2, interactions between Y and class
members can cause distortions. These interactions make functions that are close to f∗

indistinguishable and forces the learning procedure to make mistakes in the choices it
makes.

The “statistical obstructions” we refer to are the intrinsic and external errors caused by
two specific collections of triplets involving F and X (keeping in mind that the learner does
not know the distribution of X), and with targets Y that belong to Ymin, i.e., either:

(1) Realizable targets; that is, targets of the form Y = f0(X) where f0 ∈ F .

(2) Additive, independent gaussian noise; that is, targets of the form Y = f0(X) + W ,
where f0 ∈ F and W is a centred gaussian random variable, independent of X and with
variance σ2.

The idea is that a satisfactory statistical procedure should be able to deal with targets
in Ymin. Moreover, the sample complexity needed to overcome the intrinsic errors caused by
targets in (1) by ensuring that each version space has a small diameter in L2, and the external
errors caused by targets in (2) is a rather minimal price. One should be willing to pay such
a price if the goal is addressing general estimation and prediction problems that are likely to
be far more complex than these trivial targets.

The satisfactory sample complexity is a relatively sharp upper bound on the sample size
needed to overcome the trivial obstructions with constant confidence.

Definition 5.28. For a triplet T = (F,X, Y ) let

Nint(T, ε, κ) = min
{
N : φQ(

√
ε, f∗, N) ≤ κr

}
, (5.19)

and
Next(T, ε, κ) = min

{
N : φM(

√
ε, f∗, N) ≤ κr2

}
. (5.20)

Theorem 5.29. Let T = (F,X, Y ) be a triplet that satisfies the convexity condition with
constant B. Under minimal conditions on T , there are constants c1 and c2 that depend on B
(and on the minimal conditions), and a procedure that, given a sample of cardinality at least

N = Nint(T, ε, c1) +Next(T, ε, c2)

such that, with probability at least 0.5,

‖f̂ − f∗‖L2 ≤
√
ε,

(and 0.5 can be modified to any fixed constant).
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Theorem 5.29 is harder than what might suspect and the procedure in question is empirical
risk minimization (ERM) which is studied in detail in Section 6.1. The proof when F is convex
was established in [?]. We present highlights of the argument at a later point in these notes,
after the necessary machinery has been developed. Also, we shall not present a proof of the
fact that a sample size of N = Nint(T, ε, c1) + Next(T, ε, c2) is not far from the lower bound
on the necessary sample size for overcoming the trivial obstacles. For more information on
that we refer the reader to the appendix in [?].

A sample complexity of N ≥ Nint(T,
√
ε, c1)+Next(T,

√
ε, c2) might have been a reasonable

candidate for the satisfactory sample complexity had one been interested in the constant
confidence level. But since the interest is in higher confidence levels as well, there is a need
for an additional term whose origin is the following lower bound:

Theorem 5.30. [?] There are absolute constants c1 and c2 for which the following holds.
Let W be a centred gaussian random variable that is independent of X and with variance σ2,
and assume that F contains an interval [f1, f2] such that ‖f1 − f2‖L2 ≥ c1σ. Then for any
learning procedure Φ there is some f0 ∈ F such that the sample complexity Φ needs in order
to perform with accuracy ε and confidence 1−δ when faced with the triplet (F,X, f0(X)+W )
is at least

c2
σ2

ε
· log

(
2

δ

)
.

Remark 5.31. Note that in Theorem (5.30), σ = ‖f∗(X)−Y ‖L2 and that the triplet (F,X, Y )
satisfies the convexity condition with constant B = 1.

With all these ingredients in place, let us define the satisfactory sample complexity:

Definition 5.32. An unrestricted procedure performs with a satisfactory sample complex-
ity for a collection of triplets T if there are constants c1 and c2 such that for every triplet
T = (F,X, Y ) ∈ T , the procedure performs with accuracy ε and confidence 1 − δ with
sample complexity

N = Nint(T,
√
ε, c1) +Next(T,

√
ε, c1) + c2

(
‖f∗(X)− Y ‖2L2

ε
+ 1

)
log

(
2

δ

)
. (5.21)

At a first glance, the satisfactory sample complexity seems a very optimistic notion. Not
only is its motivation a collection of trivial obstructions, Nint + Next is known to be valid
upper estimates only at the constant confidence level and for estimation problems that involve
classes that satisfy a convexity condition. The only term in (5.21) that depends on the wanted
confidence level is based on a lower bound that is essentially one dimensional.

A more tangible indication that achieving the satisfactory sample complexity may prove
to be difficult (if at all possible) is the problem of linear regression in Rd:

Example 5.33. Let F = {
〈
t, ·
〉

: t ∈ Rd} be the class of linear functionals on Rd. Assume

that X is an isotropic random vector in Rd, (i.e. for any t ∈ Rd, E
〈
X, t

〉2
= ‖t‖22). Let

Y =
〈
t0, X

〉
+W , where W is centred, independent of X and satisfies that EW 2 = σ2. It is
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straightforward to verify that f∗ =
〈
t0, ·
〉

and that for every r > 0,

Ff∗,r =
{〈
t, ·
〉

: t ∈ rBd
2

}
,

where Bd
2 is the Euclidean unit ball. Moreover, one can show that

E sup
u∈Ff∗,r

∣∣∣∣∣ 1

N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ≤ r
√

d

N
, (5.22)

and

E sup
u∈Ff∗,r

∣∣∣∣∣ 1

N

N∑
i=1

εi(f
∗(Xi)− Yi)u(Xi)

∣∣∣∣∣ ≤ σr
√

d

N
. (5.23)

Hence, the satisfactory sample complexity in this case satisfies that

. max

{
d, σ2d

ε
, σ2 log(2/δ)

ε

}
which is the minimax estimate for linear regression in Rd. However, finding a procedure that
performs with that sample complexity when X and W are heavy-tailed has been a long-standing
open problem; it was resolved only recently, in [?].

Exercise 14. Prove (5.22) and (5.23).

The main contribution of [?] is identifying a procedure that performs with the satisfactory
sample complexity in the sense of Definition 5.32, with one modification: for a problem
involving the triplet (F,X, Y ), one requires a sample size of

∼ sup
T ′

(
Nint(T

′,
√
ε, c1) +Next(T

′,
√
ε, c1)

)
+ c2

(
‖f∗(X)− Y ‖2L2

ε
+ 1

)
log

(
2

δ

)
(5.24)

where the supremum is taken with respect to all triplets T ′ = (H,X, Y ), for classes H that
satisfy

H ⊂ F + F

2
=

{
f + h

2
: f, h ∈ F

}
, and f∗ ∈ H.

However, here we focus on the simpler problem, in which the class F is convex, and in which
case the following holds:

If F is convex, then under minimal assumptions on the triplet (F,X, Y ) there is a proce-
dure that attains the satisfactory sample complexity: a sample size of

∼ Nint(T
′,
√
ε, c1) +Next(T

′,
√
ε, c1) +

(
‖f∗(X)− Y ‖2L2

ε
+ 1

)
log

(
2

δ

)

suffices to produce f̂ such that with probability at least 1− δ,

‖f̂ − f∗‖L2 ≤
√
ε, and E

(
(f̂(X)− Y )2|(Xi, Yi)

N
i=1

)
≤ E(f∗(X)− Y )2 + ε.
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An alternative formulation of this estimate is given in terms of the accuracy/confidence
tradeoff:

If F is convex, then under minimal assumptions on the triplet (F,X, Y ) there is a
procedure that satisfies the following: given a sample size N , if r ≥ max{rQ, rM}, then
with probability at least

1− 2 exp

(
−cmin

{
r2

σ2
, 1

})
,

one has that
E
(

(f̂(X)− Y )2|(Xi, Yi)
N
i=1

)
≤ E(f∗(X)− Y )2 + r2.

Here, σ = ‖f∗(X)− Y ‖L2 and the constants used in the definition of rQ and rM depend
only on the “minimal assumptions” on the triplet.

At the heart of the results from [?] and [?] is that the sample complexity/tradeoff estimates
hold in heavy-tailed situations, in which there is no hope of having satisfactory concentration
of empirical means around the true ones. In particular, ERM does not have a chance of
performing well given only the satisfactory sample complexity.

Heavy-tailed problems were considered totally out of reach until very recently. Up to
that point, an overwhelming majority of the work on statistical learning theory focused on
situations in which empirical means did concentrate well around their true means. This is not
to say that solving problems where there is enough concentration is easy; far from it: such
questions have been left unanswered for ∼ 40 years and their solutions require sophisticated
mathematical machinery. Although that bounded framework is not the main focus of these
notes, it is still highly instructive to see how estimation and prediction problems can be
resolved when there is sufficient concentration of empirical means. We present two results
that are based on concentration in the next chapter.

5.6 The convexity condition

Let F ⊂ L2 be compact, denote by N(F ) the set of functions in L2 that have more than a
unique best approximation in F , let Y 6∈ N(F ) and set f∗ to be the best approximation of Y
in F . Put

r = d(Y,N(F )) and set R = ‖Y − f∗‖L2 .

Theorem 5.34. There exists an absolute constant C for which the following holds. If Lf =
(f(X)− Y )2 − (f∗(X)− Y )2 is the excess squared loss functional, then

‖f − f∗‖2L2
≤ BELf

for B = C(1 +R/r).

Remark 5.35. The estimate one actually obtains is a little better—see Corollary 5.40.

The proof of Theorem 5.34 is based on a general estimate in a uniformly convex Banach
space, which is of independent interest and which we describe now.

Recall that a Banach space X is smooth if the norm is Gâteaux differentiable in any x 6= 0.
In other words, for every x on the unit sphere of X there is a unique functional x∗ ∈ X∗
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such that ‖x∗‖ = 1 and x∗(x) = 1 (thus, there is a unique hyperplane {x : x∗(x) = 1} that
supports the unit ball of X, BX , in x).

Definition 5.36. A Banach space X is strictly convex if for every x, y ∈ BX one has ‖x+y‖ <
2. The space X is uniformly convex if there is a positive function δX(ε) such that for every
0 < ε < 2 and every x, y ∈ BX for which ‖x− y‖ ≥ ε, one has ‖x+ y‖ ≤ 2− 2δ(ε). In other
words,

δX(ε) = inf

{
1− 1

2
‖x+ y‖ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
is positive for ε > 0.

The function δX(ε) is called the modulus of convexity of X.

For basic properties of δX(ε) we refer the reader to [?], Chapter 8. Important facts that are
used in what follows are that δX(ε) is an increasing function of ε, and that if 0 < ε1 ≤ ε2 ≤ 2,
then

δ(ε1)

ε1
≤ δ(ε2)

ε2
.

The proof of Theorem 5.34 is based on properties of the nearest point map (also known
as the metric projection).

Definition 5.37. Let X be a Banach space and put F ⊂ X. The nearest-point map is a set
valued function PF : X → 2F , defined by assigning to each x ∈ X the set of nearest points to
x in F with respect to the norm.

For basic facts regarding the nearest point map, see, for example, [?] Chapter 2.2 and
references therein.

Note that if F is compact then PFx is a nonempty set for every x ∈ X. It is also standard
to verify that if X is strictly convex and F is convex then PFx consists of at most a single
element.

Exercise 15. Prove these facts.

Of course, if F is not convex then some points in X may have more than a unique nearest
point. In fact, under various assumptions on the norm, if F is compact, then |PFx| = 1 for
every x if and only if F is convex. In its full generality, when removing the compactness
assumption, this equivalence is the famous problem of the convexity of Chebyshev sets. We
refer the reader to [?] for a survey on this topic.

Recall thatN(F ) is the set of points inX that have more than a unique best approximation
in F , and we abuse notation by also setting PF : X\N(F )→ F .

Remark 5.38. It is well known that the sets N(F ) are small; indeed, if F is compact and
X is strictly convex then N(F ) is a Gδ set of the first category [?]. Thus, “most” points in
X have a unique nearest element in F . For other results in this direction see also the survey
[?]. .

Throughout we use the following notation: for every x, y ∈ X let

[x, y] = {tx+ (1− t)y : 0 ≤ t ≤ 1},

and set −→x, y to be the ray originating in x and passing through y.
The crucial geometric estimate needed in the proof is as follows. The triangle inequality

shows that if x 6∈ N(F ), i.e., if x has a unique best approximation PFx ∈ F , then for every
0 ≤ t ≤ 1, tx+ (1− t)PFx has a unique best approximation in F—namely, PFx.
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Exercise 16. Prove that indeed, for 0 < t < 1, tx+(1−t)PFx has a unique best approximation
in F , and that is PFx.

The heart of the argument is to show that if x is “far away” from N(F ), any point on the

ray
−−−−→
PFx, x of the form x(t) = tx+ (1− t)PFx for 1 < t < λ(x) is still projected (uniquely) to

PFx—up to λ(x) > 1 that depends on the distance between x and N(F ).
This observation is connected with the so-called “solar” property of a set, introduced by

Efimov and Stechkin [?, ?, ?] in the study of the metric projection onto convex sets. The
proof of this “local” solar property is based on a fixed point argument similar to the one used
by Vlasov in [?] (and at the same time, though with a slightly different flavor, by Klee in [?]).

Lemma 5.39. Let F be a compact subset of a Banach space X. Consider x ∈ X\(N(F )∪F ),
set r = d(x,N(F )), R = d(x, F ) and for every t ≥ 0 let x(t) = tx + (1 − t)PFx. Then, for
any 0 ≤ t < 1 + r/R, PFx(t) = PFx.

The claim for 0 ≤ t ≤ 1 follows immediately from Exercise 16. The nontrivial part of

Lemma 5.39 is that if x is “far away” from N(F ), one can move further up the ray
−−−−→
PFx, x—

beyond x and still be (uniquely) projected to PFx.

Exercise 17. Show that if X is strictly convex and F is compact and convex, then for every
t ≥ 0, PFx(t) = PFx

Exercise 17 is the so-called solar property of a convex set. The assertion of Theorem 5.39
is that F has some local solar property despite the fact it is not convex (and without any
assumptions on the norm).
Proof of Lemma 5.39. Let 0 < δ < r and set B = B(x, r− δ) to be the closed ball around
x and of radius r − δ. Put

t0 = sup{t : x(t) ∈ B, PFx(t) = PF (x)} (5.25)

and let x0 = x(t0). By the uniqueness of the nearest point in F for points in B, the supremum
in (5.25) is attained and PF (x0) = PFx. Clearly, t0 ≥ 1 and assume that t < 1 + (r − δ)/R,
i.e., that x0 belongs to the interior of B.

Consider the function φ : F → B, given by

φ(f) =

(
1 +

r − δ
‖x− f‖

)
x− r − δ
‖x− f‖

f,

and observe that φ maps each f ∈ F to the unique point in
−−→
f, x∩ ∂B for which x ∈ [φ(f), f ].

Since x 6∈ F then φ is continuous. Also, since B ∩ N(F ) = ∅ and F is compact then
PF is continuous on B. Thus, ψ : B → B given by ψ(z) = φ(PF z) is also continuous, and
using the compactness of F once again, ψ(B) is compact and is contained in ∂B. By the
Schauder-Tikhonov Fixed Point Theorem (see, e.g. [?], pg. 61) and the fact that ψ(B) ⊂ ∂B,

there is some z ∈ ∂B for which ψ(z) = z. Note that z 6∈
−−−−→
PFx, x. Indeed, any fixed point

on that ray must be projected onto PFx; on the other hand, the only candidate for a fixed

point on
−−−−→
PFx, x is on ∂B and “beyond” x(t0), which, by our assumption, is not projected

onto PFx. Moreover, since z 6∈
−−−−→
PFx, x then PF z 6= PFx, because a fixed point projected onto

PFx must be on the ray
−−−−→
PFx, x.

Thus, from the definition of φ and since z is a fixed point, x ∈ [z, PF z]. On the other
hand, by Exercise 16, PF z = PFx, which is a contradiction.

The claim follows by taking δ → 0.
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Observe that what matters is actually not d(x,N(F )), but rather “how much further” up

the ray
−−−−→
PFx, x can one go an still be outside N(F ); such points will be projected to PFx as

well. To formulate that fact, let

λ∗(x) = sup
{
λ ≥ 1 : λx+ (1− λ)PFx 6∈ N(F )

}
. (5.26)

Corollary 5.40. Let X be a Banach space and let F ⊂ X be a compact set. If x 6∈ (F∪N(F ))
then for every 1 ≤ t < λ∗(x), PFx(t) = PFx.

Proof. Consider the functions r(y) = d(y,N(F )), R(y) = d(y, F ) and define a sequence

(xn)∞n=1 ⊂
−−−−→
PFx, x as follows. Let x1 = x and set x2 = tx1 + (1 − t)PFx1 for t = 1 +

r(x1)/2R(x1). By Lemma 5.39, x2 ∈
−−−−→
PFx, x and its unique nearest point in F is PFx. Also,

R(x2) =

(
1 +

r(x1)

2R(x1)

)
R(x1)

and

r(x2) ≥
∥∥∥∥x(1 +

r(x1)

2R(x1)

)
− x

(
1 +

r(x1)

R(x1)

)∥∥∥∥ =
r(x1)

2R(x1)
‖x− PFx‖

=
r(x1)

2
> 0.

Since x2 6∈ N(F ), one can repeat this argument for x = x2 and so on. It is clear that

(xn)∞n=1 ⊂
−−−−→
PFx, x ∩ (X\N(F )), that PFxn = PFx for every integer n, and that

R(xn+1) =

(
1 +

r(xn)

2R(xn)

)
R(xn).

Moreover, relative to the natural order on
−−−−→
PFx, x, (xn)∞n=1 is increasing, and set x′ = supn xn

(where x′ might be infinite). By the construction of (xn)ni=1 it is evident that for every
z ∈ [x, x′), PF z = PFx and that r(z) > 0. Thus, there are two possibilities: if x′ = ∞ then

every point in
−−−−→
PFx, x is uniquely projected to PFx and the claim is trivially true. Otherwise,

(R(xn))∞n=1 converges to a finite, positive limit, implying that r(x′) = limn→∞ r(xn) = 0. This
observation combined with the fact that r > 0 on [x, x′) implies that x′ = x(t) for t = λ∗(x).

Next, we turn to the second component needed for the proof of the convexity condition.

Lemma 5.41. Let X be a uniformly convex, smooth space and consider w, y ∈ X and ρ ∈ R+

such that ‖y−w‖ = ρ. Let 0 < θ < 1 and set wθ = (1−θ)w+θy. If z satisfies that ‖z−w‖ ≥ ρ
then

‖wθ − z‖ − (1− θ)ρ ≥ 2θ‖z − w‖δX
(
‖z − y‖
‖z − w‖

)
.

Note that the bound improves the larger θ is, i.e., the further wθ is from w.
Proof. Without loss of generality one can assume that w = 0. Fix z 6= y and by the
assumption, ‖z‖ ≥ ‖y‖. Define the function

H(θ) =
‖wθ − z‖
‖z‖

=
‖θy − z‖
‖z‖
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and observe that H is a convex function and H(0) = 1. Also, since X is smooth, H is
differentiable in θ = 0. Thus, H(θ)−H(0) = H(θ)− 1 ≥ H ′(0)θ, implying that

H(θ)− (1− θ) ≥
(
H ′(0) + 1

)
θ,

and to complete the proof one has to bound H ′(0) from below.

Applying the chain rule, H ′(0) = u∗
(

y
‖z‖

)
, where u∗ is the unique functional of norm one

supporting the unit sphere in −z/‖z‖ ≡ u. Let v = y/‖z‖ and since ‖u∗‖ = 1 then

u∗(u− v) ≤ ‖u− v‖ ≤ 2− 2δX(‖u+ v‖) = 2− 2δX

(
‖y − z‖
‖z‖

)
.

Clearly, u∗(u) = 1 and thus −u∗(v) ≤ 1− 2δX

(
‖y−z‖
‖z‖

)
, implying that

H(θ)− (1− θ) ≥
(
H ′(0) + 1

)
θ ≥ 2θδX

(
‖y − z‖
‖z‖

)
.

Therefore

‖wθ − z‖ − (1− θ)ρ ≥ ‖wθ − z‖ − (1− θ)‖z‖ ≥ 2θ‖z‖δX
(
‖y − z‖
‖z‖

)
.

Corollary 5.42. Let X be a uniformly convex and smooth Banach space and assume that
F ⊂ X is compact. Let x ∈ X\(F ∪N(F )), set r = d(x,N(F )) and R = ‖x− PFx‖. Then,
for every f ∈ F ,

‖x− f‖ − ‖x− PFx‖ ≥ 2 (‖x− f‖+ r)

(
r

R+ r

)
δX

(
‖f − PFx‖
‖x− f‖+ r

)
.

Proof. Fix 0 < δ < r, x and f as above. Using the notation of Lemma 5.39 and of Lemma
5.41, let

w =x0 =

(
1 +

r − δ
R

)
x− r − δ

R
PFx,

wθ = (1− θ)w + θPFx,

where θ is chosen to ensure that wθ = x. Since PFwθ = PFx and

‖w − wθ‖ = ‖w − PFx‖ − ‖wθ − PFx‖ = r − δ

then by Lemma 5.39, PFw = PFx. Thus, setting ρ = ‖w−PFx‖, it is evident that B(w, ρ)∩
F = {PFx}. In particular, if f ∈ F then ‖f − w‖ ≥ ρ and the assumptions of Lemma 5.41
are satisfied. A straightforward calculation shows that

θ = (r − δ)/(R+ r − δ), ρ = R+ r − δ, and (1− θ)ρ = ‖x− PFx‖.

Thus, by Lemma 5.41,

‖x− f‖ − ‖x− PFx‖ ≥ 2‖x0 − f‖
r − δ

R+ r − δ
δX

(
‖f − PFx‖
‖x0 − f‖

)
.
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Finally, by the triangle inequality, ‖x0 − f‖ ≤ ‖x − f‖ + (r − δ) ≡ ∆, and recall that for
0 < ε1 ≤ ε2 ≤ 2 one has ε−1

1 δX(ε1) ≤ ε−1
2 δX(ε2). Therefore, if ‖x0 − f‖ ≤ ∆ and setting

ε1 = ‖f − PFx‖/∆ and ε2 = ‖f − PFx‖/‖x0 − f‖, one has that

‖x− f‖ − ‖x− PFx‖ ≥ 2∆

(
r − δ
R+ r

)
δX

(
‖f − PFx‖

∆

)
;

the claim follows by the monotonicity of δX and taking δ → 0.

Proof of Theorem 5.34. Let X = L2, recall that Y is the unknown target and that
Y 6∈ F ∪N(F ). Setting r = d(Y,N(F )) and R = ‖Y − f∗‖L2 it is evident from Corollary 5.42
and the bound of the modulus of convexity of a Hilbert space, that

‖Y − f‖L2 − ‖Y − f∗‖L2 ≥ 2(‖Y − f‖L2 + r)

(
r

R+ r

)
· c
‖f − f∗‖2L2

‖Y − f‖2L2

.

Therefore, using that a2 − b2 = (a− b)(a+ b) and that ‖Y − f‖L2 ≥ ‖Y − f∗‖L2 ,

‖Y − f‖2L2
− ‖Y − f∗‖2L2

≥ (‖Y − f‖L2 − ‖Y − f∗‖L2) · ‖Y − f‖L2 ≥ c
r

r +R
‖f − f∗‖2L2

,

as claimed.
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Chapter 6

When things concentrate

In this chapter we present two generic examples in which the triplets satisfy a convexity
condition and the random variables involved are well behaved—in the sense that certain
empirical means exhibit enough concentration around the true means and that concentration
is uniform. Thanks to that strong concentration one can address the estimation and prediction
problems using the most natural of procedures—empirical risk minimization.

6.1 Empirical risk minimization

Given a class of functions F on (Ω, µ) and an unknown target Y , there is a natural candidate
for a learning procedure: if (Xi, Yi)

N
i=1 is the sample, the choice is the function in F that best

fits the sample, taking into account the loss function, that is:

f̂ = argminf∈F
1

N

N∑
i=1

` (f(Xi)− Yi) .

In the case of the squared loss, that candidate is a minimizer in F of the empirical risk

f → 1

N

N∑
i=1

(f(Xi)− Yi)2 , (6.1)

and the mapping Φ : (Ω× R)N → F selects

f̂ ∈ argminf∈F
1

N

N∑
i=1

(f(Xi)− Yi)2 . (6.2)

This procedure is called Empirical Risk Minimization (ERM). It is of central importance in
statistical learning theory and was studied extensively over the last 50 years.

The analysis of ERM is based on the notion of the excess loss functional and the resulting
excess risk.

Definition 6.1. Let ` be a loss function and set f∗ to be the minimizer in F of the risk
functional f → E`(f(X)− Y ). The excess loss functional assigns to each f ∈ F the function

Lf (X,Y ) = `(f(X)− Y )− `(f∗(X)− Y ),

79
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and the excess risk is

ELf (X,Y ) = E`(f(X)− Y )− E`(f∗(X)− Y ) = R(f)−R(f∗).

Note that while the loss `(f(X) − Y ) can be computed on a given sample point (X,Y ),
the same is not true for the excess loss Lf (X,Y ): the identity of f∗ is not known. Thus,
the excess loss functional may be used only as a theoretical object, and one cannot suggest
learning procedures that are based on it. With this disclaimer out of the way, observe that
the excess risk has two important features:

(1) For every f ∈ F , ELf ≥ 0, and if f∗ is uniquely determined then ELf = 0 only for
f = f∗.

(2) The empirical minimizer of the loss coincides with the empirical minimizer of the excess
loss. In other words, if ERM produces f̂ then

f̂ ∈ argmin
1

N

N∑
i=1

Lf (Xi, Yi).

It follows that

1

N

N∑
i=1

Lf̂ (Xi, Yi) ≤ 0 (6.3)

because f∗ is a ‘competitor’ and Lf∗ = 0.

6.2 The bounded framework

In this section we study learning problems in extremely favourable condition: the loss satisfies
a Lipschitz condition; the class consists of uniformly bounded functions; and the geometry
of the problem is well-behaved, in a sense that the triplet satisfies a suitable version of the
convexity condition. To put this in perspective, the classical statistical prediction problem of
linear regression in Rd with respect to the squared loss and additive gaussian noise does not
fall within the scope of the bounded framework. Indeed:

Example 6.2. Let T ⊂ Rd be bounded and set FT = {
〈
t, ·
〉

: t ∈ T}. Let X be the standard
gaussian vector in Rd, set Y =

〈
z0, X

〉
+ W where z0 ∈ Rd and W is a standard gaussian

variable; and put `(t) = t2—the squared loss. For the triplet (F,X, Y ) all the conditions of the
bounded framework are false: linear functionals are not bounded, the loss in not a Lipschitz
function, and, without more information on the location of z0 relative to T , the convexity
condition need not be true.

At the same time, there are countless interesting problems that do fall within the scope
of the bounded framework (see, e.g., the books [?] and references therein as a starting point).

Formally,

Assumption 6.1. The classical approach is based on the following assumptions:
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1. The class F consists of functions that are bounded by almost surely by b and so is the
target Y .

2. The loss ` is a Lipschitz function with constant L in [−2b, 2b].

3. The excess loss L satisfies a convexity condition: there is a constant B ≥ 1 such that
for every f ∈ F ,

‖f − f∗‖2L2
≤ BELf .

Out of the three assumptions, it is straightforward to relax (1), by assuming that the class
F has a well behaved envelope function H(x) = supf∈F |f(x)| that belongs to Lp or to Lψα .
Having said that, an assumption on the envelope does not really go beyond the bounded case.
An envelope condition restricts the ‘peaky’ part of all the functions in the class to a fixed
area on Ω (exactly where the envelope is large), and so those peaky parts may be controlled
uniformly by studying a single function. Thus, by applying a simple truncation argument,
one reverts to the bounded case.

As for assumption (3), one may show that it holds if F ⊂ L2 is a convex set and the loss
` is strongly convex. For simplicity, if ` is also smooth, then strong convexity means that for
any u, v ∈ R

`(u) ≥ `(v) + `′(v) · (u− v) +
C

2
|u− v|2,

Exercise 18. (1) Show that if ` is smooth and strongly convex, F ⊂ L2(µ) is closed and
convex and Y ∈ L2, then the triplet (F,X, Y ) satisfies the convexity condition (3), with
B that depends only on the strong convexity constant of `.

(2) Show that the same holds without the smoothness assumption on `.

Combining (1) and (2) it follows that for every f ∈ F and every (X,Y ),

|Lf (X,Y )| = |`(f(X)− Y )− `(f∗(X)− Y )| ≤ L|f(X)− f∗(X)| ≤ 2Lb, (6.4)

implying that {Lf : f ∈ F} is a class of uniformly bounded functions.
Also, combining (2) and (3) one has for every f ∈ F ,

EL2
f = E (`(f(X)− Y )− `(f∗(X)− Y ))2 ≤ L2E|f − f∗|2(X) ≤ BL2ELf , (6.5)

which is the so-called Bernstein condition (and the key part of (6.5) is, as one could expect,
the convexity condition).

To formulate the accuracy/confidence tradeoff and the sample complexity estimate for
prediction and estimation under Assumption 6.1, recall that Ff∗,r = star(F − f∗, 0)∩ rD and
set

φN (r, σ) =
1√
N

sup
u∈Ff∗,r

∣∣∣∣∣
N∑
i=1

εiu(Xi)

∣∣∣∣∣ , (6.6)

and
k̄N (γ) = inf

{
r > 0 : EφN (r, σ) ≤ γr2

√
N
}
, (6.7)

where the expectation is taken with respect to both (εi)
N
i=1 and (Xi)

N
i=1.
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Theorem 6.3. Under Assumption 6.1 there exists a constant c that depends only on B and
a constant c1 that depends only on L, b and B for which the following holds. Let γ = c/L and
set r = 2k̄N (γ). Then, with probability at least 1− exp(−c1Nr

2),

sup
{f∈F :ELf≥r}

∣∣∣∣∣ 1
N

∑N
i=1 Lf (Xi, Yi)

ELf
− 1

∣∣∣∣∣ ≤ 1

2
.

In particular, on that event, the excess risk of the empirical minimizer satisfies

ELf̂ ≤ 4k̄2
N (γ),

and
‖f̂ − f∗‖L2 ≤ 2

√
Bk̄N (γ).

An alternative formulation of Theorem 6.3 is in terms of the sample complexity—and its
proof, once Theorem 6.3 is established, is straightforward.

Theorem 6.4. Under the same conditions as in Theorem 6.3, let ε and δ be the wanted
accuracy and confidence levels. Set

N0 = min{N : EφN (
√
ε, σ) ≤ γε

√
N}+ c

ε log(2/δ)

N
,

and let N ≥ N0. Then, ERM satisfies that, with probability at least 1 − δ with respect to
(Xi, Yi)

N
i=1,

‖f̂ − f∗‖L2 ≤
√
ε and E

((
f̂(X)− Y

)2
|(Xi, Yi)

N
i=1

)
≤ E(f∗(X)− Y )2 + ε.

Observe that the fixed point k̄N (γ) (and therefore, the error term in Theorem 6.3) does
not improve when the noise level of the problem, ‖f∗(X)− Y ‖L2 , decreases.

Before turning to the proof of Theorem 6.3, let us compare the fixed point r = k̄N (γ)
to rQ and rM. First of all, note that r ≥ rM, because r is a legal value in the fixed-point
condition (up to the right choice of constant used to define rM). Indeed, by the contraction
inequality for Bernoulli processes and recalling that ‖ξ‖L∞ = ‖f∗(X)− Y ‖L∞ ≤ 2b

EXEε sup
u∈Ff∗,r

∣∣∣∣∣ 1√
N

N∑
i=1

εiξiu(Xi)

∣∣∣∣∣ ≤ 2bEXEε sup
u∈Ff∗,r

∣∣∣∣∣ 1√
N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ≤ 2bγr2
√
N

where the last inequality holds because r satisfies (6.7).
As for rQ, observe first that r .

√
b/γ. Indeed, PσF ⊂ bBN

∞, and thus, for every ρ,
EεφN (ρ, σ) ≤

√
Nb. Hence,

E sup
u∈Ff∗,r

∣∣∣∣∣ 1√
N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ≤ γ√Nr2 ≤
√
b
√
Nr,

and up to the dependence on γ and b, r = k̄N (γ) is larger than max{rQ, rM}.

The first observation required for the proof of Theorem 6.3 has to do with the nature of
the fixed point k̄N (γ). A similar phenomenon holds for rQ and rM, and all of them are based
on the fact that the indexing set consists of localizations of a set that is star-shaped around
0—star(F − f∗, 0).
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Lemma 6.5. If r > k̄N (γ) then EφN (r, σ) ≤ γr2
√
N , and if r < k̄N (γ), the reverse inequality

holds.

Proof. Fix ρ1 > 0 for which

EφN (ρ1, σ) = E sup
u∈Ff∗,ρ1

∣∣∣∣∣ 1√
N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ≤ γρ2
1

√
N,

and note that if ρ2 > ρ1 and u ∈ Ff∗,ρ2 then by the star-shape property, (ρ1/ρ2)h ∈ Ff∗,ρ1 .

Given (εi)
N
i=1 and (Xi)

N
i=1, assume that suph∈Ff∗,ρ2

∣∣∣∑N
i=1 εiu(Xi)

∣∣∣ is attained in h and that

ρ1 ≤ ‖h‖L2 ≤ ρ2. Therefore,

sup
u∈Ff∗,ρ2

∣∣∣∣∣
N∑
i=1

εiu(Xi)

∣∣∣∣∣ =
‖h‖L2

ρ1

∣∣∣∣∣
N∑
i=1

εi
ρ1

‖h‖L2

h(Xi)

∣∣∣∣∣ ≤ ρ2

ρ1
sup

u∈Ff∗,ρ1

∣∣∣∣∣
N∑
i=1

εiu(Xi)

∣∣∣∣∣ .
Taking expectations on both sides,

E sup
u∈Ff∗,ρ2

∣∣∣∣∣ 1√
N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ≤ ρ2

ρ1
E sup
u∈Ff∗,ρ1

∣∣∣∣∣ 1√
N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ≤ γρ2ρ1

√
N ≤ γρ2

2

√
N.

The proof of the second part follows an identical path and is omitted.

The proof of Theorem 6.3 relies heavily on Talagrand’s concentration inequality for bounded
empirical processes, a version of which is formulated below (see also [?]). The impact that
Talagrand’s inequality has on statistical learning theory cannot be overstated. Almost every
major contribution to the area is based, to some extent, on that inequality, and the fact
that no similar inequality holds for empirical processes involving more heavy-tailed random
variables caused a major delay in the study of prediction and estimation problems.

Talagrand’s inequality will be used many times throughout these notes. The reader is
strongly encouraged to study its proof—as well as the entire beautiful machinery developed
by Talagrand for the analysis of the concentration of measure phenomenon in product spaces.

Theorem 6.6. There exist an absolute constant C for which the following holds. Let H be a
class of functions and set σ2

H = suph∈H var(h) and b = suph∈H ‖h‖L∞. For every x > 0, with
probability at least 1− 2 exp(−x),

sup
h∈H

∣∣∣∣∣ 1

N

N∑
i=1

h(Xi)− Eh

∣∣∣∣∣ ≤ C
(
E sup
h∈H

∣∣∣∣∣ 1

N

N∑
i=1

εih(Xi)

∣∣∣∣∣+ σH

√
x

N
+ b

x

N

)
.

The second preliminary result the proof of Theorem 6.3 requires is based on is the following
version of the contraction theorem for Bernoulli processes [?]:

Theorem 6.7. Let T ⊂ RN and let φi : R → R satisfy that φi(0) = 0 and that ‖φi‖lip ≤ L.
Then

E sup
t∈T

∣∣∣∣∣
N∑
i=1

εiφi(ti)

∣∣∣∣∣ ≤ 2LE sup
t∈T

∣∣∣∣∣
N∑
i=1

εiti

∣∣∣∣∣ .
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Proof of Theorem 6.3. The classes we are interested in are level sets of F , scaled according
to their excess risk: let r = 2k̄N (γ) for γ = c/L, where the absolute constant c is to be specified
in what follows. Set

Fj = {f ∈ F : 2j−1r2 ≤ ELf < 2jr2}, and F0 = {f ∈ F : ELf ≤ r2},

and consider the classes LFj = {Lf : f ∈ Fj}. The key to the proof is an estimate on the
probability with which

sup
f∈Fj

∣∣∣∣∣ 1
N supNi=1 Lf (Xi, Yi)

ELf
− 1

∣∣∣∣∣ ≤ 1

2
.

To that end, because every f ∈ Fj satisfies that 2j−1r2 ≤ ELf ≤ 2jr2, it suffices to estimate
the probability with which

sup
f∈Fj

∣∣∣∣∣ 1

N

N∑
i=1

Lf (Xi, Yi)− ELf

∣∣∣∣∣ ≤ 1

2
· 2j−1r2. (6.8)

One may invoke Talagrand’s concentration inequality to each one of the class LFj . Note that
by (6.4)

sup
f∈Fj
‖Lf‖∞ ≤ 2Lb,

and by (6.5), for any f ∈ Fj ,

EL2
f ≤ BL2ELf ≤ BL2 · (2jr2);

thus,
σLFj ≤

√
BL · 2j/2r and {f − f∗ : f ∈ Fj} ⊂ Ff∗,ρ

for ρ =
√
B2j/2r, because ‖f − f∗‖2L2

≤ BELf .
Finally, one has to estimate

E sup
f∈Fj

∣∣∣∣∣ 1

N

N∑
i=1

εiLf (Xi, Yi)

∣∣∣∣∣ = EX,Y

(
Eε sup

f∈Fj

∣∣∣∣∣ 1

N

N∑
i=1

εiLf (Xi, Yi)

∣∣∣∣∣
)
,

and to do so we invoke a contraction argument. Fix (Xi, Yi)
N
i=1, set ξi = f∗(Xi)− Yi and put

φi(z) = `(z − ξi)− `(ξi).

Clearly, each φi is a Lipschitz function with constant L and satisfies that φi(0) = 0. Also,

Lf (Xi, Yi) = ` ((f − f∗)(Xi) + ξi)− ` (ξi) = φi ((f − f∗)(Xi)) .

By the contraction inequality for Bernoulli processes (Theorem 6.7), for every fixed (Xi, Yi)
N
i=1,

Eε sup
f∈Fj

∣∣∣∣∣ 1

N

N∑
i=1

εiLf (Xi, Yi)

∣∣∣∣∣ =Eε sup
f∈Fj

∣∣∣∣∣ 1

N

N∑
i=1

εi (φi(f − f∗)(Xi))

∣∣∣∣∣
≤2LEε sup

f∈Fj

∣∣∣∣∣ 1

N

N∑
i=1

εi(f − f∗)(Xi)

∣∣∣∣∣ . (6.9)
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Therefore, recalling that {f − f∗ : f ∈ Fj} ⊂ Ff∗,ρ for ρ =
√
B2j/2r,

E sup
f∈Fj

∣∣∣∣∣ 1

N

N∑
i=1

εiLf (Xi, Yi)

∣∣∣∣∣ ≤ 2LE sup
f∈Fj

∣∣∣∣∣ 1

N

N∑
i=1

εi(f − f∗)(Xi)

∣∣∣∣∣
≤2LE sup

u∈Ff∗,ρ

∣∣∣∣∣ 1

N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ≤ 2L · γ(
√
B2j/2r)2,

because
√
B2j/2r > r and applying Lemma 6.5.

Combining these observations, it follows that with probability at least 1− exp(−x),

sup
f∈Fj

∣∣∣∣∣ 1

N

N∑
i=1

Lf (Xi, Yi)− ELf

∣∣∣∣∣ ≤C
(

2L · γB2jr2 +

√
x

N

√
BL · 2j/2r + 2Lb

x

N

)
≤1

2
· 2j−1r2,

provided that

γ ≤ c1

LB
(6.10)

and setting

x = c2(L, b,B)N2jr2; (6.11)

(one may take c1 = 1/24C and c2 = min{1/(144BL2C2), 1/(24CLb)}—which clearly are not
the optimal choices).

Hence, with probability at least 1− 2 exp(−c2(L, b,B)N2jr2), for any f ∈ Fj ,

1

2
· 2j−1r2 ≤ 1

2
ELf ≤

1

N

N∑
i=1

Lf (Xi, Yi) ≤
3

2
ELf ,

and on top of having the required ratio estimate, it is evident that on the same event, f̂ 6∈ Fj .
Applying the union bound for j ≥ 1, one has that with probability at least

1−
∑
j≥1

exp(−c2(L, b,B)N2jr2) ≥ 1− exp(−c3(L, b,B)Nr2),

the ratio estimate holds for any f ∈ F\F0 and the empirical minimizer satisfies

f̂ 6∈
⋃
j≥1

Fj = F\F0.

Thus, f̂ ∈ F0, and as a result, the risk of the empirical minimizer satisfies

ELf̂ ≤ r
2 = 4k̄2

N (γ).

The final part of the proof is immediate, recalling that for every f ∈ F , ‖f − f∗‖2L2
≤ BELf .
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Remark 6.8. Note that the probability estimate is not trivial only when r2 & 1/N . Thus,
this method of proof cannot give an error bound that is better than ∼ 1/N , and specifically,
cannot be used to ensure exact recovery even in noise-free problems.

The crucial point to notice here is the damaging effect of the application of a contraction
argument. The outcome of Theorem 6.3 depends on the Lipschitz constant of ` rather than
on the ‘magnitude’ of the noise (captured, for example, by ‖Y − f∗(X)‖L2 rather than by a
function of ‖Y −f∗(X)‖L∞). The estimate does not improve even when the problem becomes
‘more realizable’—that is, when Y is closer to F , and therefore it is, at times loose.

It turns out that ERM performs with the best possible accuracy and the optimal confidence
when F is a subgaussian class (in which case γ = c/L can be replaced by the correct quantity
γ ∼ (‖Y − f∗(X)‖L2)−1). Unfortunately, in more heavy tailed problems ERM is no longer a
reasonable procedure and one has to come up with better alternatives.

Exercise 19. Give an example of estimation/prediction problems involving a convex class in
which ERM does no perform with the sample complexity of, say, (5.24). (Hint: it is possible
to find a one-dimensional example).

6.3 Subgaussian learning

Let us turn to another example in which concentration of empirical means is still strong
enough. As is the case throughout these notes, the focus is on a convex class F (and as a
result, Ff∗,r = (F − f∗) ∩ rD).

The assumption that leads to sufficient concentration is that the class is L-subgaussian
and that ξ = f∗(X) − Y has a finite ψ2 norm, where the meaning of the ψ2 and L2 norm
equivalence is that

‖f − h‖ψ2 ≤ L‖f − h‖L2 for every f, h ∈ F ∪ {0}.

To formulate the result, given H ⊂ L2 let {Gh : h ∈ H} be the canonical gaussian process
indexed by H; that is, each Gh is a centred gaussian random variable and for any f, h ∈ H,
EGhGf =

〈
f, h
〉

=
∫
f(x)h(x)dµ(x). For an extensive survey no gaussian processes we refer

the reader to [?].
Let

E sup
h∈h

Gh = sup{E sup
h∈H′

Gh, H
′ ⊂ H is finite}.

Theorem 6.9. There are constants c0, c1, c2 that depend only on L for which the following
holds. Let r satisfy that

E sup
h∈Ff∗,r

Gh ≤ c0

√
N ·min

{
r,

r2

‖ξ‖ψ2

}
.

Then with probability at least

1− 2 exp

(
−c1N min

{
r2

‖ξ‖2ψ2

, 1

})
,

ERM performed in F using a sample (Xi, Yi)
N
i=1, returns f̂ that satisfies

‖f̂ − f∗‖L2 ≤ c2r and E
((

f̂(X)− Y
)2 ∣∣(Xi, Yi)

N
i=1

)
≤ c2r

2.
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The rest of this section is devoted to the proof of Theorem 6.9.

Remark 6.10. Note that the estimate in Theorem 6.9 relies heavily on ‖ξ‖ψ2 rather than on
‖ξ‖L2, the latter being what the optimal estimate should be based on. As a result, if ‖ξ‖ψ2 is
significantly larger than ‖ξ‖L2 the estimate from Theorem 6.9 is suboptimal—though for the
optimal performance one would have to use a different procedure than ERM.

Equation (6.3) presents an opportunity to analyze ERM in more detail. For every fixed
sample, the fact that

∑N
i=1 Lf (Xi, Yi) > 0 excludes f as a potential empirical minimizer.

Hence, if there is some r > 0 for which

{f ∈ F : ‖f − f∗‖L2 ≥ r} ⊂

{
f ∈ F :

N∑
i=1

Lf (Xi, Yi) > 0

}
, (6.12)

it implies that ‖f̂ − f∗‖L2 ≤ r, establishing an estimate of Ee. In a similar fashion, if

{f ∈ F : R(f)−R(f∗) ≥ r2} ⊂

{
f ∈ F :

N∑
i=1

Lf (Xi, Yi) > 0

}
(6.13)

then R(f̂)−R(f∗) ≤ r2, leading to an estimate on Ep.
Let us examine (6.12) for the squared loss. To obtain a useful bound one has to show that

with high probability, for any function that is sufficiently far away from (the unknown) f∗,
the excess empirical risk is positive.

Recall the decomposition of the excess loss functional to its quadratic and multiplier
components:

(f(X)− Y )2 − (f∗(X)− Y )2 = (f(X)− f∗(X))2 + 2 (f(X)− f∗(X)) (f∗(X)− Y ) ,

and denote by PN the empirical mean functional, i.e.,

PNLf =PN (f(X)− f∗(X))2 + 2PN (f(X)− f∗(X)) (f∗(X)− Y ) =

=
1

N

N∑
i=1

(f(Xi)− f∗(Xi))
2 +

2

N

N∑
i=1

(f(Xi)− f∗(Xi)) (f∗(Xi)− Y ) .

Note that PNLf has some homogeneity in f − f∗: suppose that PNLf > 0, and consider
u ∈ F that ‘lives’ on the ray originating from f∗ ‘beyond’ f ; thus u− f∗ = θ(f − f∗) for some
θ > 1 and

PNLu = θ2PN (f − f∗) + 2θPN (f(X)− f∗(X)) (f∗(X)− Y ) ≥ θPNLf > 0.

This, and the fact that F is star-shaped around f∗ (a convex set is star-shaped around any
of its points) implies the following:

Let F be a convex class. To prove that ELf > 0 for any f ∈ F which satisfies that
‖f−f∗‖L2 ≥ r, it suffice to show that ELf > 0 for any f ∈ F that satisfies ‖f−f∗‖L2 = r.
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Set ξ(X,Y ) = f∗(X)− Y and for a sample (Xi, Yi)
N
i=1, let

Qf−f∗ =
1

N

N∑
i=1

(f − f∗)2(Xi), (6.14)

and

Mf−f∗ =
2

N

N∑
i=1

ξi(f − f∗)(Xi), (6.15)

where ξi = f∗(Xi)− Yi. Therefore,

PNLf =
1

N

N∑
i=1

Lf (Xi, Yi) = Qf−f∗ +Mf−f∗ . (6.16)

For obvious reasons we call Qf−f∗ the quadratic component of the empirical excess risk func-
tional and Mf−f∗ is the multiplier component.

Let us first find a high probability upper bound on Ee, by showing that if ‖f − f∗‖L2 ≥ r
then PNLf > 0, implying that ERM selects f̂ whose distance from f∗ is at most r. Once
again, by the star-shape property, it suffices to show that with high probability,

PNLf > 0 when ‖f − f∗‖L2 = r.

Clearly, ELf = EQf−f∗ + EMf−f∗ , and therefore, by the convexity condition,

PNLf = (Qf−f∗ − EQf−f∗) + (Mf−f∗ − EMf−f∗) + ELf

≥− |Qf−f∗ − EQf−f∗ | − |Mf−f∗ − EMf−f∗ |+
1

2

(
ELf +

1

B
‖f − f∗‖2L2

)
. (6.17)

The question becomes estimating the oscillations

|Qf−f∗ − EQf−f∗ | and |Mf−f∗ − EMf−f∗ |

on the star-shaped set (F − f∗) ∩ rD, and showing that if ‖f − f∗‖L2 = r these oscillations
are dominated by ELf + r2/B.

Obtaining a useful bound of these oscillations is a nontrivial task. This has been studied
extensively over the years under various conditions on the class F (see, for example, [?]). The
following estimate is from [?], and to formulate it one requires the next definition.

Definition 6.11. For an integer s,

Λs(H) = E sup
h∈H

Gh + 2s/2diam(H,L2).

Theorem 6.12. For every L > 1 there exist constants c1 and c2 that depend only on
L and for which the following holds. Let H be an L-subgaussian class of functions. If
ξ ∈ Lψ2 then for every u,w ≥ 8 and s ≥ 0, with probability at least 1 − 2 exp(−c1u

22s) −
2 exp(−c1N min{w2, w4}),

sup
h∈H

∣∣∣∣∣
N∑
i=1

(ξih(Xi)− Eξh)

∣∣∣∣∣ ≤ c2uw
√
N‖ξ‖ψ2Λs(H). (6.18)



D
RA
FT

6.3. SUBGAUSSIAN LEARNING 89

Moreover, with probability at least 1− 2 exp(−c1u
22s),

sup
h∈H

∣∣∣∣∣
N∑
i=1

(h2(Xi)− Eh2)

∣∣∣∣∣ ≤ c2

(
u2Λ2

s(H) + u
√
N sup

h∈H
‖h‖L2Λs(H)

)
. (6.19)

In the case that is of interest here, H = Ff∗,r = (F − f∗) ∩ rD and ξ = (f∗(X)− Y ). To
ensure that both oscillation terms are bounded by at most (θ/2)r2 for 0 < θ < 1 it suffices
that u,w ∼ 1 and

Λs(H) ∼ θ
√
N ·min

{
r2

‖ξ‖ψ2

, r

}
= (∗).

Hence, if r is the smallest such that

E sup
h∈Ff∗,r

Gh ≤ c
θ√
N
·min

{
r2

‖ξ‖ψ2

, r

}
for a suitable constant c, and 2s = ((∗)/r)2, one has that on an event A of probability at least

1− 2 exp

(
−c1(L)θ2N min

{
r2

‖ψ2‖2L2

, 1

})
,

sup
{f∈F, ‖f−f∗‖L2

≤r}
|Qf−f∗ − EQf−f∗ | ≤

θ

2
r2,

and

sup
{f∈F, ‖f−f∗‖L2

≤r}
|Mf−f∗ − EMf−f∗ | ≤

θ

2
r2.

Recalling (6.17), on the event A, one has that for every f ∈ F that satisfies ‖f − f∗‖L2 = r,

PNLf ≥ −θr2 +
1

2

(
ELf +

1

B
‖f − f∗‖2L2

)
≥ r2

(
−θ +

1

2B

)
where the last inequality follows because ELf ≥ 0. Thus, if θ < 1/2B then PNLf is positive
for any f ∈ F that satisfies ‖f − f∗‖L2 = r. By the star-shape property, the same is true
when ‖f − f∗‖L2 ≥ r, showing that Ee ≤ r with the wanted probability estimate.

To establish that Ep . r2 on the same event, assume that it is not—and the conditional

expectation ELf̂ ≥ Cr2. But since ‖f̂ − f∗‖L2 ≤ r, that means that there is some f ∈ F for

which ‖f − f∗‖L2 ≤ r, ELf ≥ Cr2 and PNLf ≤ 0. That is impossible on the event A by
(6.17): for any f ∈ F such that ‖f − f∗‖L2 ≤ r,

PNLf ≥ −θr2 +
1

2

(
ELf +

1

B
‖f − f∗‖2L2

)
≥ −θr2 +

1

4
ELf > 0

if C ≥ max{4θ, 2/B}.

Remark 6.13. It is instructive to see how the choice of r is connected with rQ and rM.
For the former, note that if H is an L-subgaussian class of functions then by Talagrand’s
majorizing measures theorem,

E sup
h∈H

∣∣∣∣∣ 1√
N

N∑
i=1

εih(Xi)

∣∣∣∣∣ ≤ cLE sup
h∈H

Gh,
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which means that the condition E suph∈Ff∗,r Gh ≤ c(L)
√
Nr implies that rQ ≤ r (of course,

assuming that the constants in the definitions are chosen properly).
Also, an immediate application of the first part of Theorem 6.12 (which is also based on

the majorizing measures theorem) shows that

E sup
h∈H

∣∣∣∣∣ 1√
N

N∑
i=1

εiξih(Xi)

∣∣∣∣∣ ≤ cL2‖ξ‖ψ2E sup
h∈H

Gh,

which, by the same argument, implies that rM ≤ r.
Therefore, the estimate in Theorem 6.9 is weaker than the main result of these notes—

even at the level of fixed points. Also, as noted previously, the estimate depend on ‖ξ‖ψ2

rather than on ‖ξ‖ for a smaller norm (ideally—‖ξ‖L2).
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Chapter 7

The small-ball method

The fact that the sum of iid random variables concentrates around the mean is an important
and useful fact. However, it is not without its problems. At least the bounds that were
presented in the first part of these notes require the given random variable to be ‘well-
behaved’: for example, it should have a finite L∞ or ψα norm, and even in such cases, the
quality of the estimate often depends on norm equivalence rather than of an upper bound
with respect to some norm. But is concentration of the empirical mean around the true one
really a single phenomenon? Concentration is a two-sided inequality, and unlikely as it sounds
at first, it is possible that the two inequalities are of a completely different nature.

Consider the following case. Let Z be a mean-zero variance 1 random variable, and set
Z1, ..., ZN to be independent copies of Z. For some fixed constants c and C, consider the two
events

A =

{
1

N

N∑
i=1

Z2
i ≥ cEZ2

}
and B =

{
1

N

N∑
i=1

Z2
i ≤ CEZ2

}
.

A two-sided estimate of N−1
∑N

i=1 Z
2
i holds on A ∩ B, and therefore, the worse estimate of

the two will determine the way the empirical means deviate from EZ2.

There is a clear difference between the two event: a single very large Z2
j might result in

(Zi)
N
i=1 6∈ B. On the other hand, even if a proportional number of the Zi are 0, it is still

possible that (Zi)
N
i=1 ∈ A. This lack of symmetry is very significant. it hints that the lower

bound may be true with a much higher probability estimate than the upper one.

Example 7.1. Define a random variable Z by

Pr(Z = N) =
1

N2
, and Pr(Z = 1) = Pr(Z = 0) =

1

2

(
1− 1

N2

)
.

Therefore, EZ2 = 3/2− 1/2N2. Let Z1, ..., ZN be independent copies of Z, and observe that

Pr(∃ 1 ≤ i ≤ N : Zi = N) = 1−
(

1− 1

N2

)N
≥ 1

2N
,

and that on this event,

1

N

N∑
i=1

Z2
i ≥ N.

93
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Hence, even if C is ridiculously large, the best upper estimate one can have in this case holds
only with probability 1−1/(2N). On the other hand, with probability at least 1−2 exp(−c1N),

1

N

N∑
i=1

Z2
i ≥

1

8
EZ2.

It follows from Example 7.1 that there are situations in which what is a weak upper
estimate holds only with probability (1− poly(1/N)), but a much stronger lower estimate is
true with very high probability.

The aim of this chapter is to study this phenomenon and see when high-probability ‘iso-
morphic’ or ‘almost isometric’ lower bounds are true. The main message is that such lower
bounds are almost universally true, and are certainly are less restrictive than the upper es-
timates. Moreover, under minimal conditions the lower bounds are stable: they remain true
even if someone maliciously removes a large part of the sample.

The importance of the universality of the lower bound and its stability is extreme: both
facts play a crucial role in what follows, especially in the study of heavy tailed learning
problems.

In this presentation the focus is on lower bounds on 1
N

∑N
i=1 Z

2
i , though the universality of

lower bounds is true in far more general situations, involving the sum of nonnegative random
variables.

7.1 The small-ball condition

The small-ball condition quantifies the fact that the random variable Z does not assign too
much ‘weight’ close to 0. It has nothing to do with the rate of decay of Z; that calibrates the
Lp or ψα norms of Z.

Definition 7.2. A random variable Z ∈ L2 satisfies a small-ball condition with constants κ
and δ if

Pr(|Z| ≥ κ‖Z‖L2) ≥ δ.

Example 7.3. Let us give two extreme examples of random variables that satisfy a small-ball
condition.

• Let g be the standard gaussian random variable. It is straightforward to verify that for
0 < ε < 1, Pr(|g| < ε) ≤ c0ε, where c0 is a suitable absolute constant. Therefore, given
any 0 < δ < 1, Pr(|g| ≥ c1δ‖g‖L2) ≥ 1− δ.

• Let h(t) = c2/1+ |t|4 and set Z to be a random variable whose density is h. Then EZ2 ∼ 1,
but the tail decay of Z is slow. In fact, Z 6∈ L3. On the other hand, Z satisfies the same
small-ball condition as the gaussian: close to 0 its density is of the order of a constant.
Hence, for 0 < δ < 1,

∫ δ
−δ h(t)dt ∼ δ, implying that Pr(|Z| ≥ c2δ‖Z‖L2) ≥ 1− δ.

The reason why a small-ball condition is so useful is the following almost trivial observa-
tion:
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Lemma 7.4. There exists an absolute constant c for which the following holds. If Z ∈ L2 is
a random variable that satisfies a small-ball condition with constants κ and δ and Z1, ..., ZN
are independent copies of Z then with probability at least 1− 2 exp(−cδN),

|{i : |Zi| ≥ κ‖Z‖L2}| ≥
δN

2
.

In particular, on that event,

1

N

N∑
i=1

Z2
i ≥

1

2
κ2δ‖Z‖2L2

.

Proof. Let ηi = 1{|Zi|≥κ‖Z‖L2
}. Thus, (ηi)

N
i=1 are independent selectors with mean at least

δ. By the concentration of iid selectors (see (3.14)), the first claim follows. The second claim
is an immediate outcome of the first.

Remark 7.5. Note that the lower bound on 1
N

∑N
i=1 Z

2
i is stable, because it the result of having

a proportional number (δN/2 ) of the Zis are of the order of ‖Z‖L2. Even if a malicious
adversary is allowed to change any subset of {Z1, ...., ZN} of cardinality at most δN/4, the
lower bound would still hold—with a constant of κ2δ/4 instead of κ2δ/2. This is our first
encounter with a recurring theme, of a stable lower bound.

Because of its importance, let us turn to a more detailed study of the small-ball condition,
starting with the all-important question of ways in which a small-ball condition can be verified.

The first example is rather obvious, as it was featured in Example 7.3:

Lemma 7.6. Let Z be a random variable that has a density bounded by L. Then for every
ε > 0,

Pr(|Z| < ε‖Z‖L2) ≤ ε · 2L‖Z‖L2 .

The proof is obvious: if h denotes the density of Z then

Pr(Z ∈ [a, b]) =

∫ b

a
h(t)dt ≤ L(b− a),

and setting a = −ε‖Z‖L2 and b = ε‖Z‖L2 the claim follows.

7.1.1 Norm equivalence

The natural hierarchy of the Lp spaces implies that ‖Z‖Lp ≤ ‖Z‖Lq when 1 ≤ p ≤ q ≤ ∞. But
suppose that one is in a situation where the inequality is reversed, and there is some constant
L such that ‖Z‖Lq ≤ L‖Z‖Lp . This norm equivalence forces Z to have nontrivial structure:
a significant part of Z’s weight “lives” in the interval [α‖Z‖Lp , β‖Z‖Lp ] for constants α and
β that depend only L, p and q. In some sense, this is a combination of a small-ball condition
(plenty of weight in [α‖Z‖Lp ,∞) and a relatively nice tail decay, i.e., not too much weight in
[β‖Z‖Lp ,∞). While both facts are useful, the one that is more significant for this discussion
is being far from 0, and that is an outcome of the Paley-Zygmund inequality.

Theorem 7.7. Let 1 ≤ p < q ≤ ∞. If ‖Z‖Lq ≤ L‖Z‖Lp then for 0 < θ < 1,

Pr
(
|Z| ≥ θ‖Z‖Lp

)
≥
(

1− θp

Lp

) q
q−p

.
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Proof. By Hölder’s inequality for r = q/p > 1 and its conjugate index r′ = q/(q − p),

‖Z‖pLp =E|Z|p1{|f |≥t} + E|Z|p1{|Z|<t} ≤ (E|Z|p·q/p)p/q · Pr1−p/q(|Z| ≥ t) + tp

≤‖Z‖pLqPr
1−p/q(|Z| ≥ t) + tp.

Therefore,

Pr(|Z| ≥ t) ≥

(
‖Z‖pLp − t

p

‖Z‖pLq

) q
q−p

. (7.1)

If ‖Z‖Lq ≤ L‖Z‖Lp , 0 < θ < 1 and t = θ‖Z‖Lp , one has

Pr(|Z| ≥ θ‖Z‖Lp) ≥
(

1− θp

Lp

) q
q−p

.

Exercise 20. Show that for α, β and δ that depend only on p, q and L, one has

Pr
(
Z ∈

[
α‖Z‖Lp , β‖Z‖Lp

])
≥ δ.

7.1.2 Small-ball and linear functionals

An important set of functions that is of considerable interest consists of linear functionals on
RN . Let us examine when linear functionals satisfy a small-ball condition with an important
twist: the goal is to have a uniform estimate, namely, if X is a random vector in RN , then
there are constants κ and δ such that for every t ∈ SN−1,

Pr(|
〈
X, t

〉
| ≥ κ‖

〈
X, t

〉
‖L2) ≥ δ

(obviously, the implicit assumption is that X has a nontrivial covariance, and in particular,
all linear functionals are square-integrable).

By the Paley-Zygmund inequality, if the class of linear functionals satisfies any sort of
norm equivalence, for example, that there is some p > 2 such that for every t ∈ Sd−1

‖
〈
X, t

〉
‖Lp ≤ L‖

〈
X, t

〉
‖L2 , then the small-ball condition holds with constants κ and δ that

depend only on L. However, proving such a norm equivalence is often a nontrivial task.

Exercise 21. Let X be an isotropic random vector in RN .

(1) Give some examples of random vectors that satisfy
(
E‖X‖42

)1/4 ≤ L√N for an absolute
constant L.

(2) Show that given such a random vector, “most” directions θ ∈ SN−1 satisfy a small ball
condition with constants κ and δ that depend only on L.

Consider a special choice of a random vector: Z = (Z1, ..., ZN )—a random vector whose
coordinates are independent copies of a symmetric random variable Z. As it happens, the
random vector Z ‘inherits’ the small-ball behaviour of random variable Z without resorting
to norm equivalence.
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Theorem 7.8. There exist absolute constant c1 and c2 for which the following holds. Let Z
be a symmetric random variable that satisfies a small-ball condition with constants κ and δ.
If Z1, ..., ZN are independent copies of Z then, for every (a1, ..., aN ) ∈ RN ,

Pr

(∣∣∣∣∣
N∑
i=1

aiZi

∣∣∣∣∣ ≥ c1

√
δκ

)
≥ c2δ.

Proof. Since Z is symmetric,
∑N

i=1 aiXi has the same distribution as
∑N

i=1 εi|ai| · |Xi|.
Observe that for every (bi)

N
i=1 ∈ RN , if Y =

∑N
i=1 εibi then

Prε

(∣∣∣∣∣
N∑
i=1

εibi

∣∣∣∣∣ ≥ c1‖b‖2

)
≥ c2 (7.2)

for absolute constants c1 and c2. Indeed, because a Bernoulli vector is c0-subgaussian for an
absolute constant c0, one has∥∥∥∥∥

N∑
i=1

εibi

∥∥∥∥∥
L2

= ‖b‖2 and

∥∥∥∥∥
N∑
i=1

εibi

∥∥∥∥∥
L4

. ‖b‖2.

Now (7.2) follows from the Paley-Zygmund Theorem.
Next, let bi = |ai| · |Zi| and apply (7.2) for a realization of Z1, ..., ZN . Thus,

Prε

∣∣∣∣∣
N∑
i=1

εi|ai| · |Zi|

∣∣∣∣∣ ≥ c1

(
N∑
i=1

a2
iZ

2
i

)1/2
 ≥ c2, (7.3)

and it remains to obtain a lower bound on (
∑N

i=1 a
2
iZ

2
i )1/2 that holds with a high enough

probability. To that end, let ηi = 1{|Zi|>κ}; thus (ηi)
N
i=1 are independent selectors with mean

at least δ, and pointwise,
N∑
i=1

a2
iZ

2
i ≥ κ

N∑
i=1

a2
i ηi.

Let W =
∑N

i=1 a
2
i ηi and observe that EW = δ‖a‖22. Moreover,

EW 2 = δ2

(
N∑
i=1

a2
i

)2

− δ2
N∑
i=1

a4
i + δ

N∑
i=1

a4
i ,

and

‖W‖L2 ≤ δ

(
N∑
i=1

a2
i

)
+
√
δ

(
N∑
i=1

a4
i

)1/2

≤ 2
√
δ

(
N∑
i=1

a2
i

)
.

Applying the Paley-Zygmund Theorem again, using that ‖W‖L2/‖W‖L1 ≤ 2/
√
δ one has

Pr

(
W ≥ δ

2
‖a‖22

)
≥ δ

8
,

and therefore,

Pr

(
N∑
i=1

a2
iZ

2
i ≥ κ2δ

N∑
i=1

a2
i

)
≥ δ

8
. (7.4)

The claim follows by combining (7.3) and (7.4).
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7.2 Uniform lower bounds

A crucial part in the study of lower bounds is the ability to obtain such bounds that hold
simultaneously for a class of functions. The small-ball method is a way of deriving such
uniform estimates, and the standard fist step is a uniform version of the small-ball condition.

Definition 7.9. The class H ⊂ L2(µ) satisfies a small-ball condition with constants κ and δ
if for every f, h ∈ H ∪ {0},

Pr (|f − h|(X) ≥ κ‖f − h‖L2) ≥ δ.

Let us formulate a version of the key estimate that leads to a uniform lower bound.

Theorem 7.10. There exist absolute constants c1 and c2 for which the following holds. Let
H ⊂ rS(L2) be a class that satisfies a small-ball condition with constants κ and δ ≥ 1/N . If

E sup
h∈H

∣∣∣∣∣ 1

N

N∑
i=1

εih(Xi)

∣∣∣∣∣ ≤ c1(κδ)2r,

then with probability at least 1− 2 exp(−c2δ
2N), for every h ∈ H,∣∣∣{i : |h(Xi)| ≥

κ

2
r
}∣∣∣ ≥ δN

4
.

Remark 7.11. There are various cases in which the probability estimate can be improved to
1− 2 exp(−cδN). We shall return to the point after the proof of Theorem 7.10.

The idea behind the proof of Theorem 7.10 is simple, and versions of the same idea can
be used in many other cases. To make the presentation as general as possible, let us consider
the following problem. Suppose that there is a certain property P that one would like to
show is satisfied by every v ∈ PσH (in the context of Theorem 7.10, that property is that
each v ∈ PσH has a proportional number of coordinates that are at least of the order of r.

(1) The first step in deriving a uniform estimate is to show that for every fixed h ∈ H, Pσh
satisfies P with very high probability. That is usually achieved thanks to the underlying
assumption on H, and the independence of X1, ..., XN . In the context of Theorem 7.10,
the small-ball condition implies that with probability at least 1 − 2 exp(−cδN), the
cardinality of the set Ih = {i : |h(Xi)| ≥ κ‖h‖L2} is at least δN/2.

(2) The high probability with which each Pσh satisfies P implies that one can have such a
control uniformly for a large number of class members. Indeed, by the union bound, it
is possible to have |Ih| ∼ δN for every h ∈ H ′ as long as |H ′| ≤ exp(c1δN) for a suitable
absolute constant c1.

The natural choice of H ′ is an appropriate approximating subset of H, and in the
context of Theorem 7.10 is will be a maximal separated set with respect to the L2

norm (though obviously one can think of other alternatives that make sense in various
examples). Denote the ‘mesh width’ of the separated set by ρ.

(3) The crucial part of the argument is the uniform estimate: that if h and f are ‘close
enough’, and P’ is a slightly weaker version of P then the fact that f satisfies P implies
that h satisfies P’. In other words, a perturbation does not ‘spoil’ P by too much.
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(4) By combining (2) and (3) one has that with high probability, every h ∈ H satisfies (the
slightly weaker) P which is the estimate one is looking for.

In the context of Theorem 7.10, f satisfies P’ if∣∣∣{i : |f(Xi)| ≥
κ

2
r
}∣∣∣ ≥ δN

4
,

and to establish (3) one has to show that with high probability

sup
{f,h∈H, ‖f−h‖L2

≤ρ}
|{i : |f − h|(Xi) ≥ κr/2}| ≤

δN

4
.

Indeed, recall that H ⊂ rS(L2), that H ′ ⊂ H is a maximal ρ-separated subset of H and
therefore, if h ∈ H and πh denotes its best approximation in H ′ then ‖h−πh‖L2 ≤ ρ. Hence,
it follows that on the intersection of the events from (2) and (3) that:

• by (2), for every h′ ∈ H ′, |{i : |h(Xi)| ≥ κr}| ≥ δN/2 (i.e., each point in the net satisfies
P).

• by (3), for every h ∈ H, |{i : |(h− f)(Xi)| ≥ (κ/2)r}| ≤ δN/4 (i.e., perturbations do not
spoil P by ‘too much’).

Therefore, for every h ∈ H there is Ih ⊂ {1, ..., N} such that |Ih| ≥ δN/4 and for every i ∈ Ih,

|h(Xi)| ≥ |πh(Xi)| − |(h− πh)(Xi)| ≥ κr −
κ

2
r ≥ κ

2
r.

On that event, every function in H satisfies the slightly weaker P′, as required.

Proof of Theorem 7.10. Part (1) is simply Lemma 7.4. Now, let us turn to (2): let H ′ ⊂ H
be a maximal ρ-separated subset of H for ρ which satisfies that

logM(H, ρD) ≤ c0

2
δN. (7.5)

Invoking the individual estimates, one has that with probability at least 1−2 exp(−(c0/2)δN),
for every h′ ∈ H ′, there is Ih′ ⊂ {1, ..., N} such that |Ih′ | ≥ δN/2 and for every i ∈ Ih′ ,

|h′(Xi)| ≥ κ‖h′‖L2 = κr. (7.6)

Next, let us turn to the “main event”—establishing (3). One has to show that with high
probability,

sup
{h,f∈H, ‖h−f‖L2

≤ρ}

∣∣∣{i : |f − h|(Xi) ≥
κ

2
r}
∣∣∣ ≤ δN

4
.

To that end, set U = (H −H) ∩ ρD and let us estimate the probability with which

(∗) = sup
u∈U

N∑
i=1

1{|u|(Xi)≥(κ/2)r}. (7.7)

Observe that (∗) is the supremum of a sum of independent, binary-valued random variable.
By Talagrand’s concentration inequality for bounded empirical processes, one has that with
probability at least 1− 2 exp(−x),

(∗) ≤ C
(
E(∗) + σ

√
xN + xN

)
,



D
RA
FT

100 CHAPTER 7. THE SMALL-BALL METHOD

where

σ2 = sup
u∈U

E1{|u|(X)≥(κ/2)r} = Pr(|u|(X) ≥ (κ/2)r) ≤
4‖u‖2L2

κ2r2
≤ 4ρ2

κ2r2
.

Thus, to have a chance that (∗) ≤ δN/4 one must ensure that

x . minN

{
δ, δ2

(
κr

ρ

)2
}
. (7.8)

All that is left is to estimate E(∗), which based on standard methods from empirical processes
theory. Clearly,

E(∗) ≤ 2

κr
E sup
u∈U

N∑
i=1

|u(Xi)| ≤
2

κr

(
E sup
u∈U

∣∣∣∣∣
N∑
i=1

(|u(Xi)| − E|u|)

∣∣∣∣∣+N sup
u∈U

E|u|

)

≤ 4

κr

(
E sup
u∈U

∣∣∣∣∣
N∑
i=1

εiu(Xi)

∣∣∣∣∣+Nρ

)
≤ 8

κr

(
E sup
h∈H

∣∣∣∣∣
N∑
i=1

εih(Xi)

∣∣∣∣∣+Nρ

)
,

where we have used the fact that ‖u‖L1 ≤ ‖u‖L2 ≤ ρ; the Giné-Zinn symmetrization inequal-
ity; the contraction inequality for Bernoulli processes; and the triangle inequality. As a result
E(∗) ≤ δN/16 provided that

ρ

κr
. δ and E sup

h∈H

∣∣∣∣∣ 1

N

N∑
i=1

εih(Xi)

∣∣∣∣∣ . κδr. (7.9)

Taking into account the first part of (7.9) and (7.5), it suffices to show that for a suitable
absolute constant c2,

logM(H, c2κδr) ≤
c0

2
δN. (7.10)

The proof of that fact is based on Sudakov’s inequality for Bernoulli processes, which is
presented at a later stage of these notes.

Theorem 7.12. There exists an absolute constant c for which the following holds. Let p ≥ 1.
Consider T ⊂ RN , a set of cardinality exp(p) which is η-separated with respect to the Lp(E)
norm (that is, for every t1, t2 ∈ T , ‖

〈
t1 − t2, E

〉
‖Lp ≥ η). Then

E sup
t∈T

N∑
i=1

εiti ≥ cη.

Assume that there is a set H1 ⊂ H consisting of exp(k) points in H that are βr separated
with respect to the L2 norm for k ≤ (c0/4)δN . Just as in the proof of (1), by the small-ball
condition and the union bound, one has that with probability at least 1− 2 exp(−(c0/2)δN),
for every f, h ∈ H1,

|{i : |(f − h)(Xi)| ≥ κβr}| ≥
1

2
δN. (7.11)

Conditioned on this event set W = {(h(Xi))
N
i=1 : h ∈ H1}. Observe that for every u, v ∈ W

and p ≤ δN/4
‖
〈
u− v, E

〉
‖Lp &

√
pκβr

√
δN ;
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indeed, that is the case because thanks to (7.11) each vector u − v has at least δN/2 ≥ 2p
“large coordinates”. Recalling that

∥∥〈u− v, E〉∥∥
Lp

&
√
p

∑
i≥p

[(ui − vi)∗]2
1/2

,

Theorem 7.12 implies that

Eε sup
w∈W

∣∣∣∣∣
N∑
i=1

εiwi

∣∣∣∣∣ & √pκβr√δN & κβrδN,

where the last inequality holds by setting k = p ∼ δN . Since the event we have conditioned
on has probability at least 1/2 one has

E sup
h∈H

∣∣∣∣∣
N∑
i=1

εih(Xi)

∣∣∣∣∣ ≥ c3κβrδN.

In other words, setting β = c2κδ, if the reverse inequality holds, i.e., if

E sup
h∈H

∣∣∣∣∣ 1

N

N∑
i=1

εih(Xi)

∣∣∣∣∣ . (κδ)2r, (7.12)

then logM(H,βr) ≤ (c0/2)δN , as required.

It should be stressed that the proof of Theorem 7.10 reveals the claim can potentially be
loose, and there could be instances in which the estimate may be improved. The sources of
possible looseness are:

•Using (2/κr)E supu∈U

∣∣∣∑N
i=1 εiu(Xi)

∣∣∣ to control E supu∈U
∑N

i=1 1{|u|(Xi)≥(κ/2)r} is frequently

very convenient, but at the same time it is far from sharp. There are some important
examples in which the latter can be bounded directly, leading to a much better outcome.

• Replacing U = (H − H) ∩ ρD with H can be very costly, especially if ρ, which is the
mesh-width of a net of log-cardinality ∼ δN , is very small. Again, there are examples
where that reduction is unwise.

• Estimating ρ using Sudakov’s inequality for Bernoulli processes is, again, convenient but
suboptimal. That leads to a fixed-point condition on the Bernoulli process that scales
like δ2 rather than like δ, and to a probability estimate of the order of 1−2 exp(−cδ2N)
rather than better estimate of 1− 2 exp(−cδN).

Since there are important examples in which each one of these steps is loose, let us formulate
two relatively ‘raw’ versions of Theorem 7.10. The two are not the most convenient for-
mulations, and can be made more ‘clean’ just as in the proof of Theorem 7.10, but that will
become handy in some examples, including the proof of the main result of these notes—sample
complexity bounds on estimation and prediction.

A part of one raw version is a modification of the small-ball condition: instead of con-
sidering H ⊂ rS(L2) and assuming that Pr(|h(X)| ≥ κr) ≥ δ it suffices to assume that
Pr(|h(X)| ≥ κ) ≥ δ. While the outcome might slightly change, the path the proofs take
remain the same.
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Theorem 7.13. Let H ⊂ L2(µ) and assume that for every h ∈ H, Pr(|h(X)| ≥ κ) ≥ δ.
Assume further that

(1) logM(H, ρD) ≤ c1δN · log(2/(1− δ));

(2) if U = (H −H) ∩ ρD then E supu∈U
∑N

i=1 1{|u|(Xi)≥(κ/2)} ≤ δN/16.

Then with probability at least

1− 2 exp(−c2N min

{
δ, δ2

(
κ

ρ

)2
}
,

for every h ∈ H,

|{i : |h(Xi)| ≥ (κ/2)}| ≥ 1

4
δN.

Remark 7.14. Note that the factor of log(2/(1− δ)) in (1); it is meaningful when δ is very
close to 1, or, in other words, when the probability of “failure” for each random variable is
close to 0. As a result, if ηi = 1{|h(Xi)|≥κ} and Eηi is close to 1, then the probability that∑N

i=1 ηi ≥ δN/2 is very high—the tail estimate is in the Poisson range of Bennett’s inequality.
This simple observation plays a key role in some of the applications presented in what follows.

Also, just as in the proof of Theorem 7.10 one may show that

E sup
u∈U

N∑
i=1

1{|u|(Xi)≥(κ/2)} ≤
c

κ
E sup
u∈(H−H)∩ρD

∣∣∣∣∣ 1

N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ,
leading to a slightly relaxed version of condition (2) in Theorem 7.13.

In a similar fashion, one may prove an analogous bound, in which the “likely events”
satisfy the reverse inequality, and for reasons that will become clearer in what follows, one
should consider δ as being relatively close to 1.

Theorem 7.15. Let H ⊂ L2(µ) and assume that for every h ∈ H, Pr(|h(X)| ≤ κ) ≥ δ ≥
0.99. Assume further that, for suitable absolute constants c1 and c2,

(1) logM(H, ρD) ≤ c1δN · log(2/(1− δ)), and

(2) if U = (H −H) ∩ ρD then E supu∈(H−H)∩ρD

∣∣∣ 1
N

∑N
i=1 εiu(Xi)

∣∣∣ ≤ c2κ.

Then with probability at least

1− 2 exp

(
−c3N min

{
1,

(
κ

ρ

)2
})

,

for every h ∈ H,
|{i : |h(Xi)| ≤ (3κ/2)}| ≥ 0.9N.

Exercise 22. Prove Theorem 7.13 and Theorem 7.15.
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Simple outcomes of Theorem 7.10

In what follows we implicitly assume that all the functions involved satisfy a small-ball con-
dition with constants κ and δ (or the reverse condition if needed). It suffices that the right
condition holds in span(F ), but often much less is needed. For the sake of simplicity we make
no attempt of pin-pointing the minimal assumptions needed for the proofs to work. Instead,
the discussion is restricted to cases in which the required condition holds on span(F ).

8.1 Proof of Theorem 5.29

At this point there is enough machinery set in place to prove Theorem 5.29, thus obtaining
an constant confidence estimate on the estimation error when F is convex and satisfies a
small-ball condition. Instead of presenting a complete proof, let us highlight the components
that are needed in the proof.

The first observation is that by the quadratic-multiplier decomposition, and recalling that
ξ = f∗(X)− Y ,

PNLf =
1

N

N∑
i=1

(f − f∗)2(Xi) + 2

(
1

N

N∑
i=1

ξi(f − f∗)(Xi)− Eξ(f − f∗)

)
+ 2Eξ(f − f∗).

And, because F is convex, the characterization of the nearest point map onto a convex subset
of a Hilbert space implies that for any f ∈ F , Eξ(f − f∗)(X) ≥ 0.

Invoking Theorem 7.10, it follows that with high probability, if ‖f − f∗‖L2 = r ≥ rQ then

PN (f − f∗)2 ≥ c0‖f − f∗‖2L2
,

where c0 depends on the constants in the small-ball condition. By homogeneity and the
star-shape property, the same lower bound is true if ‖f − f∗‖L2 ≥ r.

Next, Chebyshev’s inequality implies that if r ≥ rM (for the right choice of constants)
then with constant probability, for every f ∈ F such that ‖f − f∗‖L2 = r,∣∣∣∣∣ 1

N

N∑
i=1

ξi(f − f∗)(Xi)− Eξ(f − f∗)

∣∣∣∣∣ ≤ c0

4
r2 =

c0

4
‖f − f∗‖2L2

. (8.1)

Again, by the star-shape property and on the same event, (8.1) holds whenever ‖f−f∗‖L2 ≥ r.
Setting r ≥ max{rQ, rM}, one has that with constant probability, if ‖f − f∗‖L2 ≥ r then

PNLf > 0, implying that on that event, ‖f − f∗‖L2 ≤ r.
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It is instructive to see what feature of this argument must be improved to obtain Theorem
5.29 in its full generality: an estimate of the prediction error and for classes that satisfy
a convexity condition rather than being convex. The key point is that Theorem 7.10 only
provides an isomorphic lower bound on PN (f−f∗)2, namely, that PN (f−f∗)2 ≥ c‖f−f∗‖2L2

,
but the constant c need not be close to 1. The proof of Theorem 5.29 calls for an almost
isometric estimate: that PN (f − f∗)2 ≥ (1 − ζ)‖f − f∗‖2L2

, where ζ can be as close to 0 as
we like. Unfortunately, such an estimate is beyond the scope of these notes; the interested
reader can find the result in [?], with the critical level being rQ for a constant that depends
on ζ.

Let us show how such an almost isometric estimate can be used in the study of the
prediction error of ERM. Observe that by the quadratic-multiplier decomposition and the
convexity condition,

PNLf ≥PNQf−f∗ − EQf−f∗ − |PNMf−f∗ − EMf−f∗ |+ ELf

≥PNQf−f∗ − EQf−f∗ − |PNMf−f∗ − EMf−f∗ |+
1

2B
‖f − f∗‖2L2

+
1

2
ELf .

Invoking the almost isometric lower estimate on the quadratic component for ζ = 1/(4B), it
follows that if r ≥ rQ and ‖f − f∗‖L2 ≥ r, one has

PNQf−f∗ − EQf−f∗ = PNQf−f∗ − ‖f − f∗‖2L2
≥ −ζ‖f − f∗‖2L2

.

Therefore, on that event,

PNLf ≥
(

1

2B
− ζ
)
‖f − f∗‖2L2

− |PNMf−f∗ − EMf−f∗ |+
1

2
ELf

≥− |PNMf−f∗ − EMf−f∗ |+
1

4B
‖f − f∗‖2L2

+
1

2
ELf .

From here the proof continues along the lines of Theorem 6.9, where a similar functional was
analyzed to control the prediction error.

8.2 Dealing with malicious noise

Let F ⊂ L2(µ) be a class of functions and set f∗ ∈ F . Let Hr = star(F − f∗, 0)∩ rS where r
satisfies that

E sup
h∈Hr

∣∣∣∣∣ 1

N

N∑
i=1

εih(Xi)

∣∣∣∣∣ ≤ c1(κ, δ)r,

and in particular, Theorem 7.10 holds for Hr: with probability at least 1−2 exp(−c2(κ, δ)N),
for every h ∈ H one has

|{i : |h|(Xi) ≥ (κ/2)‖h‖L2}| ≥
1

4
δN. (8.2)

Observe that functions if H are of a particular form: if ‖f − f∗‖L2 ≥ r, there is 0 < λ ≤ 1
such that λ(f − f∗) ∈ Hr. And, since (8.2) is positive homogeneous, the same claim holds for
any f − f∗ as long as ‖f − f∗‖L2 ≥ r; i.e.,
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With probability at least 1 − 2 exp(−c2δN), for any f ∈ F such that ‖f − f∗‖ ≥ r one
has

|{i : |f − f∗|(Xi) ≥ (κ/2)‖f − f∗‖L2}| ≥
1

4
δN. (8.3)

Now, consider the following recovery problem in F : assume that one wishes to identify
f∗ ∈ F given only a random sample of the form f∗(X1), ..., f∗(XN ), where X1, ..., XN are
independent, distributed as the (unknown) X. In a cruel twist of events, the Devil, (which
from here on will be called “Toby”), can change ηN of the sample points in any way that he
see fit. Therefore, instead of seeing the true values f∗(X1), ..., f∗(XN ) the given data is the
corrupted sample Z1, ..., ZN , where |{i : f∗(Xi) 6= Zi}| ≤ ηN . The question is how well (that
is, with what accuracy and confidence) can f∗ be approximated given the corrupted data?

Thanks to (8.3) one possible method of recovery is as follows. Assume that η ≤ δ/16, which
means that Toby can corrupt only a small fraction of the points—and “small” is relative to the
constant in the small-ball condition). Select any f ∈ F such that |{i : f(Xi) 6= Zi}| ≤ δN/16.

First of all, observe that such a function exists: f∗(Xi) = Zi for at least (1− η)N indices,
and (1− η)N ≥ (1− δ)N/16 > δN/16 provided that δ < 1/2, which one can clearly assume
without loss of generality. Second, on the event on which (8.3) holds, if ‖f − f∗‖L2 ≥ r
then for at least δN/4 of the indices one has that f(Xi) 6= f∗(Xi). Therefore, even after
Toby’s malicious interference there are still at least δN/4− ηN ≥ (3/16)δN indices such that
f(Xi) 6= Zi. As a result, if ‖f − f∗‖L2 > r there will be too much disagreement between the
values f(Xi) and Zi, and such a function will not be a candidate. Hence,

With probability at least 1−2 exp(−c0δN) any function selected by the procedure satisfies
that ‖f − f∗‖L2 ≤ r. The choice of r is the smallest one such that

E sup
u∈Ff∗,r

∣∣∣∣∣ 1

N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ≤ c1r,

and c0, c1 are constants that depend only on the small-ball condition satisfied in span(F ).

8.3 Geometric applications I

An immediate outcome of (8.3) is as follows. Let H = star(F, 0) ∩ rS, where r satisfies that

E sup
u∈star(F,0)∩rS

∣∣∣∣∣ 1

N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ≤ c1r.

It follows that with probability at least 1− 2 exp(−c2N), if ‖f‖L2 ≥ r then

|{i : |f(Xi)| ≥ (κ/2)‖f‖L2}| ≥
1

4
δN,

and in particular,

1

N

N∑
i=1

f2(Xi) ≥ c3(κ, δ)‖f‖2L2
. (8.4)
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Let us invoke (8.4) to address two well-studied geometric problems. In what follows, X is an
isotropic random vector in Rd that satisfies a small-ball condition in the following sense:

Definition 8.1. The random vector X ∈ Rd satisfies a weak small-ball condition with con-
stants κ and δ if for any t ∈ Rd,

Pr
(
|
〈
X, t

〉
| ≥ κ‖

〈
X, t

〉
‖L2

)
≥ δ.

In other words, a random vector X satisfies a weak small-ball condition with constants
κ and δ if every one dimensional marginal

〈
X, t

〉
is a random variable that satisfies a small-

ball condition with the same constants. This is the same as saying that the class of linear
functionals on Rd satisfies a small-ball condition. The reason we call this a “weak small-
ball condition” is because there is a stronger version in which one has control on a certain
small-ball property for every marginal of X, not just one-dimensional marginals.

8.3.1 The smallest singular value of a random matrix

A question that has been studied extensively in recent years has to do with the smallest
singular value of a random matrix generated by X: let X1, ..., XN be independent copies of
X and define the random matrix Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
ei, which is a matrix whose rows are

X1, ..., XN . Note that the smallest singular value of Γ is given by

λmin(Γ) = inf
t∈Sd−1

‖Γt‖22 = inf
t∈Sd−1

1

N

N∑
i=1

〈
Xi, t

〉2
,

and the estimate from (8.4) when F =
{〈
t, ·
〉

: t ∈ Sd−1
}

is precisely what is needed to bound
λmin from below.

Observe that star(F, 0) = {
〈
t, ·
〉

: t ∈ Bd
2}; therefore, if one can show that for r = 1,

E sup
t∈Bd2

∣∣∣∣∣ 1

N

N∑
i=1

εi
〈
Xi, t

〉∣∣∣∣∣ ≤ c1,

then by (8.4), with probability at least 1− 2 exp(−c2N), λmin ≥ c3. To that end, note that

E sup
t∈Bd2

∣∣∣∣∣ 1

N

N∑
i=1

εi
〈
Xi, t

〉∣∣∣∣∣ = E

∥∥∥∥∥ 1

N

N∑
i=1

εiXi

∥∥∥∥∥
2

≤ (E‖X‖22)1/2

√
N

= (∗).

And, since X is isotropic, E‖X‖22 = E
∑d

i=1

〈
X, ei

〉2
= d, implying that

(∗) ≤
√

d

N
≤ c1

provided that N ≥ c2
1d.

Remark 8.2. One can show that a sharper estimate on λmin is possible if one assumes that
the linear forms

{〈
t, ·
〉

: t ∈ Sd−1
}

satisfy an Lq − L2 norm equivalence for some q > 2. For

example If q > 4, one recovers the Bai-Yin asymptotics that λmin ≥ 1 − c
√
d/N (see [?]).

Obtaining an upper estimate on λmax requires additional assumptions, and the key component
is the ability to control

max
1≤i≤N

‖X‖22
d

.

The best estimates in this direction can be found in [?].
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8.3.2 Gelfand widths of convex bodies

The following question arises naturally in asymptotic geometric analysis.

Question 8.3. Let K be convex body in Rd (that is, K is a bounded, convex, centrally-
symmetric set with a nonempty interior). Can one find a central section of K of small
co-dimension and has a relatively small diameter?

Estimates on the smallest possible diameter of a section of K for a fixed co-dimension is a
well-known parameter from approximation theory (the connection can be seen by identifying
K with a unit ball of a normed space). Formally:

Definition 8.4. Given an integer N ≤ d, the Gelfand N -width of K is defined as

inf diam(K ∩ E),

where the diameter is with respect to the Euclidean norm and E is a subspace of Rd of co-
dimension N .

One way of generating an N co-dimensional subspace of Rd is as the kernel of a matrix
Γ : Rd → RN . Historically, in the context of Question 8.3, the matrix Γ that was considered
was a gaussian matrix (gij), with independent, standard gaussian random variables as entries.
In [?] it was shown that a typical kernel of such a matrix satisfies that

diam(K ∩ ker(Γ)) ≤ cE‖G‖K
◦

√
N

, (8.5)

where G is the standard gaussian random vector in Rd, and ‖z‖K◦ = supx∈K
〈
x, z
〉
.

A very useful observation if the following, linking the way a linear operator acts on certain
subset of the sphere endowed by the convex body K and the Gelfand widths of K:

Let Γ : Rd → RN . If one can find r > 0 such that

inf
x∈K∩rSd−1

‖Γx‖22 > 0,

then
diam(K ∩ ker(Γ)) ≤ 2r.

Indeed, K is convex and therefore it is star-shaped around 0. In particular, if y ∈ K and
‖y‖2 > r then by homogeneity ‖Γy‖2 > 0: set λ = r/‖y‖2 < 1; thus λy ∈ K ∩ rSd−1 and
‖Γy‖2 = λ−1‖Γ(λy)‖2 > 0. Therefore, K ∩ ker(Γ) ⊂ rBd

2 , and hence the diameter of that set
is at most 2r.

Identifying when Γ “acts well” on such subsets of the sphere is not a task that can be
performed in complete generality. However, when it comes to random matrices, the sit-
uation is much better. To that end, let X be a random vector and consider the matrix
Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
ei, where X1, ..., XN are independent copies of a random vector X. If
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X happens to be isotropic and satisfies a small-ball condition with constants κ and δ, then
finding the wanted value of r is the outcome of (8.4): set

H =
{〈
t, ·
〉

: t ∈ K, E
〈
X, t

〉2
= r2

}
=
{〈
t, ·
〉

: t ∈ K ∩ rSd−1
}
.

The condition by Theorem 7.10 is that

E sup
t∈K∩rSd−1

∣∣∣∣∣ 1

N

N∑
i=1

εi
〈
Xi, t

〉∣∣∣∣∣ ≤ c1r,

hence, one is looking for the smallest r > 0 such that

E

∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
(K∩rSd−1)◦

≤ c1r.

For that choice of r, with probability at least 1− 2 exp(−c2N), infx∈K∩rSd−1 ‖Γx‖22, implying
that diam(K ∩ ker(Γ)) ≤ 2r.

Remark 8.5. This improves the estimate from [?].

To see the connection with (8.5), note that the random vector Z = N−1/2
∑N

i=1 εiXi is
isotropic, and for r > 0,

E

∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
(K∩rSd−1)◦

≤ 1√
N

E

∥∥∥∥∥ 1√
N

N∑
i=1

εiXi

∥∥∥∥∥
K◦

=
E‖Z‖K◦√

N
;

Hence, one may always select r ∼ E‖Z‖K◦/
√
N . Moreover, if X is L-subgaussian then Z is

also L-subgaussian. One can show that in such a case, for any norm on Rd,

E‖Z‖ ≤ cLE‖G‖.

In particular, if X is L-subgaussian then

diam(K ∩ ker(Γ)) ≤ cLE‖G‖K◦√
N

with probability at least 1− 2 exp(−c′(L)N).

8.4 Random Polytopes

Information on the connection the following estimate has with the geometry of random poly-
topes can be found in [?].

Lemma 8.6. Let T ⊂ Bd
2 , set 0 < α < 1, assume that N &α d and that for every z ∈ T ,

Pr
(
|
〈
z,X

〉
| ≥ κ

)
≥ 4

(
d

N

)α
. (8.6)

With probability at least 1− 2 exp(−c0N
1−αdα), for every z ⊂ T , one has that∣∣{i : |

〈
z,Xi

〉
| ≥ κ/2

}∣∣ ≥ c1N
1−αdα > 0.
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To establish that fact one may use Theorem 7.13 for the class H = {
〈
z, ·
〉

: z ∈ T}.
Proof. First, observe that (8.6) plays the analog of the small-ball condition for δ = 4(d/N)α,
implying that δN = 4N1−αdα. Moreover, T ⊂ Bd

2 , and since X is isotropic, M(H, ρD) =

M(T, ρB
)
2. By a volumetric covering estimate for ρ = 5 exp(−c0(N/d)1−α), one has

M(T, ρBd
2) ≤

(
5

ρ

)d
≤ exp(c1δN)

as required in (1) of Theorem 7.13. Turning to Condition (2) in that theorem, one may use
the relaxed version from Remark 7.14, and show that

E sup
u∈(H−H)∩ρD

∣∣∣∣∣
N∑
i=1

εiu(Xi)

∣∣∣∣∣ . κδN.

To that end, observe that each u ∈ (H−H)∩ρD is of the form
〈
z, ·
〉

for z ∈ (T −T )∩ρBd
2 ⊂

ρBd
2 , and therefore it suffices to show that

E sup
z∈ρBd2

∣∣∣∣∣
N∑
i=1

εi
〈
Xi, z

〉∣∣∣∣∣ . κδN ∼ κdαN1−α.

But

E sup
z∈ρBd2

∣∣∣∣∣
N∑
i=1

εi
〈
Xi, z

〉∣∣∣∣∣ = ρE

∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
2

≤ ρ
√
Nd,

and all that is left is to verify that ρ
√
Nd . κN(d/N)α, i.e. that exp(−c(N/d)1−α) .

κ(N/d)−α+1/2, which is always the case if N ≥ c(κ, α)d.
Therefore, by Theorem 7.13, with probability at least 1 − 2 exp(−cN1−αdα, for every

z ∈ T ,
|{i : |

〈
Xi, z

〉
| ≥ κ/2}| & δN ∼ N1−αdα,

as claimed.
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Chapter 9

Mean estimation

Estimating the mean of a random variable or a random vector is a very important question in
modern high-dimensional statistics. In fact, the goal of these notes—identifying the optimal
accuracy/confidence tradeoff, is a problem of that flavour: one has to estimate from data the
value E(f(X)−Y )2−E(h(X)−Y )2 for every pair (h, f) where one of which is the best in the
class. As a result, successful mean estimation has to be carried out uniformly over all such
pairs.

As we explain in this chapter, the solution of the simplest problem—mean estimation of a
random variable—leads to the right path for the solution of that general problem. But before
heading-off in that direction, let us digress and describe a notion from probability in Banach
spaces that will prove to be instructive.

9.1 Strong-Weak inequalities and mean estimation

Let Z be a centred random vector in Rd, and one would like to study (E‖Z‖p)1/p where ‖ ‖
is a fixed, arbitrary norm on Rd. Clearly, (E‖Z‖p)1/p is bounded from below by two terms:

• Since the Lp norm dominates the L1 norm, it is evident that

(E‖Z‖p)1/p ≥ E‖Z‖,

and the latter is called the “strong norm” of Z.

• If BX∗ is the unit ball in the dual space to (Rd, ‖ ‖), then for any x ∈ Rd, ‖x‖ =
supx∗∈BX∗ |x

∗(x)|. Therefore,

E‖Z‖p = E sup
x∗∈BX∗

|x∗(x)|p ≥ sup
x∗∈BX∗

E|x∗(x)|p,

implying that
(E‖Z‖p)1/p ≥ sup

x∗∈BX∗
‖x∗(Z)‖Lp .

The term supx∗∈BX∗ ‖x
∗(Z)‖Lp is called the weak Lp norm of Z.

As a result, it follows that for any random vector and any norm, one has

(E‖Z‖p)1/p & E‖Z‖+ sup
x∗∈BX∗

‖x∗(Z)‖Lp .
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The notion of a strong-weak inequality we use here is the reverse inequality: i.e., that there
is an absolute constant C such that for any norm on Rd and every p ≥ 1,

(E‖Z‖p)1/p ≤ C

(
E‖Z‖+ sup

x∗∈BX∗
‖x∗(Z)‖Lp

)
. (9.1)

Remark 9.1. It should be stressed that there are similar, more subtle notions of a strong-weak
inequalities which arise from questions regarding the concentration of ‖Z‖ around its mean
(see, e.g., [?]). One important aspect is to explore when the constant in front of E‖Z‖ is 1.

An inequality like (9.1) is a very strong feature of a random vector, because it implies
that the moment growth of ‖Z‖, for any norm, depends only on the moment growth of the
‘worst’ one dimensional marginal of Z, rather than on other, “global” properties of Z (e.g.,
the behaviour of high dimensional marginals).

Among the examples of random vectors that satisfy a strong-weak inequality are gaussian
vectors, which follows from the gaussian concentration theorem.

Theorem 9.2. There exists an absolute constant C for which the following holds. Let Z be a
centred gaussian random vector in Rd. Then, for any norm ‖ ‖ and any 1 ≤ p <∞ one has

(E‖Z‖p)1/p ≤ E‖Z‖+ C sup
x∗∈BX∗

(
E‖x∗(Z)‖pL2

)1/p
.

Exercise 23. Prove Theorem 9.2.

Let us return to the mean estimation problem, in which X is an unknown random vector
in Rd that has a finite mean and covariance. One would like to identify µ = EX, and to do so
when the given data consists of N independent copies of X, X1, ..., XN . In other words, given
an arbitrary norm ‖ ‖ on Rd, one has to find a procedure µ̂, such that, with high probability,
‖µ̂− µ‖ is as small as possible.

Question 9.3. What is the best possible accuracy/confidence tradeoff in a mean-
estimation problem with respect to a general norm, and what procedure attains that trade-
off?

To get a feeling of what is possible, let us consider a gaussian random vector X. Set
X̄ = X −µ, and consider the simplest possible procedure: choose µ̂ to be the empirical mean

1

N

N∑
i=1

Xi.

Set ZN = 1
N

∑N
i=1Xi and observe that by the strong-weak inequality for gaussian vectors,

(E‖ZN − µ‖p)1/p ≤ C

(
E‖Z − µ‖+ sup

x∗∈B∗X
(E|x∗(ZN − µ)|p)1/p

)
.
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Recall that a centred gaussian random vector W satisfies that for any linear functional x∗,

(E|x∗(W )|p)1/p ∼ √p(E|x∗(W )|2)1/2.

Hence,

(E‖ZN − µ‖p)1/p ≤ C

(
E‖Z − µ‖+

√
p sup
x∗∈B∗X

(
E|x∗(ZN − µ)|2

)1/2)
,

and clearly, (
E|x∗(ZN − µ)|2

)1/2
=

√
E|x∗(X̄)|2

N
.

Moreover, by a symmetrization argument,

E‖Z − µ‖ = E sup
x∗∈BX∗

∣∣∣∣∣ 1

N

N∑
i=1

x∗(Xi)− Ex∗(X)

∣∣∣∣∣ . E

∥∥∥∥∥ 1

N

N∑
i=1

εiX̄i

∥∥∥∥∥ ,
and selecting p ∼ log(1/δ), by Chebyshev’s inequality, with probability at least 1− δ,

‖µ̂− µ‖ ≤ C

(
E

∥∥∥∥∥ 1

N

N∑
i=1

εiX̄i

∥∥∥∥∥+ sup
x∗∈BX∗

(E|x∗(X̄)|2)1/2 ·
√

log(1/δ)

N

)
. (9.2)

Remark 9.4. Since X is gaussian, one can simplify (9.2) further, because
∑N

i=1 εiX̄i has the
same distribution as X̄/

√
N . However, unlike all the other properties that have been use to

establish (9.2) (i.e., strong-weak inequality and subgaussian tail estimates for one-dimensional
marginals), this property is rather special and it makes no sense to invoke it when trying to
‘guess’ the right estimate that should hold in the general case.

Taking (9.2) as a guide, one might risk making a wild conjecture:

Given X1, ..., XN which are iid copies of a random vector X that has a finite mean and
covariance, and for an arbitrary norm ‖ ‖ on Rd, there is a procedure µ̂ such that with
probability 1− δ

‖µ̂− µ‖ ≤ C

(
E

∥∥∥∥∥ 1

N

N∑
i=1

εiX̄i

∥∥∥∥∥+ sup
x∗∈BX∗

(E|x∗(X̄)|2)1/2 ·
√

log(1/δ)

N

)
, (9.3)

and where C is an absolute constant.

To clarify why this is indeed a wild conjecture, note that general random vectors do not
satisfy a strong-weak inequality and do not exhibit a subgaussian tail decay of marginals.
Moreover, it is quite clear that selecting the empirical mean is a bad choice, as it fails even
in one-dimensional problems (see more details below). Hence, one must come up with an
alternative to the empirical mean if there is to be any hope for the conjecture to be true.

In what follows we show that the conjecture is indeed true for the `2 norm, and explain why
it is almost true (with one minor gap) for a general norm. The first step is to understand how
to address the mean estimation problem in dimension one—for real valued random variables,
as that turns out to be useful when dealing with the “weak term” in (9.3). We then study
the general case, and explain how the global structures of X interacts with the norm.

As one may expect, the proofs will be based on the small-ball method, specifically, on
Theorem 7.13.
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9.2 real-valued mean estimation

Let us recall the optimal mean estimation estimate one is looking for in the real-valued case:
if X1, ..., XN are independent copies of an unknown random variable whose mean is µ, the
goal is to find µ̂ such that with probability at least 1− δ satisfies that

|µ̂− µ| ≤ Cσ
√

log 1/δ

N
,

which is the best estimate one can hope for, and which, for a gaussian random variable, is
attained by the empirical mean.

Exercise 24. Show that indeed this is the best one can hope for, and that for the gaussian
random variable it is attained by the empirical mean.

The starting point in the design of an optimal mean estimation procedure is the basic
argument behind the small-ball method: that Pr({Z satisfies P}) is reflected, with very high
probability over samples, by |{j : Zj satisfies P}|. With that realization, all that remains is
to identify the right choice of Z and P . Here, P is rather obvious: let

Z =
1

m

m∑
i=1

Xi

for the right choice of m that is specified in what follows. One has that

|Z − µ| ≤ c0
σX√
m

(9.4)

with probability at least 0.99. If n = N/m and Z1, ..., Zn are independent copies of Z, then
with probability at least 1 − 2 exp(−c1n), there at least 0.98n of the Z1, ..., Zn that satisfy
(9.4), implying that the same holds for a median µ̂ of the values {Z1, ..., Zn}; i.e., if µ̂ is any
such median then

|µ̂− µ| ≤ c0
σX√
m

with probability at least 1− 2 exp(−c1n).

Now one has to specify the values of n and m: since the goal is to have an estimator that
performs with confidence 1− δ; one should choose n ∼ log(2/δ); and since m = N/n,

|µ̂− µ| ≤ c0
σX√
m

= c0σX

√
n

N
∼ σX

√
log(2/δ)

N
,

as required.

This idea of choosing µ̂, which is a median-of-means of X1, ..., XN with a specific choice
of block size, is used extensively in what follows. Intuitively, taking an empirical mean has
a smoothing effect on X, in the sense that with constant probability, the empirical mean is
close to the true one. The ‘majority vote’ is used to increase the probability of success from
constant to exponential in the number of blocks; thus, the wanted probability dictates the
number of blocks, and therefore the size of each block.

Exercise 25. Give an example showing that the best performance of the empirical mean is
one can hope for is σpoly(1/δ)/

√
N , and that poly(1/δ) can be arbitrarily bad.
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9.3 Vector mean estimation

Now that the one-dimensional case is resolved, let us turn to the much harder problem of
estimating the mean of a random vector. Let (Rd, ‖ ‖) be a normed space and set B◦ to be the
unit ball of its dual space. As a starting point, suppose that one can perform mean estimation
uniformly—for all the one dimensional marginals {x∗(X) : x∗ ∈ B◦}. Here, uniformly means
two things: firstly, a high probability event on which the estimate holds for all the marginals;
and secondly, that all the individual means are generated by a single point in Rd. Formally,
one is looking for some z ∈ Rd such that, with high probability,

|x∗(z)− Ex∗(X)| ≤ A for every x∗ ∈ B◦. (9.5)

In that case, by the linearity of the expectation, supx∗∈B◦ |x∗(z − EX)| ≤ A, implying that
‖z − EX‖ ≤ A, as required.

The first part of the question will be resolved using the small-ball method, and the second
part is the real obstacle: how to generate a point z as in (9.5) using information on one-
dimensional marginals. To that end, note that if, for a fixed x∗ ∈ B◦, one finds a number αx∗

such that |Ex∗(X)− αx∗ | ≤ A, that defined a slab in Rd:

Sx∗ = {v ∈ Rd : |x∗(v)− αx∗ | ≤ A},

and if αx∗ is indeed a good mean estimator for the marginal x∗(X), then the true mean
µ ∈ Sx∗ belongs to the slab Sx∗ , implying that Sx∗ is nonempty. Hence, if one can find a high
probability event on which (9.5) holds for every x∗ ∈ B◦, then

⋂
x∗∈BX∗ Sx∗ is nonempty—it

contains, at the very least, the true mean µ. Moreover, if z is an arbitrary point in the
intersection, one has that

‖z − µ‖ = sup
x∗∈B◦

|x∗(z)− x∗(µ)| ≤ sup
x∗∈B◦

(|x∗(z)− αx∗ |+ |x∗(µ)− αx∗ | ≤ 2A.

Therefore, a uniform solution to the mean estimation problem of the marginals almost gets
us to where we want to be. The only problem is that there is not enough information on X
to “guess” the right value of A. Thankfully, that is an issue that is easily resolved.

The mean estimation procedure explored here as follows:

• Set ε > 0.

• Let n = log(2/δ) and split the sample (Xi)
N
i=1 to n blocks Ij , each of cardinality N/n.

Set Zj = 1
m

∑
i∈Ij Xi.

• For every x∗ ∈ B◦ set

Sx∗ =
{
v ∈ Rd : |x∗(Zj)− x∗(v)| ≤ ε for more than

n

2
blocks

}
. (9.6)

• Set S(ε) =
⋂
x∗∈B◦ Sx∗ . Let ε0 be the smallest such that S(ε) 6= ∅ and select µ̂ to be

any point in S =
⋂
ε>ε0

S(ε).
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Thus, the values αx∗ are indeed given by the median of means estimators for each marginal
x∗(X), which, in turn, are used to define the slabs of width ε.

Exercise 26. Show that the set S is not empty.

The fact that S is not empty is not enough. Thanks to its monotonicity in ε, it suffices
to show that there is a good choice of ε = A for which S(ε) contains µ; then, automatically,
any point in S also belongs to S(A), and ‖µ̂−µ‖ ≤ 2A—without the need to know explicitly
the value of A.

Question 9.5. Consider the family of random variables {x∗(X) : x∗ ∈ B◦}. Given X1, ..., XN

and Z1, ..., Zn as above, find A such that with probability at least 1− δ

sup
x∗∈B◦

|Med(x∗(Zj))− x∗(µ)| ≤ A.

In other words, show that with probability at least 1− δ, for every x∗ ∈ B◦,

|{j : |x∗(Zj)− Ex∗(Z)| ≤ A}| > n

2
. (9.7)

Clearly, (9.7) fits perfectly the set up of Theorem 7.15 for the class of functions H =
{x∗(·) : x∗ ∈ B◦} and for the n independent copies of the centred random vectors Z̄1, ..., Z̄n,
where n ∼ log(2/δ).

Let Λ to be named later, and set κ to be

κ = Λ + c

√
log(2/δ)

N
· sup
x∗∈B◦

(
E(x∗(X̄))2

)1/2
,

for a suitable absolute constant c.
It follows that with this choice of κ, Pr(|Z| ≤ κ) ≥ 0.99, by invoking Chebyshev’s in-

equality and since

‖x∗(Z̄)‖L2 =
‖x∗(X̄)‖L2√

m
. sup

x∗∈B◦
‖x∗(X̄)‖L2

√
log(2/δ)

N
.

At the same time, using the notation of Theorem 7.15 and since H is a convex, centrally-
symmetric set, one has that (H −H) ∩ ρD ⊂ 2H and

E sup
u∈2H

∣∣∣∣∣∣ 1n
n∑
j=1

εiu(Z̄j)

∣∣∣∣∣∣ =
2

n
E sup
x∗∈B◦

∣∣∣∣∣x∗
(

N∑
i=1

εiZ̄j

)∣∣∣∣∣ =
2

n
E

∥∥∥∥∥∥
N∑
j=1

εjZ̄j

∥∥∥∥∥∥ .
Recall that Z̄j = 1

m

∑
i∈Ij Xi, and thus,

N∑
j=1

εiZ̄j =
1

m

n∑
j=1

εj
∑
i∈Ij

X̄i,

and by a standard symmetrization argument,

E

∥∥∥∥∥∥
n∑
j=1

εj
∑
i∈Ij

X̄i

∥∥∥∥∥∥ ≤ 4E

∥∥∥∥∥
N∑
i=1

εiX̄i

∥∥∥∥∥ . (9.8)
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Hence, it suffices to ensure that

E

∥∥∥∥∥ 1

N

N∑
i=1

εiX̄i

∥∥∥∥∥ . κ,

which is the case as long as one sets

Λ ≥ E

∥∥∥∥∥ 1

N

N∑
i=1

εiX̄i

∥∥∥∥∥ ,
and κ is that the natural “strong term” in a strong-weak inequality.

To complete the proof, one must estimate the covering numbers of H with respect to the
L2(Z̄) norm.

Exercise 27. (1) Prove (9.8).

(2) Complete the proof of the theorem, first when ‖ ‖ is Euclidean norm and then for a
general norm (Hint: Sudakov type inequalities may be helpful here).
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Chapter 10

Introduction

What is the right way of measuring the size of a subset of Rd? Obviously, there is more
than one answer to this question, as it depends a great deal on the context in which it is
asked. Here we study three seemingly different such notions: the Bernoulli mean-width, the
`2 metric entropy and the combinatorial dimension. Understanding their roles has been of
central importance to the development of statistical learning theory.

A crucial facet of the questions explored here is, once again, structure. Most notably,
whether the fact that a set is large is exhibited by the appearance of some canonical structure
that is “hidden” in the set. As it happens, that is a general phenomenon which seems, at
first, rather surprising:

The fact that a set is both “well bounded” and extremal in the right sense is exhibited
by structure.

This statement, albeit vague, is of extreme importance. Let us mention two examples of
this phenomenon, both originating from asymptotic geometric analysis.

The Milman-Dvoretzky Theorem

Let K ⊂ Bd
2 be a convex body, making the notion of “bounded” clear in this case. So what

would be considered extremal? One option is the set’s mean-width—say, relative to directions
in the Euclidean unit sphere Sd−1. Obviously, the width of K in direction θ ∈ Sd−1, is
supx∈K

〈
x, θ
〉
≤ 1, because K ⊂ Bd

2 . Therefore, the mean width cannot be bigger than 1, and
a reasonable choice of “extremal” is a constant lower bound on the mean width:∫

Sd−1

sup
x∈K

〈
x, θ
〉
dσ(θ) ≥ δ,

for a fixed parameter δ independent of K or of d. If the idea that “bounded + extremal
implies structure” is to be believed, K must be hiding some structure; and in this case an
optimistic guess is that K is hiding a large Euclidean ball (of radius & δ).

Note that K may be very far from a Euclidean ball; for example, the normalized cube,
d−1/2Bd

∞ satisfies both conditions, but does not look anything like a Euclidean ball1.

1“Does not look anything like” can be made accurate, using for example, the notion of the Banach-Mazur
distance between convex bodies, see, e.g., [?].
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Exercise 28. Show that indeed∫
Sd−1

sup
x∈d−1/2Bd∞

〈
x, θ
〉
dσ(θ) ≥ c

for a suitable absolute constant c that is independent of the dimension d.
Hint: Use the gaussian representation of the Haar measure on Sd−1.

The outcome of Milman’s version of Dvoretzky’s Theorem (see, e.g., [?]) is that a random
orthogonal projection of K onto a subspace of dimension ` = dδ2 will satisfies that

c1δB
`
2 ⊂ PK.

In other words, being both bounded and extremal is exhibited by a typical orthogonal pro-
jection of K of dimension ` (i.e., projecting K onto an element of the Grassmann manifold
G`,d selected according to the Haar measure) contains a Euclidean ball whose diameter is at
least the guarantee one has on the mean-width of K.

We shall not formulate Milman’s version of Dvoretzky’s Theorem here, only mention that
it actually implies a two-sided estimate: for a typical orthogonal projection P of the ‘right
dimension’, PK is very close to a ball whose radius is very close to the mean-width of K. And
the dimension in which the structure is exposed is the effective dimension of K: the algebraic
dimension multiplied by (M/R)2, where M is the mean-width and R is the Euclidean radius.
We strongly encourage the reader to explore the beautiful theory behind this result and other
result of its kind (e.g., the books [?] are an excellent start).

Sign-embeddings of `d1

Let X = (Rd, ‖ ‖) be a norm and denote by BX its unit ball. Let x1, ..., xd ∈ BX , (which
captures the notion of being bounded in this case. Note that by the triangle inequality,
E‖
∑d

i=1 εixi‖ ≤
∑d

i=1 ‖xi‖ ≤ d; therefore, a possible notion of “being extremal” is that

E

∥∥∥∥∥
d∑
i=1

εixi

∥∥∥∥∥ ≥ δd
for some 0 < δ < 1.

One trivial example of a norm and vectors that are both bounded and extremal in this
sense is the `d1 norm and the unit basis vectors e1, ..., ed. Therefore, a natural question
is whether the fact that the normed space (Rd, ‖ ‖) has {x1, ..., xd} that are bounded and
extremal implies that it is ‘hiding’ an subspace, spanned by a large subset of x1, ..., xd that
looks like `1. More accurately,

Question 10.1. Are there constants c1(δ) and c2(δ) and a subset I ⊂ {1, ..., d} such than
|I| ≥ c1(δ)d, and for every v ∈ RI ,

c2(δ)
∑
i∈I
|vi| ≤

∥∥∥∥∥∑
i∈I

vixi

∥∥∥∥∥ ≤∑
i∈I
|vi|? (10.1)

The answer to this question is “yes”, with c1(δ) ∼ δ2 and c2(δ) ∼ δ, which is the best one
can hope for. This problem has been addressed by several authors, most notably Elton [?],
Pajor [?] and Talagrand [?]; it was solved in [?].
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The reader might be disappointed by the formulation of Question 10.1, because the appear-
ance of structure seems a little vague and unrelated to statistical learning theory. However,
all one has to do is to look at the formulation of the dual result to see a canonical structure.
Indeed, another way of writing (10.1) is that the coordinate projection

PIBX∗ =
{

(x∗(xi))i∈I : x∗ ∈ BX∗
}

(10.2)

satisfies that

c2(δ)BI
∞ ⊂ PIBX∗ ⊂ BI

∞,

where as always, BX∗ is the unit ball in the dual space. Thus, a high dimensional coordinate
projection of BX∗ contains the promised structure: a large cube.

Exercise 29. Prove the dual formulation of Question 10.1.

Remark 10.2. Note that PIBX∗ has a familiar structure: if F = {x∗(·) : x∗ ∈ BX∗} then
F consists of linear functions on Rd. Setting σ = {xi : i ∈ I} and using the notation of
the previous chapters, PσF is precisely (10.2). As it happens, the answer to Question 10.1
is actually far more general, and deals with coordinate projections of function classes; it has
nothing to do with the linearity of the functions involved. Also, at it will become clear, the
general result will prove to be extremely useful in the context of statistical learning theory.

Let us now turn to some preliminary facts what is arguably the most natural of the
complexity parameter we focus on—the metric entropy (or covering numbers) of a set.

Definition 10.3. Let (T, d) be a metric space. The ε-covering number of T is the minimal
number of open balls of radius ε (with respect to the metric) needed to cover T . The ε-packing
number of T is the largest cardinality of a subset of T that is ε-separated; i.e., for every xi, xj,
d(xi, xj) ≥ ε.

In what follows, covering numbers are denoted by N (T, ε) and the packing numbers are
denoted byM(T, ε)—where in both cases, for the sake of simplicity the metric is omitted. If
T is a subset of a normed space and B is the unit ball is the space, the covering numbers are
denoted by N (T, εB) and the packing numbers are denoted by M(T, εB).

The following exercise shows that the notions of covering numbers and packing numbers
are interchangeable if one has the flexibility of a constant factor in the scale.

Exercise 30. Show that for every ε > 0,

N (T, ε) ≤M(T, ε) ≤ N (T, ε/2).

A comprehensive exposition on covering/packing numbers can easily occupy an entire
volume. As this is just a ‘tasting’, let us present to relatively simple yet very useful facts on
covering numbers of subsets of a normed space, beginning with estimates that are based on
volumetric arguments.
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10.1 Volume based estimates

The link between various notions of volume and the cardinality of a separated set is rather
natural: if a set T contains an ε-separated set {t1, ..., tk}, then by the triangle inequality, the
open balls B(t1, ε/2), ..., B(tk, ε/2) are disjoint. Therefore, if T is a subset of a normed space
and B is the unit ball in that space then the sets ti + (ε/2)B are disjoint. On the other hand,
all these sets are contained in

T + (ε/2)B = {x : x = t+ v, t ∈ T, ‖v‖ ≤ ε/2}.

Hence,
k⋃
i=1

(ti + (ε/2)B) ⊂ T + (ε/2)B, (10.3)

and it is a union of disjoint sets. If µ is a measure on the space, one has

µ

(
k⋃
i=1

(ti + (ε/2)B)

)
=

k∑
i=1

µ (ti + (ε/2)B.) ,

but at the same time, by (10.3),

µ

(
k⋃
i=1

(ti + (ε/2)B)

)
≤ µ (T + (ε/2)B) .

Combining these two simple observations,

k∑
i=1

µ (ti + (ε/2)B) ≤ µ (T + (ε/2)B) . (10.4)

The simplest example in which (10.4) leads to an interesting bound is when T ⊂ Rd, B is the
unit ball of a norm in Rd and µ is the volume (Lebesgue) measure in Rd.

10.1.1 The Lebesgue measure

With a minor abuse of notation, let | | denote the volume measure on Rd, and clearly it is
shift-invariant. Therefore,

k∑
i=1

|ti + (ε/2)B| = k · (ε/2)d|B|,

implying that

k ≤
(

2

ε

)d
· |T + (ε/2)B|

|B|
. (10.5)

For T = B, by (10.5)

M(B, εB) ≤
(

2

ε

)d
· (1 + ε/2)d ≤

(
5

ε

)d
. (10.6)
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Remark 10.4. It is clear from (10.5) that obtaining an upper estimate on the volume |T+εB|
leads to an upper bound on M(T, 2εB). Bounding |T + εB| for convex sets T and B is one
of the classical questions in convex geometry, especially when B = Bd

2 (see, for example, the
books [?] for the beautiful theory behind such estimates).

It turns out that up to the constants involved, and as long as ε is sufficiently smaller than
1, say, 0 < ε ≤ 1/2, (10.6) is sharp. Indeed, if T is covered by k shifts of B, then since a
measure is sub-additive,

µ(T ) ≤ µ

(
k⋃
i=1

(ti + εB)

)
≤

k∑
i=1

µ(ti + εB).

Hence, in the case of the volume measure, one has

|T | ≤ kεd|B|,

and for T = B,

N (B, εB) ≥
(

1

ε

)d
.

Corollary 10.5. If B ⊂ Rd is a convex body then for any 0 < ε < 1/2,(
1

ε

)d
≤ N (B, εB) ≤

(
5

ε

)d
Exercise 31. Show that a set B as in Corollary 10.5 is a unit ball of a norm, and deduce
the corollary from that.

Let us turn to another application of the volumetric estimate, though this time, a more
subtle one—with respect to a different measure which is not shift invariant.

10.1.2 The gaussian measure

Recall that for T ⊂ Rd the polar of T is the set

T ◦ =
{
x : |

〈
x, t
〉
| ≤ 1 ∀t ∈ T

}
,

set ‖x‖T ◦ = supt∈T |
〈
x, t
〉
|, and let `∗(T ) be the gaussian mean width of T , that is,

`∗(T ) = E sup
t∈T
|
〈
G, t

〉
| = E‖G‖T ◦ ,

where here, as always, G is the standard gaussian vector in Rd.

Theorem 10.6. There exist an absolute constant c such that, for any T ⊂ Rd and ε > 0,

cε log1/2N(Bd
2 , εT

◦) ≤ `∗(T ).

For reasons that will become clear later, Theorem 10.6 is called the dual Sudakov in-
equality—and it is an extremely useful fact. The proof presented here is due to Talagrand
[?].
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Proof. Set µG to be the standard gaussian measure on Rd. Let u ≥ 2`∗(T ) = 2E‖G‖T ◦ and
by Markov’s inequality, µG(‖x‖T ◦ ≥ u) ≤ 1/2. Therefore,

µG(2`(T ) · T ◦) ≥ 1/2. (10.7)

Observe that if {x1, ..., xk} ⊂ Bd
2 is an ε-separated set with respect to ‖ ‖T ◦ , then xi+(ε/2)T ◦

have disjoint interiors, and the same holds for the sets α(xi + (ε/2)T ◦) for any α > 0. Let
α satisfy that α(ε/2) = 2`∗(T ) and put yi = αxi. Thus, the sets yi + 2`∗(T )T ◦ have disjoint
interiors and

k∑
i=1

µG(yi + 2`∗(T )T ◦) = µG

(
k⋃
i=1

(yi + 2`∗(T )T ◦)

)
≤ 1, (10.8)

because µG is a probability measure.
Now let us estimate each µG(yi + 2`∗(T )T ◦) from below. For any measurable A ⊂ Rd,

µG(A) =
1

(2π)d/2

∫
Rd
1A exp(−‖x‖22/2)dx.

Let A = yi + βT ◦, note that 1yi+βT ◦(x) = 1βT ◦(x− yi) and by a change of variables,

µG(yi + βT ◦) =
1

(2π)d/2

∫
βT ◦

exp
(
−‖x− yi‖22/2

)
= exp

(
−‖yi‖

2
2

2

)
1

(2π)d/2

∫
βT ◦

exp(−
〈
x, yi

〉
) exp(−‖x‖22/2)dx

= exp

(
−‖yi‖

2
2

2

)
µG(βT ◦)E exp(−

〈
Z, yi

〉
),

where Z is the gaussian vector G conditioned on the set βT ◦.
Since Z is a symmetric random vector (G is symmetric and T ◦ is centrally-symmetric), it

is evident that the linear forms
〈
Z, yi

〉
are symmetric random variables. Hence, E

〈
Z, yi

〉
= 0;

by Jensen’s inequality, E exp(−
〈
Z, yi

〉
) ≥ 1; and for every β > 0,

µG(yi + βT ◦) ≥ exp

(
−‖yi‖

2
2

2

)
µG(βT ◦).

Set β = 2`∗(T ), and by (10.7), µG(βT ◦) ≥ 1/2. Moreover, yi = αxi, and thus ‖yi‖2 ≤
4`∗(T )/ε. Therefore,

k∑
i=1

µG(yi + βT ◦) ≥ k

2
exp

(
−8

`2∗(T )

ε2

)
. (10.9)

The claim follows by combining (10.8) and (10.9).

10.2 The Maurey Lemma

The second example is due to B. Maurey [?]: an estimate the covering numbers of the convex
hull of a set of n points in a normed space which has a nontrivial type.

The type constant of a normed space is a generalization of the parallelogram equality: if
H is an inner product space and x1, ..., xm ∈ H then

E

∥∥∥∥∥
m∑
i=1

εixi

∥∥∥∥∥
2

H

= 2

m∑
i=1

‖xi‖2H .
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Definition 10.7. A normed space X has type 1 < p ≤ 2 with constant Tp(X) if it is the
smallest constant for which, for every finite set x1, ..., xm ∈ X,

E

∥∥∥∥∥
m∑
i=1

εixi

∥∥∥∥∥
X

≤ Tp(X)

(
m∑
i=1

‖xi‖pX

)1/p

.

Remark 10.8. One may show that for any normed space X and any 1 ≤ q <∞,(
E

∥∥∥∥∥
m∑
i=1

εixi

∥∥∥∥∥
q

X

)1/q

≤ C√qE‖
m∑
i=1

εixi‖X .

This is a vector-valued version of Khintchine’s inequality—the so-called Kahane-Khintchine
inequality, see, e.g., [?]. It particular, one may replace the L1 norm E‖

∑m
i=1 εixi‖X in the

definition of type with any Lq norm.

Remark 10.9. Observe that every space has type 1 with constant T1(X) = 1.

There is a very well developed theory describing the structure of normed spaces that have
a non-trivial type – specifically, the connection between the type and the ability to embed
the spaces `np in X. We refer the reader to [?].

Lemma 10.10. Let X be a Banach space of type p with constant Tp(X). Let A = {x1, ..., xn} ⊂
X and set a = max ‖x‖. Then for every ε > 0

N (conv(A), 2aTp(X)BX) ≤
(
e+ enε

p
p−1

) p
p−1

.

Proof. Let (λi)
n
i=1 be nonnegative numbers that satisfy

∑n
i=1 λi = 1, and for an integer

k let Y1, ...Yk be independent random variables defined by Pr(Y = xj) = λj . Note that
EY =

∑n
i=1 λixi, and by a symmetrization argument,

EY

∥∥∥∥∥k−1
k∑
i=1

Yi − EY

∥∥∥∥∥ ≤ 2

k
EY Eε

∥∥∥∥∥
k∑
i=1

εiYi

∥∥∥∥∥ ≤ 2

k
EY Tp(X)

(
k∑
i=1

‖Yi‖p
) 1

p

≤ 2aTp(X)

k1−1/p
.

Hence, there exists a realization of k−1
∑k

i=1 Yi whose distance from
∑n

i=1 λixi is smaller than
2aTp(X)/k1−1/p. Observe that every realization of Yi belongs to {x1, ..., xn}, and therefore
the number of possible realizations is at most(

n+ k − 1

k

)
≤ ek

(
1 + n/k)k.

Hence,

N
(

conv(A),
2aTp

k
1− 1

p

BX

)
≤ ek

(
1 +

n

k

)k
,

from which the claim immediately follows.

Exercise 32. Use Lemma 10.10 to estimate N (Bd
1 , εB

d
2). Is this estimate sharp for every

0 < ε < 1/2? Is it sharp in some range of 0 < ε < 1/2?
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Chapter 11

Generic Chaining

This chapter is devoted to a systematic study of upper estimates on the expectation of the
supremum of random process {Zt : t ∈ T} indexed by sets T . The focus is on the way
the structure of the indexing set T is reflected in the estimates on the expectation of the
supremum, and for obvious reasons, the processes that interests us the most are gaussian
processes, Bernoulli processes and empirical processes.

The analysis is based on Talagrand’s generic chaining mechanism, and the reader is
strongly encouraged to read Talagrand’s treasured manuscript [?]. It is far more extensive
and instructive than the brief outline presented in what follows, and is a must for anyone who
wants to truly understand the chaining mechanism.

11.1 The natural metrics

Earlier in these notes we explored some features of random variables. Here, the goal is to
study properties of collections of random variables. To be more accurate, let V be a set and
assume that one associates to each v ∈ V a random variable Zv. One would like to obtain
high probability, sharp estimates on

E sup
v∈V

Zv,

and in particular understand the way the structure of V is reflected in upper and lower bounds
on the expectation.

But what is the meaning of “structure of V ”? At this point, V is just an indexing set,
with no apparent structure. The main message of this chapter is:

The random process v → Zv endows a sequence of natural metrics on V , and understand-
ing the geometry of V with respect to those metrics plays a crucial role in estimating
E supv∈V Zv.

At this point it should be stressed that “natural” may seem at times totally unnatural.
It may be the case that V is a metric space with respect to some underlying metric d (e.g.,
if V ⊂ (Rd, ‖ ‖2), but the Euclidean metric has absolutely nothing to do with the metrics
endowed on V by the process {Zv : v ∈ V }.

129
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Remark 11.1. In what follows we completely avoid the question of measurability, even when
V is an infinite set. There are various ways of justifying that but the simplest one is to define

E sup
v∈V

Zv = sup

{
Emax
v∈V ′

Zv : V ′ ⊂ V, V ′ is finite

}
.

Under some mild assumptions on the process this coincides with the standard notion.

Although this presentation holds for rather general processes, it helps to keep in mind
several specific examples:

• Let X be a symmetric random vector in Rd, set T ⊂ Rd and define Zt =
〈
X, t

〉
. Among the

natural processes that belong to this family are when X is a centred gaussian random
vector in Rd, leading to a gaussian process indexed by a subset of Rd, and when X is
the uniform measure on {−1, 1}d, leading to a Bernoulli process indexed by a subset of
Rd.

• Let F ⊂ L2(µ) be a class of functions and set X1, ..., XN to be independent, distributed
according to µ. The (centred) empirical process indexed by F is given by the choice of

Zf =
1

N

N∑
i=1

f(Xi)− Ef,

and the centred quadratic process is given by

Zf =
1

N

N∑
i=1

f2(Xi)− Ef2;

naturally, one can, and often will consider the non-centred versions of the empirical and
quadratic processes.

Note that in all these examples, the indexing set is naturally endowed with various metric
structures that could be seen as natural, e.g. some `p metric for T ⊂ Rd and the L2(µ)
metric for F . However, there is no reason to expect that these metrics have any relevance
to questions regarding the random processes indexed by the sets; the intuitive metrics are
nothing more than distractions one would be wise to ignore.

Let us begin with the question of obtaining sharp upper bounds on E supv∈V Zv; specifi-
cally, given u > 0, one would like to estimate

Pr(sup
v∈V
|Zv| > u).

Obviously, there are various ways of bounding Pr(|Zv| > u) individually, ,but the question
here is how can those individual estimates be ‘combined’, leading to the wanted estimate on
the supremum. As a first step, assume that V is finite, and consider a very crude estimate:
using the union bound

Pr

(
max
v∈V
|Zv| > u

)
≤
∑
v∈V

Pr(|Zv| > u). (11.1)
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While (11.1) can be very costly if performed without thought, it gives information on the
smallest u one can take that would still be useful. For example, it suffices that maxv∈V Pr(|Zv| >
u) ≤ 1/|V | to ensure a nontrivial estimate. One way of obtaining such a bound is via Cheby-
shev’s inequality, as for any p ≥ 1 one has

Pr(|Z| ≥ te‖Z‖Lp) ≤
e−p

t−p
. (11.2)

In particular, one may set p = log |V | and u = tmaxv∈V ‖Zv‖Lp to obtain

Pr

(
max
v∈V
|Zv‖ ≥ tmax

v∈V
‖Zv‖Lp

)
≤ t− log |V |. (11.3)

The almost trivial combination of (11.2) and (11.3) is of crucial importance: it implies
that one may use the Lp norm to obtain a probability estimate that is better than exp(−p).
In return, that allows one to control exp(p) random variables simultaneously.

The estimate in (11.3) is indeed very crude. It is based on the belief that the events
Ωv = {|Zv| > u} are essentially disjoint, and at the same time that they are roughly of the
same ‘size’. Thus, the bound follows by setting u large enough to ensure that the largest of
the sets Ωv is small enough. While there is no reason to expect that either part of these beliefs
is true, the idea of using the union bound can be optimized. At the heart of the matter is
finding a notion that captures when two random variables are ‘close’: roughly put, the fact
that random variables Zx and Zy are close should imply that the events {Zx is large} and
{Zy is large} have a large overlap. As a result, there would be no need to take both events
into account in the union bound. One way of ensuring that the events in question have a
large overlap is that the ‘tails’ Pr(|Zx − Zy| > u) are small enough.

To make this idea more precise, recall the definition of the E supv∈V Zv, as the supremum
of such expectations taken over finite sets. Let V ′ ⊂ V be a finite set, fix an integer s0 ≥ 0 and
let us construct a sequence of sets Vs ⊂ V ′ for s ≥ s0, where the cardinalities |Vs| grow with s,
and that for s large enough, Vs = V ′. The idea is that Vs are increasingly fine approximations
of V ′, in the sense that for each Zv there is some Zu such that u ∈ Vs and |Zv − Zu| is likely
to be small.

Formally, for every v ∈ V ′ let πsv ∈ Vs, and if v ∈ Vs then πsv = v. The collection
(Zπsv)s≥s0 is called a chain, each Zπs+1v − Zπsv is a link in that chain and each Zv can be
represented as the telescopic sum along the chain

Zv = Zπs0v +
∑
s>s0

(Zπs+1v − Zπsv); (11.4)

Since Vs = V ′ for s large enough, for every v the sum is over a finite set of values s.
Let us return to the ‘large overlaps’ idea: for Zv to be large, some of the links in the chain

(11.4) must be large. Therefore, one’s aim is to find a high probability event such that for
every v and every s ≥ s0, all the links are relatively small, i.e., |Zπs+1v − Zπsv| ≤ ∆(s, v),
where we set ∆(s0, v) = |Zπs0v |. Indeed, on that event,

max
v∈V ′
|Zv| ≤ max

v∈V ′

∑
s≥s0

∆(s, v). (11.5)
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Observe that (11.5) holds on the complement of the event

A =
{
∃s ≥ s0, ∃v ∈ V ′ : |Zπs+1v − Zπsv| ≥ ∆(s, v)

}
,

and
Pr(A) ≤

∑
s≥s0

Pr
(
∃v ∈ V ′ : |Zπs+1v − Zπsv| ≥ ∆(s, v)

)
. (11.6)

For every s ≥ s0 the number of possible differences of the form Zπs+1v − Zπsv is at most
|Vs| · |Vs+1|. This naturally leads to a growth condition on the allowed cardinality of Vs,
namely, |Vs| ≤ 22s , ensuring that |Vs| · |Vs+1| ≤ 22s+2

which is the restriction on |Vs+2|. Thus,
log |Vs| · |Vs+1| ≤ 2s+4.

Finally, let us return to the key idea behind the choice of ∆(s, v): one may use the Lp
norm to control exp(p) random variables uniformly. Hence, for every s set

p = c2s ≥ log |Vs| · |Vs+1|

and let
∆(s, v) = et‖Zπs+1v − Zπsv‖Lp .

Therefore,

Pr
(
∃v ∈ V ′ : |Zπs+1v − Zπsv| ≥ et‖Zπs+1v − Zπsv‖Lc2s

)
≤ t−c2s . (11.7)

By the union bound over s ≥ s0 it follows that with probability at least 1− t−c12s0 ,

sup
v∈V ′
|Zv| ≤ et sup

v∈V ′

(
‖Zπs0v‖L2s0+4 +

∑
s>s0

‖Zπs+1v − Zπsv‖L2s+4

)
.

This discussion leads to the following definition:

Definition 11.2. Given a finite set V , an admissible sequence of V is a collection of subsets
Vs ⊂ V such that |V0| = 1 and for every s ≥ 1, |Vs| ≤ 22s. For s0 ≥ 0 let

γ̄(ZV , s0) = inf sup
v∈V

(
‖Zv‖L

2s0+4 +
∑
s>s0

‖Zπs+1v − Zπsv‖L2s+4

)
where the infimum is taken over all admissible sequences of V .

If V is infinite then set

γ̄(ZV , s0) = sup
{
γ̄(ZV ′ , s0) : V ′ ⊂ V, V ′ is finite

}
.

In what follows we denote γ̄(ZV ) = γ̄(ZV , 0),

Thus, one has the following Generic Chaining upper estimate:

Theorem 11.3. There exist absolute constants c, c′ and c′′ for which the following holds.
Let {Zv : v ∈ V } be a random process. Then for t ≥ 1 and any s0 ≥ 0, with probability at
least 1− t−cs0,

sup
v∈V
|Zv| ≤ c′tγ̄(ZV , s0).
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Corollary 11.4. There exists an absolute constant c0 such that for every process {Zv : v ∈
V },

E sup
v∈V
|Zv| ≤ c0γ̄(ZV ).

Proof. Let c be the constant from Theorem 11.3 and set s0 to be the smallest such that
c2s0 ≥ 2. By the triangle inequality and since ‖ ‖Lp ≤ ‖ ‖Lq for q ≥ p, it is evident that
γ̄(V, s0) ≤ γ̄(V ). Hence, Theorem 11.3 implies that for every t ≥ 1,

Pr

(
sup
v∈V
|Zv| ≥ tγ̄(ZV )

)
≤ 1

t2
,

and integrating the tail,

E sup
v∈V
|Zv| =

∫ ∞
0

(
sup
v∈V
|Zv| ≥ t

)
≤ c0γ̄(ZV )

for a suitable absolute constant c0.

Exercise 33. For p > 1, estimate (E supv∈V |Zv|p)
1/p.

Theorem 11.3 leads to a general scheme for upper bounding supv∈V |Zv|:

(1) Identify the natural Lp norms associated with the process v → Zv.

(2) Choose the level s0 for the starting point of the chaining process, based on the
probability estimate one is looking for.

(3) Find an optimal (or almost optimal) admissible sequence of the set V with respect
to the Lp metrics endowed by the process.

Out of the three tasks, the third one is, by far, the most difficult one. Finding the right
way of constructing approximating sets of V and doing so with respect to metrics that are
endowed by the random process is often a real challenge. Moreover, at this point there is
no guarantee whatsoever that this chaining scheme leads to an optimal estimate (in fact, the
question of whether chaining leads to an optimal estimate is open, except in very special
cases).

Before we tackle (3), let us consider (1), which justifies the effort that was invested in
exploring the Lp norm of linear forms

〈
X, t

〉
for several random vectors X.

The standard gaussian random vector

Let G = (g1, ..., gd) be the standard gaussian random vector in Rd. As noted previously, for
any v ∈ Rd,

‖
〈
G, v

〉
‖Lp ∼

√
p‖v‖2.

Now fix V ⊂ Rd and let Gv =
〈
G, v

〉
. Observe that by the triangle inequality ‖πs+1v−πsv‖2 ≤

‖πsv − v‖2 + ‖πs+1v − v‖2. Thus, for any admissible sequence (Vs)s≥0 of V and every v ∈ V
one has that

‖Zπs+1v − Zπsv‖Lp = ‖
〈
G, πs+1v − πsv

〉
‖Lp ∼

√
p (‖πsv − v‖2 + ‖πs+1v − v‖2) ,
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implying that

γ̄(GV , s0) ∼ inf sup
v∈V

2s0/2‖v‖2 +
∑
s≥s0

2s/2‖πsv − v‖2

 ,

where the infimum is taken with respect to all admissible sequences of V . In particular,

E sup
v∈V
|
〈
G, v

〉
| ≤ c1 inf sup

v∈V

2s0/2‖v‖2 +
∑
s≥s0

2s/2‖πsv − v‖2

 . (11.8)

The important point to note is that all the metrics involved in the chaining bound for
a gaussian process are multiples of a single metric. Indeed, the fact that ‖

〈
G, x

〉
‖Lp ∼√

p‖
〈
G, x

〉
‖L2 is a general feature of centred gaussian processes and holds regardless of the

covariance of G; however, the fact that ‖
〈
G, x

〉
‖L2 = ‖x‖2 follows because the standard

gaussian measure on Rd is isotropic. If one were to choose a centred gaussian random vector
Z whose covariance is not the identity, that would endow a different inner product on Rd and
a different distance—namely ‖x‖ = ‖

〈
Z
〉
‖L2 . Still, the chaining bound involves multiplies of

that single metric and

E sup
v∈V
|
〈
Z, v

〉
| ≤ c1 inf sup

v∈V

2s0/2‖
〈
Z, v

〉
‖L2 +

∑
s≥s0

2s/2‖
〈
Z, πsv − v

〉
‖L2

 . (11.9)

The fact that in the gaussian case all the metrics ‘collapse’ to a single one makes the chaining-
based estimate on E supv∈V |

〈
Z, v

〉
| (at least, potentially) simple: one has to construct an

almost optimal admissible sequence with respect to the L2 norm endowed on Rd by Z. And
even though that norm is Hilbertian, it has nothing to do with the natural Euclidean norm
in Rd unless Z is isotropic. That illustrates the comment made earlier—the natural metrics
endowed by the process may seem totally unnatural at first glance.

As it happens, the analysis of general gaussian processes indexed by a class of functions
F ⊂ L2(µ) is not fundamentally different from the case of gaussian processes indexed by
subsets of Rd (though there are nontrivial technical difficulties in defining the gaussian process
and showing that it behaves well, see, e.g. [?]). Because the definitions and basic properties
of general gaussian processes are a little more involved we will not describe that setup here.

Let us stress once again that at this point there is no reason to expect that (11.8) or
(11.9) are sharp in any way. The definition of γ̄ seems to be artificial: a compact way
of presenting the outcome of the chaining mechanism. As it happens, one of the great
achievements of Generic Chaining, Talagrand’s majorizing measures theorem shows that
this artificial notion is, in fact, optimal: the expectation of the supremum of a gaussian
process, is equivalent to γ̄:

Theorem 11.5. There exists absolute constants c and C for which the following holds.
Let F ⊂ L2 and let {Gf : f ∈ F} be the canonical gaussian process indexed by F (i.e.,
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the covariance of the process satisfies EGfGh =
〈
f, h
〉
L2

). Then

cγ̄(GF ) ≤ E sup
f∈F

Gf ≤ Cγ̄(GF ).

Remark 11.6. An outcome of the majorizing measures theorem is that for an arbitrary set
T ⊂ `2, γ̄(GT ) ∼ γ̄(Gconv(T )). To-date, there is no direct proof of that fact.

The standard Bernoulli vector

Let X = (ε1, ..., εd) be the standard Bernoulli vector, that is, a vector whose coordinates are
independent, symmetric {−1, 1}-valued random variables. Recall that for any v ∈ Rd,

‖
〈
E , v
〉
‖Lp ∼

∑
i≤p

v∗i +
√
p

∑
i>p

(v∗i )
2

1/2

where, as always, (v∗i ) denotes the nonincreasing rearrangement of (|vi|)di=1.
Right from the start it is clear that a chaining bound for the supremum of the process

{
〈
E , v
〉

: v ∈ V } is far more complex than for its gaussian counterpart. The metrics involved
in the chaining bound truly change with s rather than being scaled versions of a single metric.
As a result, the construction of an optimal admissible sequence is even more challenging than
in the gaussian case.

One easy (yet suboptimal) way forward is to note that if G is the standard gaussian vector
in Rd, then for any p ≥ 2,

‖
〈
E , v
〉
‖Lp ≤ c‖

〈
G, v

〉
‖Lp ; (11.10)

in particular, for any s0 ≥ 0, γ̄(EV , s0) ≤ cγ̄(GV , s0).

Exercise 34. (1) Show that γ̄ satisfies a Sudakov type inequality: that there is an absolute
constant c such that for any process XV and p ≥ 1, if {Xv : v ∈ V } contains a set of
cardinality exp(p) that is ε-separated in Lp then γ̄(Xv) ≥ cε.

(2) Let V = {e1, ..., ed} be the standard basis in Rd. Estimate γ̄(Gv) and γ̄(EV ) from above
and below and deduce that the two are not equivalent.

ψα processes

Let 0 < α < 2. A random process {Zv : v ∈ V } is called a ψα process with constant L if for
every u, v ∈ V and any p ≥ 1,

‖Zu − Zv‖Lp ≤ Lp1/α‖Zu − Zv‖L2 , and ‖Zv‖Lp ≤ Lp1/α‖Zv‖L2

Hence, the norm equivalence constant of differences between the Lp norm and the L2 norm
is at most Lp1/α.

Example 11.7. Clearly, both a gaussian process and a Bernoulli process are ψ2 processes with
an absolute constant L, but all though the estimate ‖Zu−Zv‖Lp ≤ Lp1/α‖Zu−Zv‖L2 is sharp
for a gaussian process, it is far from sharp for the Bernoulli process: as noted previously,
‖Eei‖Lp = ‖

〈
E , ei

〉
‖Lp = 1 for every p ≥ 1, which is far better than ∼ √p.
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There is a wide variety of ψα processes that appear naturally in analysis, geometry and
statistics, and the study of such processes is worthy of a detailed exposition in its own right.
To give some flavour of the diversity of such processes, a log-concave random vector X on Rd
endows a ψ1 process

{〈
X, v

〉
: v ∈ V

}
for any V ⊂ Rd, and all with an absolute constant L.

At the same time, it is quite likely that there will be some directions in which
〈
X, v

〉
behaves

in a far better way than the ψ1 condition would indicate, making the problem of finding sharp
estimates on E supv∈V Xv a very subtle one.

In the context of the γ̄ functionals, the fact that a process is ψα yields a trivial upper
estimate. Indeed, for an arbitrary admissible sequence of V , one has for every v ∈ V

‖Zv‖L
2s0+4 +

∑
s>s0

‖Zπs+1v −Zπsv‖L2s+4 ≤ cL

2s0/α‖Zv‖L2 +
∑
s≥s0

2s/α‖‖Zπs+1v − Zπsv‖L2s

 ,

implying that

γ̄(ZV , s0) ≤ CL inf sup
v∈V

2s0/α‖Zv‖L2 +
∑
s≥s0

2s/α‖‖Zπs+1v − Zπsv‖L2s

 .

Definition 11.8. Let (V, d) be a metric space. For α > 0 and an integer s0 ≥ 0 set

γα,s0(V, d) = inf sup
v∈V

2s0/αdiam(V, d) +
∑
s≥s0

2s/αd(πs+1v, πsv)

 ,

where the infimum is taken with respect to all admissible sequences of V .

Clearly, when V is the indexing set of a ψα process ZV , and d is the L2 metric endowed
on V by the process, then

γ̄(ZV , s0) ≤ CLγα,s0(V, d).

Again, it should be stressed that γ̄(ZV , s0) is a way of obtaining an upper estimate on
E supv∈V Zv, and if the process is ψα, then γα,s0(V ) is a way of obtaining an upper
estimate on γ̄(ZV , s0). Neither one of the two steps need be sharp. The fact that both
are sharp for gaussian processes (and a few other canonical processes) is rather a miracle,
and Talagrand’s proof of this fact is a masterpiece of beautiful mathematics.

Understanding when functionals like γ̄ or γα yield sharp estimates on E supv∈V Zv,
and, moreover, what is the right bound when they don’t, is a real challenge that is very
far from being resolved.

11.2 γα and metric entropy

The results described above may seem as rather unsatisfactory, because that has actually
been accomplished up to this point was replacing a mysterious quantity, E supv∈V Zv, with
another mysterious quantity—the γ̄ functional. Even taking the substantial leap of faith, that
the latter can serve as a useful bound on the former, the key question remains:
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Question 11.9. How one may construct a good admissible sequence for γ̄? And, assuming
one chooses to estimate γ̄ by γα for ψα processes, how one may construct an admissible
sequence metric spaces (T, d)?

Constructing optimal admissible sequences, even up to a multiplicative constant, is a very
difficult task and is not known in general—even when T ⊂ Rd and d(x, y) = ‖x−y‖2. It follows
from the majorizing measures theorem that an optimal admissible sequence exists and that
γ2(T, L2) is equivalent to the expectation of the supremum of the gaussian process indexed
by T (with L2 corresponds to its covariance structure). The proof is constructive in the
sense that there is a greedy algorithm that produces the admissible sequence. Unfortunately,
examples in which that construction can be clearly specified as few and far-between; γ2(T, L2)
is, by-far, the case where one has the most extensive understanding of what is going on....

If one is willing to be less ambitions, and settle for a bound that is likely to be loose,
there is a generic construction of an admissible sequence for an arbitrary metric space. As
it happens, that simple construction, which is based on covering numbers, is good enough in
many cases.

Let us consider γα(T, d), as the analogous construction for γ̄ will be clear from this exam-
ple.

To define an admissible sequence using a covering, fix an integer s ≥ 0 and let Ts be an
εs-cover of T with respect to the metric d. Hence, εs is the smallest number for which T has
an ε-cover of cardinality at most 22s (if the infimum is not attained, one may take εs to be
twice the infimum). Let πst be the nearest point to t in Ts, implying that for every t ∈ T ,
d(t, πst) ≤ εs, and therefore, that

γα,s0(T, d) ≤
∑
s≥s0

2s/αεs. (11.11)

Remark 11.10. Observe that the difference between γα,s0(T, d) and
∑

s≥s0 2s/αεs is essen-
tially changing the order of the supremum and the sum.

Equation (11.11) has a more friendly presentation, frequently (and somewhat inaccurately)
called the Dudley entropy integral bound.

Theorem 11.11. For every 0 < α < ∞ there exists a constant cα for which the following
holds. If (T, d) is a metric space then

γα(T, d) ≤ cα
∫ D

0
log1/αN (T, ε)dε,

where D is the diameter of (T, d).

Proof. Without loss of generality assume that εs > 0 and that εs is the smallest number for
which T contains an ε-cover of cardinality at most 22s . Therefore, N (T, εs/2) ≥ 22s . Hence,
if x ∈ (εs+1/2, εs/2) then N (T, x) ≥ 22s . In particular,

2s/α(εs − εs+1) ≤ 2

∫ εs/2

εs+1/2
log1/αN (T, x)dx.
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Summing the left-hand side,∑
s≥0

2s/α(εs − εs+1) =
∑
s≥0

2s/αεs −
∑
s≥0

2s/αεs+1 =
∑
s≥0

2s/αεs −
∑
s≥1

2(s−1)/αεs

≥(1− 2−1/α)
∑
s≥0

2s/αεs.

Therefore,

(1− 2−1/α)
∑
s≥0

2s/αεs ≤2
∑
s≥0

∫ εs/2

εs+1/2
log1/αN (T, x)dx

≤2

∫ ∞
0

log1/αN (T, x)dx,

and the claim follows because logN (T, x) = 0 for x ≥ diam(T, d).

Corollary 11.12. There exists an absolute constant c for which the following holds. Let X
be an isotropic, L-subgaussian random vector in Rn. Then for every T ⊂ Rn,

E sup
t∈T

〈
X, t

〉
≤ c

∫ dT

0

√
logN (T, εBn

2 )dε.

In particular, if X = (ε1, ..., εn) then

E sup
t∈T

n∑
i=1

εiti ≤ c
∫ dT

0

√
logN (T, εBn

2 )dε.

Exercise 35. Prove Corollary (11.12).

11.2.1 Example: Bd
1

Let us explore the two bounds on γ2(Bd
1 , `2)—firstly, an lower estimate based on covering

numbers and the Dudley’s entropy integral, and secondly, by constructing an optimal admis-
sible sequence. These estimates show that the entropy based bound in suboptimal in this
case. It will also be a good indication that constructing an optimal admissible sequence is a
nontrivial task, even in seemingly simple situations.

Thanks to the majorizing measures theorem, γ2(Bd
1 , `2) is known up to absolute multi-

plicative constants, since
E sup
t∈Bd1

〈
G, t

〉
= E‖G‖∞ ∼

√
log d.

The next exercise shows that∫ ∞
0

√
logN (Bd

1 , εB
d
2)dε ≥ c log3/2 d.

Exercise 36. Let 1 ≤ s ≤ d and set Is to be the collection of all subsets of {1, ..., d} of
cardinality s. Show that the set {

1√
s

∑
i∈I

ei : i ∈ Is

}
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is a subset of Bd
1 and contains a c1/

√
s separated subset of cardinality at least exp(c2s log(ed/s)).

Use that to deduce a lower estimate on logN (Bd
1 , εjB

d
2) for εj ∼ 2j/

√
d and control the

entropy integral from below.

The construction of an optimal admissible sequence is more involved. First of all, assume
without loss of generality that d = 2`+1 for some integer `. For every 0 ≤ k ≤ `, let Ik be the
collection of all subsets of {1, ..., d} of cardinality 2k. Thus, using the monotone nonincreasing
rearrangement of x ∈ Rd, one can write

x =
∑̀
k=0

PIk(x)x,

with Ik(x) ∈ Ik and I0(x), I1(x), ... are disjoint blocks of cardinality 2k, k = 0, 1, ...—according
to the nonincreasing rearrangement of the coordinates of x. Moreover, because of the blocks
correspond to the nonincreasing rearrangement, for every 0 ≤ k ≤ `− 1 one has

‖PIk+1(x)x‖∞ ≤
‖PIk(x)x‖1

2k
and ‖PIk+1(x)x‖2 ≤ 2(k+1)/2‖PIk+1(x)x‖∞ ≤ 2

‖PIk(x)x‖1
2k/2

.

(11.12)
Hence, for every x ∈ Bd

1 , ‖PIk(x)x‖2 . 1/2k/2. Moreover,

‖
∑
j>k

PIj(x)x‖22 ≤
∑
j>k

‖PIj(x)x‖21
2j

. (11.13)

From here on, to ease notation, when the identity of x is clear we write PIk instead of PIk(x).

Lemma 11.13. Let θ > 1. There are absolute constants c0 and c1 for which the following
holds. For every 0 ≤ k ≤ ` there exists Wk ⊂ Bd

1 such that

|Wk| ≤ exp

(
c0θ2

k log

(
ed

2k

))
,

and for every x ∈ Bd
1 there is z ∈Wk that is supported on Ik(x) such that

‖PIk(x)x− z‖2 ≤ c1

{(
2k

d

)θ−1

‖PIk(x)x‖2,
1√
d

}
. (11.14)

The first step in the construction of the sets Wk is to consider all the subsets I of {1, ..., d}
of cardinality 2k, and the collection of balls 2−j/2BI

2 for j ≥ k. The idea is that after the
decomposition of each x according to the subsets I0(x), ..., Ik(x), ...I`(x), there is no informa-
tion on ‖PIk(x)x‖2 beyond the fact that this norm is at most ∼ 1/2k/2, and that is where the

balls 2−j/2BI
2 for I = Ik(x) and j ≥ k come in. As (11.14) indicates, the goal is approximate

PIk(x)x up to an error which is either trivial, or, at most, a small order of ‖PIk(x)x‖2.
Proof of Lemma 11.13.

Consider 0 ≤ k ≤ ` and j = k, ..., `, and let us construct covers of

Uk,j =
⋃
I∈Ik

1

2j/2
BI

2 ,
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where for each j the cover is of cardinality exp(θ2k log(ed/2k)). Since there are at most
(
d
2k

)
subsets in Ik, by the volumetric estimate for each ball 2−j/2BI

2 , one has

N (Uk,j , εB
d
2) ≤

(
d

2k

)(
5

2j/2ε

)2k

.

Consider the union of such covers of Uk,j , for j = k, ...., `. It follows that as long as the
mesh-width of the net of Uk,j is at most

2−j/2(2k/d)θ−1, (11.15)

the total number of points in the union of these covers is

∑̀
j=k

exp(θ2k log(ed/2k)) = exp(log(`− k) + θ2k log(ed/2k)) ≤ exp(c0θ2
k log(ed/2k)) (11.16)

for an absolute constant c0 > 1, because `− k ∼ log(d/2k).
Define the set Wk as the union of these covers with 0.
Add to this cover the point 0 and denote it by Wk. Now fix x ∈ Bd

1 and recall that
‖PIkx‖2 ≤ 2/2k/2. Observe that if ‖PIkx‖2 ≥ 2/2`/2 ∼ 1/

√
d then it satisfies that

2−(j+1)/2 ≤ ‖PIkx‖2‖ ≤ 2−j/2

for some k ≤ j ≤ `. By approximating PIkx using a appropriate point z ∈ Uk,j that is
supported on Ik, it is evident from (11.15) that

‖PIkx− z‖2 ≤ 2−j/2
(

2k

d

)θ−1

. ‖PIkx‖2
(

2k

d

)θ−1

,

as required. Otherwise, ‖PIkx‖2 . 1/
√
d and one may choose 0 as the approximating point.

Next, for 0 ≤ k ≤ ` consider the approximating sets Vk obtained by combining the sets
(Ws)s≤k in a reasonable way:

Vk =

{
k∑
s=0

∑
i∈Is

wj : |Is| = 2s, I1, ..., Ik are disjoint, ws ∈Ws

}
.

In other words, Vk consists of all the points that are of the following form: taking disjoint
subsets of {1, ..., d}, one for each cardinality 2s, 1 ≤ s ≤ k, and on each block Is select some
ws ∈ Ws that is supported on that block. The idea is that just like any x ∈ Bd

1 can be
approximated by a point in Wk on Ik(x), it can be well approximated by a point πkx ∈ Vk
on
⋃
s≤k Is(x), implying that

‖x− πkx‖2 ≤

∥∥∥∥∥∥
∑
s≤k

PIs(x)x− πkx

∥∥∥∥∥∥
2

+

∥∥∥∥∥∑
s>k

PIs(x)x

∥∥∥∥∥
is small. Formally,
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Lemma 11.14. There exist absolute constants c2 and c3 for which the following holds. For
any 0 ≤ k ≤ `,

|Vk| ≤ exp

(
c2θ2

k log

(
ed

2k

))
,

and for any x ∈ Bd
1 there is πkx ∈ Vk such that

‖x− πkx‖2 ≤ c3

(
k∑
s=0

(2s/d)θ−1 ‖PIjx‖1
2s/2

+
∑
s>k

‖PIsx‖1
2s/2

+

√
k

d

)

Proof. To estimate the cardinality of Vk, note that it is bounded by the cardinality of a set
containing all possible sums

∑k
s=0ws, with ws ∈Ws. Thus, by (11.16), the cardinality of the

latter is at most
k∏
s=0

exp(c0θ2
s log(ed/2s)) ≤ exp(c2θ2

k log(ed/2k)), (11.17)

implying that the same holds for Vk.

Observe that by the construction and (11.14), for every x ∈ Bd
1 and every 0 ≤ s ≤ k,

there is ws ∈Ws that is supported on Is(x) and

‖
k∑
s=0

PIsx− v‖22 =

k∑
s=0

‖PIsx− ws‖22 ≤
k∑
s=0

c1 max

{
(2s/d)2(θ−1)‖PIsx‖22,

1

d

}

.
k∑
s=0

(2s/d)2(θ−1)‖PIsx‖22 +
k

d

.
k∑
s=0

(2s/d)2(θ−1) ‖PIsx‖21
2s

+
k

d
,

using that by (11.12)

‖PIsx‖22 ≤ 2
‖PIsx‖1

2s/2
.

Clearly,
∑k

s=0ws ∈ Vk and denote that point by πkx. Therefore, by (11.13), for every x ∈ Bd
1

there is πkx ∈ Vk such that

‖x− πkx‖22 = ‖
k∑
s=0

PIsx− πkx‖22 + ‖
∑
s>k

PIsx‖22 .
k∑
s=0

(2s/d)2(θ−1) ‖PIsx‖21
2s

+
k

d
+
∑
s>k

‖PIsx‖21
2s

.

(11.18)
Since ‖a‖2 ≤ ‖a‖1, it is evident that

‖x− πkx‖2 .
k∑
s=0

(2s/d)θ−1 ‖PIsx‖1
2j/2

+
∑
s>k

‖PIsx‖1
2j/2

+

√
k

d
, (11.19)

as claimed.

Thanks to (11.19), it is possible to obtain an upper estimate for a functional that is close
to γ2(Bd

1 , `2).
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Lemma 11.15. There exists an absolute constant c for which, for every x ∈ Bd
1 ,

∑̀
k=0

2k/2‖x− πkx‖2 ≤ c
√

log d.

Proof. Fix x ∈ Bd
1 . By (11.19) one has to consider the sum of the three terms. Firstly,

recalling that 2` ∼ d, ∑̀
k=0

2k/2 ·
√
k

d
∼
√
` ∼

√
log d,

as required. Secondly,
by changing the order of summation,

∑̀
k=0

2k/2 ·
k∑
s=0

(
2s

d

)θ−1 ‖PIsx‖1
2s/2

=
∑̀
s=0

(
2s

d

)θ−1 ‖PIsx‖1
2s/2

∑̀
k=s

2k/2

≤
∑̀
s=0

(
2s

d

)θ−1( d

2s

)1/2

‖PIsx‖1 =
∑̀
s=0

(2s/d)θ−3/2‖PIsx‖1

≤
(

max
s

(2s/d)θ−3/2
)
·
∑̀
s=0

‖PIsx‖1 ≤ c

provided that θ > 3/2.
Finally,

∑̀
k=0

2k/2
∑
s>k

‖PIsx‖1
2s/2

=
∑̀
s=0

‖PIsx‖1
2s/2

s∑
k=0

2k/2 = c
∑̀
s=0

‖PIsx‖1 ≤ c′.

Exercise 37. Use the sets Vk and Lemma 11.15 to construct an admissible sequence of Bd
1 ,

showing that γ2(Bd
1 , `2) ∼

√
log d.

Another well-known example in which there is a true gap between the γ2 functional and
the entropy integral are ellipsoids in `2. We refer the reader to [?] for details of this generic
example. Despite this gap, there are still many interesting cases in which the entropy integral
yields a useful estimate, and in any case, as in the case of Bd

1 , understanding how efficient
covers of the set can be constructed is a first step towards on optimal admissible sequence.

11.2.2 Random coordinate projections

Keeping in mind that the main focus of these notes is statistical learning theory, in makes
sense to see what an entropy integral bound means as far as the Rademacher averages are
concerned. Thus, for a class of functions F , let f∗ ∈ F . Assume for the sake of simplicity
that F is star-shaped around f∗, implying that Ff∗,r = (F − f∗) ∩ rD. Let us explore

E sup
u∈Ff∗,r

∣∣∣∣∣ 1√
N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ = EX

(
Eε sup

v∈PσFf∗,r

∣∣∣∣∣ 1√
N

N∑
i=1

εivi

∣∣∣∣∣
)
.
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The trivial estimate follows from the fact that a Bernoulli process is L-subgaussian, and in
particular, ‖

〈
E , t
〉
‖Lp . ‖

〈
G, t

〉
‖Lp for every t ∈ RN . Therefore, by the chaining argument,

given any σ = (X1, ..., XN ),

Eε sup
v∈PσFf∗,r

∣∣∣∣∣ 1√
N

N∑
i=1

εivi

∣∣∣∣∣ ≤ cγ2(PσFf∗,r/
√
N, `2).

Note that when endowed on F , the metric in question depends on σ: for any u, v ∈ Ff∗,r,∥∥∥∥ 1√
N
Pσu−

1√
N
Pσv

∥∥∥∥2

2

=
1

N

N∑
i=1

(u− v)2(Xi),

implying that

EXEε sup
v∈PσFf∗,r

∣∣∣∣∣ 1√
N

N∑
i=1

εivi

∣∣∣∣∣ ≤ cEXγ2(Ff∗,r, L
σ
2 ) = (∗).

Unfortunately, a useful estimate on (∗) calls for the construction of an optimal admissible
sequences of Ff∗,r with respect to the random L2 metrics endowed by the sample. And at
this point, there is no indication that these metrics are close to the original L2 one (though
that is an extremely important and well-studied question).

One can relax the estimate further by turning to the entropy integral, as

EXγ2(Ff∗,r, L
σ
2 ) ≤ cEX

∫ ∞
0

log1/2N (Ff∗,r, εB(Lσ2 ))dε = cEX
∫ R

0
log1/2N (Ff∗,r, εB(Lσ2 ))dε,

where

R = sup
u∈Ff∗,r

(
1

N

N∑
i=1

u2(Xi)

)1/2

.

Once again, relating the diameter of Ff∗,r with respect to the random metric Lσ2 to the L2

diameter (which is at most 2r) is a highly nontrivial question which is far from being fully
understood.

One way around these obstacles is to find some way of obtaining uniform entropy estimates,
that is, estimates that would holds for any σ. That was the motivation behind the introduction
of the combinatorial dimension. However, the real question—the possible equivalence between
the spaces (F,L2) and (F,Lσ2 ) for a typical sample σ,—is, in general, open.

Remark 11.16. Note that the estimate on the Rademacher averages is loose already in the
first step: it is based on the fact that a Bernoulli process is subgaussian, implying that the
expectation E supv∈PσFf∗,r |N

−1/2
∑N

i=1 εivi| is dominated by γ2(PσFf∗,r/
√
N,Lσ2 ). However,

there are situations in which reverting to the gaussian case comes at a high price, most notably,
when trying to analyze the quadratic empirical process (see, e.g., [?]). Although this aspect
will not be pursued further in this notes, this fact should be kept in mind.
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Chapter 12

Sudakov type inequalities

The entropy integral is a way of obtaining upper estimates on E supv∈V Zv using metric
properties of V with respect to the right metric structure/s. It is natural to ask whether
there exist similar lower bounds. It turns out that it is much harder to obtain lower bounds
of that flavour, and understanding when such bounds are possible is an extremely difficult
question that is still open. In the chapter we present two such metric-based bounds: for
gaussian processes and for Bernoulli processes. There are more general examples of similar
bounds (see, e.g. [?]), but those are beyond the scope of this presentation.

The first result we present is a simple proof of Sudakov’s inequality in Rd, due to N.
Tomczak-Jaegermann [?]. The argument is based on Theorem 10.6. A different proof is
presented in what follows.

Recall that for T ⊂ Rd, `∗(T ) = E supt∈T |
〈
G, t

〉
|.

Theorem 12.1. There exists an absolute constant c such that, for every T ⊂ Rd and every
ε > 0,

cε log1/2N (T, εBd
2) ≤ `∗(T ).

Proof. Is suffices to prove Theorem 12.1 under some additional assumptions on T : firstly,
that T is a convex and centrally-symmetric, because `∗(T ) = `∗(absconv(T )); that T is
bounded—otherwise the statement is trivially true; and, by replacing Rd by span(T ), that T
has a nonempty interior. Thus, without loss of generality, T is the unit ball of a norm on Rd
which is denoted by ‖ ‖T , and its dual norm is denoted by ‖ ‖T ◦ . Observe that

2T ∩ (ε2/2)T ◦ ⊂ εBd
2 , (12.1)

because ‖x‖22 =
〈
x, x

〉
≤ ‖x‖T · ‖x‖T ◦ . Moreover,

N (T, 2T ∩ (ε2/2)T ◦) = N (T, (ε2/2)T ◦); (12.2)

indeed, one direction is clear because 2T ∩ (ε2/2)T ◦ ⊂ (T, (ε2/2)T ◦. In the other direction,
if T ⊂

⋃
(yi + rT ◦) then for every x ∈ T there is some yi for which x − yi ∈ rT ◦. But T is

convex and centrally-symmetric, x− yi ∈ 2T , and thus T ⊂
⋃

(yi + 2T ∩ (rT ◦)).
Combining (12.1) and (12.2), and since covering numbers are sub-multiplicative,

N (T, εBd
2) ≤N (T, 2T ∩ (ε2/2)T ◦) ≤ N (T, (ε2/2)T ◦)

≤N (T, 2εBd
2) · N (2εBd

2 , (ε
2/2)T ◦) = N (T, 2εBd

2) · N (Bd
2 , (ε/4)T ◦)

≤N (T, 2εBd
2) exp(c1`

2
∗(T )/ε2),

145
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where the last inequality follows from Theorem 10.6. Thus, setting φ(ε) = logN (T, εBd
2), one

has, for every ε > 0,

φ(ε) ≤ φ(2ε) + c1
`2∗(T )

ε2
.

Clearly, limj→∞ φ(2jε) = 0 and therefore,

φ(ε) =
∞∑
j=1

(
φ(2jε)− φ(2j+1ε)

)
≤ c1

`2(T )

ε2

∞∑
j=1

2−2j ≤ c2
`2(T )

ε2
.

Because Sudakov’s inequality is so important, let us present an alternative proof which is
more direct. The proof is based on a the fundamental idea that “bounded+being extremal”
implies the exitance of structure. One first obtains a seemingly weak entropy bound, but when
applied to the right projection of the set—i.e., to a set that will be shown both bounded and
extremal, the entropy estimate turns out to be both obvious and sharp.

12.1 A direct proof of Sudakov’s inequality

Recall that one may assume that T ⊂ Rd is a convex body, and the proof is based a funda-
mental fact from convex geometry, known as Urysohn’s inequality.

Theorem 12.2. Let T be a convex body in Rd. Then(
|T |
|Bd

2 |

)1/d

≤
∫
Sd−1

‖x‖T ◦dx(σ), (12.3)

where integration is with respect to the Haar measure on Sd−1. Moreover,(
|T |
|Bd

2 |

)1/d

≤ `∗(T )

`∗(Bd
2)
. (12.4)

Exercise 38. (1) Show that for the standard gaussian vector G, one has that ‖G‖2 and
G/‖G‖2 are independent.

(2) Use the gaussian representation of the Haar measure on Sd−1, (1) and (12.3) to deduce
(12.4).

Let m be an integer to be selected later and consider the random operator

Γ =
1√
m

m∑
i=1

〈
Gi, ·

〉
ei,

where G1, ..., Gm are independent copies of the gaussian random vector in Rd.

Lemma 12.3. There exist absolute constants c1, c2 and c3 for which the following holds.

(1) If x ∈ Rd, then with probability at least 1− 2 exp(−c1m), ‖Γx‖2 ≥ c2‖x‖2.

(2) E`∗(ΓT ) ≤ c3`∗(T ), where the expectation is with respect to G1, ..., Gm.
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Before presenting the proof of the Lemma, let us recall the following standard fact: if O is
a random orthogonal matrix, that is, if O is distributed according to the Haar measure on the
orthogonal group O(d) then Oe1 is distributed uniformly on Sd−1. Indeed, Oe1 is a random
vector taking values on Sd−1 and is rotation invariant under O(d). Thus, by the uniqueness
of the Haar measure, it must coincide with Oe1. In particular, one has that

`∗(T ) ∼
√
dEO sup

t∈T

〈
Oei, t

〉
. (12.5)

Proof of Lemma 12.3. The first part of the claim is an immediate outcome of the small-ball
property of a gaussian variable. Since this argument has already appeared several times in
these notes, it is omitted.

Turning to the second part, let K = ΓT ⊂ Rm and note that by (12.5),

`∗(K) ∼
√
mEO sup

t∈T

〈
Γ∗Oe1, t

〉
=
√
mEO sup

t∈T

〈
Γ∗Oe1, t

〉
.

Therefore, taking the expectation with respect to G1, ..., Gm, followed by a Fubini argument,

EEO sup
t∈T

〈
Γ∗Oe1, t

〉
= EOE sup

t∈T

〈
Γ∗Oe1, t

〉
.

Moreover, for any fixed orthogonal matrix O, the distribution of Γ∗Oe1 = (
〈
Γi, Oei

〉
)mi=1 is

the same as for a standard gaussian vector in Rm. Hence, for every fixed orthogonal matrix
O,

E sup
t∈T

〈
Γ∗Oe1, t

〉
= E sup

t∈T

〈
G, t

〉
= `∗(T ),

completing the proof.

Exercise 39. Show that indeed, for any O ∈ O(d), Γ∗Oe1 is distributed as the standard
gaussian random vector in Rm.

As was mentioned previously, the first component of this proof of Sudakov’s inequality is
actually a weak version of the theorem.

Lemma 12.4. Let T ⊂ Rd be a convex body. Then for every u > 0,

logM(T, u`∗(T )Bd
2) ≤ d log

(
1 +

1

u
√
d

)
≤
√
d

u
.

Remark 12.5. The full version of Sudakov’s inequality would imply that logM(T, u`∗(T )Bd
2) ≤

c/u2, rather than
√
d/u.

Proof. Recall that by a volumetric estimate,

M(T, sBd
2) ≤ |T + sBd

2 |
|sBd

2 |
= (∗).

By the gaussian version of Urysohn’s inequality and the subadditivity of `∗ (i.e. (`∗(A+B) ≤
`∗(A) + `∗(B)),

|T + sBd
2 | ≤ |Bd

2 | ·
(
`∗(T + sBd

2)

`∗(Bd
2)

)d
≤ |Bd

2 | ·
(
`∗(T ) + s`∗(B

d
2)

`∗(Bd
2)

)d
.
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Therefore,

(∗) ≤
(
`∗(T ) + s`∗(B

d
2)

s`∗(Bd
2)

)d
≤≤

(
1 +

`∗(T )

s
√
d

)d
,

where the last inequality holds because `∗(B
d
2) = E(

∑d
i=1 g

2
i )

1/2 ≤
√
d. Hence, setting s =

u`∗(T ) one has

logM(T, u`∗(K)Bd
2) ≤ d log

(
1 +

1

u
√
d

)
≤
√
d

u
,

as claimed.

Proof of Sudakov’s inequality. To prove Sudakov’s inequality, let A = {x1, ..., xer} ⊂ T
be u`∗(T ) separated in `d2, and one has to show that there is an absolute constant c for which
r ≤ c/t2.

To that end, fix an integer m to be named later, and consider the random mapping
Γ : Rd → Rm. Applying the first part of Lemma 12.3, one has that if r ≤ c1m there is an
event of probability at least 1 − 2 exp(2r) · exp(−c0m) ≥ 1 − 2 exp(−c0m/2) on which, for
every xi 6= xj , xi, xj ∈ A,

‖Γ(xi − xj)‖2 ≥ c2‖xi − xj‖2 ≥ c2u`∗(T ).

Also, by Markov’s inequality, `∗(ΓT ) ≤ 2`∗(T ) with probability at least 1/2. Hence, there
exists Γ for which both properties holds. Therefore,

logM(ΓT, (c2/2)u`∗(ΓT )) ≥ logM(ΓT, c2u`∗(T )) ≥ r.

On the other hand, by Lemma 12.4 for the set ΓT ⊂ Rm,

logM(ΓT, (c2/2)u`∗(ΓT )) ≤
√
m

(c2/2)u
,

and taking the minimal ‘legal’ choice of m, namely, m = r/c1, it follows that r ≤ c3/u
2 for a

suitable absolute constant c3, as required.

12.2 Sudakov’s inequality for Bernoulli processes

In what follows we present a version of Sudakov’s inequality for Bernoulli processes v →
〈
E , v
〉
,

where, as always, we denote by E the standard Bernoulli vector in Rd. The first question that
should be asked is on the right formulation of the inequality, because using the gaussian
formulation is clearly false:

Example 12.6. Let T = {e1, ..., ed}. Then for any ε <
√

2, logM(T, εBd
2) = log d. At the

same time,

E sup
t∈T

∣∣∣∣∣
d∑
i=1

εiti

∣∣∣∣∣ = 1.

As it happens, the reason for the difficulty is the price one pays for the regularity of the
gaussian process—that ‖

〈
G, t

〉
‖Lp ∼

√
p‖t‖2 for every t ∈ Rd and p ≥ 2. Let us try to re-write

Sudakov’s inequality while keeping the Lp structure in place and without resorting to the fact
that all the Lp norms of

〈
G, t

〉
are equivalent to its L2 norm.
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Observe that if T ′ ⊂ T is ε-separated in `2, then {
〈
G, t

〉
: t ∈ T ′} is ε

√
p separated subset

in Lp. Hence, identifying T with the set of linear functionals {
〈
t, ·
〉

: t ∈ T}, the gaussian
version of Sudakov’s inequality can be reformulated as:

sup
ε>0

ε log1/2M(T, ε
√
pB(Lp)) = sup

δ>0

δ
√
p

log1/2M(T, δB(Lp)) ≤ c`∗(T ). (12.6)

Exercise 40. With (12.6), show that the following is an equivalent formulation of Sudakov’s
inequality: There exist an absolute constant c such that for every p ≥ 2, if |T ′| = exp(p) is a
δ-separated subset of T , then δ ≤ c`∗(T ).

The version of Sudakov’s inequality from Exercise 40 actually holds for Bernoulli processes
and for other processes as well. In the Bernoulli case one has:

Theorem 12.7. There exists an absolute constant for which the following holds. Let V ⊂ Rd,
δ > 0 and p ≥ 1 such that AV =

{〈
E , v
〉

: v ∈ V
}

is δ-separated in Lp and |V | ≥ exp(p).
Then

E sup
v∈V

∣∣∣∣∣
d∑
i=1

εivi

∣∣∣∣∣ ≥ cδ.
The proof of Theorem 12.7 requires some preparation. Its main component is an embed-

ding lemma that allows one to revert to a gaussian argument:

Lemma 12.8. There are absolute constants c0 and c1 for which the following holds. Let V be
as in Theorem 12.7. There is an integer m and a map Φ : V → `m2 ∩ `m∞ such that W = Φ(V )
satisfies:

(1) W is c0δ/
√
p-separated with respect to the `2 norm;

(2) W ⊂ (δ/p)Bm
∞; and

(3) E supw∈W |
∑m

i=1 εiwi| ≤ c1E supv∈V |
∑d

i=1 εivi|.

The idea behind Lemma 12.8 is that Φ ‘spreads’ the vectors v ∈ V in a way that ensures
that the image of each vector is well-bounded coordinate-wise, and at the same time, the
separation in Lp of the AV is transformed to separation in `2. Moreover, the Bernoulli
average of the resulting set W is dominated by the Bernoulli averages of the original set V ,
implying that it suffices to lower bound the former. The intuitive reason why such a lower
bound is possible is due to (1) and (2): vectors in W are both well-separated and well-spread,
which indicates that the Bernoulli average of W should not be too far from the gaussian one,
allowing one to invoke Sudakov’s inequality for gaussian processes. More accurately, assuming
that Lemma 12.8 is true, the first step in the proof of Theorem 12.7 is the following:

Theorem 12.9. For every κ > 0 there exists a constant c(κ) for which the following holds.
Let W ⊂ Rm be a bounded, ε-separated in `2 which also satisfies that

sup
w∈W

‖w‖∞ ≤ κ
ε√

log |W |
.

Then

E sup
w∈W

∣∣∣∣∣
m∑
i=1

εiwi

∣∣∣∣∣ ≥ c(κ)ε
√

log |W |.
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In other words, a standard Sudakov bound happens to be true for the Bernoulli process
as long as the indexing set is well bounded in `∞. Thus, in such cases, the Bernoulli process
“behaves” as if it were gaussian.

The combination of Lemma 12.8 and Theorem 12.9 leads to the proof of Theorem 12.7:

Proof of Theorem 12.7. Recall that W = Φ(V ) ⊂ `m2 , and without loss of generality one
can assume that |V | = exp(p). By parts (1) and (2) of Lemma 12.8, |W | is ε-separated in `m2
for ε = c0δ/

√
p and

max
w∈W

‖w‖∞ ≤
δ

p
≤ κ ε√

log |W |

for κ = c−1
0 . Thus, W = Φ(V ) satisfied the conditions of Theorem 12.9, implying that

E sup
w∈W

∣∣∣∣∣
m∑
i=1

εiwi

∣∣∣∣∣ ≥ c(κ)ε
√

log |W | = c1

√
δ. (12.7)

Moreover, by part (3) of Lemma 12.8,

E sup
v∈V

∣∣∣∣∣
d∑
i=1

εivi

∣∣∣∣∣ ≥ c2E sup
w∈W

∣∣∣∣∣
m∑
i=1

εiwi

∣∣∣∣∣ ,
which, combined with (12.7) completes the proof.

Next, let us turn to the proofs of the two components, which are of independent interest
in their own right.

12.2.1 The supremum of Bernoulli processes for bounded sets

As mentioned previously, the idea behind the proof of Theorem 12.9 is that if W is a separated
set in `m2 that is also well bounded in `m∞ then the random variables

∑m
i=1 εiwi behave as if

they were gaussian because the vectors (vi −wi)mi=1 are ‘well-spread’: their `m2 norm is large,
but their `m∞ is relatively small.

Making this intuition more precise requires two preliminary steps. Let X1, ..., Xm be iid
copies of a symmetric random variable X. Set x > 0 and u ∈ Rm and consider the random
variable

Qtu =
m∑
i=1

uiXi1{|Xi|>t}.

It stands to reason that if X has a reasonable tail decay, that should be reflected in the
behaviour of Qtu as a function of t. Indeed, in the extreme case, when X is bounded, say by
1, Qtu ≡ 0 if t ≥ 1. Quantifying the effect that increasing t has on the tail behaviour of Qtu is
studied in the next lemma.

Lemma 12.10. There exist absolute constants c and c0 for which the following holds. Let X
be a symmetric random variable that satisfies ‖X‖ψ1 ≤ L and let X1, ..., Xm be independent
copies of X. Then for u ∈ Rm and every t, x > 0

Pr
(
|Qtu| ≥ x

)
≤ 2 exp

(
−cmin

{
x2

‖u‖22L2λ2(t)
,

x

L‖u‖∞

})
, (12.8)
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where λ(t) = Pr1/8(|X| ≥ t).
Moreover, for any p ≥ 1,

‖Qtu‖Lp ≤ c0L(
√
p‖u‖2λ(t) + p‖u‖∞).

The implication of Lemma 12.10 is that the fast tail decay of X “helps” the subgaussian
part of the tail of Qtu.

Proof. Fix p ≥ 1 and let Yi = uiXi1{|Xi|≥t}, which is a symmetric random variable. Using
the notation of Bernstein’s inequality (Theorem 3.7),

EY p
i =E(uiXi)

p−2 · (uiXi)
2
1{|X|≥t} ≤

(
E(uiXi)

2(p−2)
)1/2

·
(
E(uiXi)

4
1{|Xi|≥t}

)1/2
≤
(
E(uiXi)

2(p−2)
)1/2

·
(
E(uiXi)

8
)1/4 · Pr1/4(|X| ≥ t)

≤(cL)p−2‖u‖p−2
∞ p! · L2u2

iPr
1/4(|X| ≥ t)

for a suitable absolute constant c, because ‖X‖Lq . Lq and since p! ∼
√

2πp(p/e)p. Therefore,
one may set

M = cL‖u‖∞, and σ2
i = L2u2

iPr
1/4(|X| ≥ t).

The first part of the claim follows from Theorem 3.7, and the second one from the connection
between moments and tail estimates.

The estimate on ‖Qtu‖Lp immediately leads to the following outcome:

Corollary 12.11. Let U ⊂ Rm be a finite set and let X be as in Lemma 12.10. Then

Emax
u∈U
|Qtu| ≤ c(L) max

u∈U

(
λ(t)‖u‖2

√
log |U |+ ‖u‖∞ · log |U |

)
.

Proof. Let p = log |U |. Recall that if a ∈ Rd then ‖a‖∞ ≤ ‖a‖log d; therefore, by Jensen’s
inequality and the second part of Lemma 12.10,

Emax
u∈U
|Qtu| ≤eE

(∑
u∈U
|Qtu|p

)1/p

≤

(∑
u∈U

E|Qtu|p
)1/p

≤|U |1/p · CLmax
u∈U

(
√
p‖u‖2λ(t) + p‖u‖∞)

=cLmax
u∈U

(
λ(t)‖u‖2

√
log |U |+ ‖u‖∞ log |U |

)
.

Let us now prove a Sudakov type inequality indexed by a set that is both bounded in `m∞
and in `m2 .

Lemma 12.12. There exist constants κ and c for which the following holds. Let ρ > 0 and
U ⊂ 2ρBm

2 ∩ θBm
∞ where θ ≤ κρ/

√
log |U |. If U is ρ-separated with respect to the `2 norm

then

E sup
u∈U

∣∣∣∣∣
m∑
i=1

εiui

∣∣∣∣∣ ≥ cρ√log |U |.
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Proof. First, observe that by Sudakov’s inequality there is an absolute constant c1 such that

E sup
u∈U
|
m∑
i=1

giui| ≥ c1ρ
√

log |U |.

On the other hand, fix x > 0 and apply Lemma 12.10 for X = g—the standard gaussian
random variable. One has that for any t > 0,

E sup
u∈U
|
m∑
i=1

giui| ≤E sup
u∈U
|
m∑
i=1

εigi1{|gi|≤t}ui|+ E sup
u∈U
|
m∑
i=1

gi1{|gi|≥t}ui|

≤tE sup
u∈U
|
m∑
i=1

εiui|+ E sup
u∈U
|
m∑
i=1

gi1{|gi|≥t}ui|,

where the last inequality is an outcome of the contraction principle for Bernoulli processes,
conditioned on g1, ..., gm. Therefore, it suffices to shows that

c1

2
ρ
√

log |U | ≥ E sup
u∈U
|
m∑
i=1

gi1{|gi|≥t}ui|, (12.9)

to ensure that

E sup
u∈U
|
m∑
i=1

giui| ≤ 2tE sup
u∈U
|
m∑
i=1

εiui|,

which, in turn, implies

E sup
u∈U
|
m∑
i=1

εiui| ≥
c1

2t
ρ
√

log |U |,

as required.
To establish (12.9) one uses Corollary 12.11: recall that

max
u∈U
‖u‖2 ≤ 2ρ and max

u∈U
‖u‖∞ ≤ θ.

Set t to satisfy that λ(t) ≤ c1/(8c2), where c2 is the constant from Corollary 12.11. Since X
is a standard gaussian random variable, t can be taken to be an absolute constant. Thus,

E sup
u∈U
|
m∑
i=1

gi1{|gi|≥t}ui| ≤c2 max
u∈U

(
λ(t)‖u‖2

√
log |U |+ ‖u‖∞ · log |U |

)
≤c1

8
ρ
√

log |U |+ c2θ log |U | ≤ c1

4
ρ
√

log |U |

provided that θ ≤ c3ρ/
√

log |U | for a suitable absolute constant c3.

Proof of Theorem 12.9. Let W be ε separated in `m2 , set κ to be as in Lemma 12.12 and
recall that

W ⊂ c κε√
log |W |

Bm
∞.

The first observation is that for any ρ ≥ ε/2

sup
w∈W

logM ((W − w) ∩ 2ρBm
2 , ρB

m
2 ) ≤ c2ρ

−2E sup
w∈W

∣∣∣∣∣
m∑
i=1

εiwi

∣∣∣∣∣ . (12.10)
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Indeed, fix w ∈W and let U ⊂ (W − w) ∩ 2ρBm
2 be a ρ-separated set for ρ ≥ 2ε. Therefore,

sup
u∈U
‖u‖∞ ≤ 2 sup

w∈W
‖w‖∞ ≤ 2

κε√
log |W |

≤ κ ρ√
log |U |

,

and the conditions of Lemma 12.12 hold. Applying that lemma for the set U , it is evident
that

log |U | ≤ cρ−2

(
E sup
u∈U

∣∣∣∣∣
m∑
i=1

εiui

∣∣∣∣∣
)2

and (12.10) is valid because each u ∈ U is of the form u = w′ − w for some w′ ∈W ; thus

E sup
u∈U

∣∣∣∣∣
m∑
i=1

εiui

∣∣∣∣∣ ≤ 2E sup
w∈W

∣∣∣∣∣
m∑
i=1

εiWi

∣∣∣∣∣ .
Next, let us use (12.10) iteratively: denote by R = supw∈W ‖w‖2 and let W1 ⊂ W be a
maximal R/2-separated subset of W . Clearly,

M(W, εBm
2 ) ≤M(W ∩RBm

2 , (R/2)Bm
2 ) · max

w1∈W1

M ((W − w1) ∩ (R/2)Bm
2 , εB

m
2 ) .

Continuing in the same fashion,

M(W, εBm
2 ) ≤

∏̀
k=1

max
w∈W

M
(
W ∩ (R/2k−1)Bm

2 , (R/2
k)Bm

2

)
, (12.11)

where R/2` ≤ ε ≤ R/2`−1, and in particular, for each ρ = R/2k one has that ρ ≥ ε/2. Hence,
combining (12.11) with (12.10),

logM (W, εBm
2 ) ≤

∑̀
k=1

max
w∈W

logM
(
W ∩ (R/2k−1)Bm

2 , (R/2
k)Bm

2

)

≤cε2

(
E sup
w∈W

|
m∑
i=1

εiwi|

)2

.

12.2.2 Spreading a set using chopping maps

Now let us turn to the second component needed for the proof of Theorem 12.7, the con-
struction of the embedding Φ that maps V to `m2 . The construction is based on the idea of
chopping maps, introduced in [?] and which play a central in the solution of the Bernoulli
conjecture in [?].

We only define the maps that are used in the proof of Theorem 12.7 and refer the reader
to [?] for a more detailed exposition on the topic of chopping maps.

Definition 12.13. Let ∆ > 0. For every k = ±1,±2, ..... define a function φk as follows: if
k > 0 and x ≥ 0 set

φk(x) =


0 if x ∈ [0, k∆),

x−∆k ifx ∈ [k∆, (k + 1)∆),

∆ if x ∈ [(k + 1)∆,∞),

and if x < 0 set φk(x) = 0. If k < 0 define φk(x) = −(φ−k(−x)) for any x ∈ R.
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Thus, each φk(x) is a 1-Lipschitz function. The functions φk are called chopping maps
because that is what they do: each x ∈ R is ‘broken’ into pieces of size ∆. This can be
recorded in the natural vector (φk(x))k: for example, if x > 0 then writing x = m∆ + α for
m ≥ 0 and 0 ≤ α < ∆, it is evident that

(φk(x))k 6=0 =

0, ..., 0,︸ ︷︷ ︸
k<0

∆, ...,∆︸ ︷︷ ︸
k=1,...,m

, α︸︷︷︸
k=m+1

, 0, ....︸︷︷︸
k>m+1

 .

From here on we set for x ∈ R,

Φ(x) = (φk(x))k 6=0,

where we omit the dependence of the chopping maps on the parameter ∆.

The chopping maps naturally define a transformation, mapping finite subsets of Rd to a
high-dimensional space in the following way:

Definition 12.14. Let Φ(x) = (φk(x))k 6=0 and for T ⊂ Rd set

Φ(T ) =
{

(Φ(ti))
d
i=1 : (ti)

d
i=1 ∈ T

}
.

Note the obvious fact that the coordinates of Φ(T ) are all bounded by ∆. With Lemma
12.8 in mind, the choice of ∆ has to be ∼ δ/p.

The two crucial features of the mapping Φ are:

• If T ⊂ Rd is ∼ δ separated with respect to the Lp(E) norm then for the right choice of ∆
(again, ∆ ∼ δ/p, then Φ(T ) is separated in `2 at scale ∼ δ/√p.

• For an arbitrary T ⊂ Rd, the Bernoulli process indexed by Φ(T ) is ‘smaller’ than the
Bernoulli process indexed by T .

In other words, if one is interested in lower bounds on Bernoulli processes, one possibility
is to study the process indexed by Φ(T ) (defined explicitly in what follows). The added value
is that Φ(T ) is ‘more regular’ than T , because its coordinates are all bounded by ∆. And, as
a preliminary indication that the resulting bound is not trivial, separation (in some sense) in
T is inherited by Φ(T ).

Of course, all this is shameless hand waiving. Let us turn to a more accurate description
of the mapping Φ, beginning with a straightforward (yet a little tedious) observation:

Lemma 12.15. Let ∆ > 0 and set (φk)k 6=0 be the corresponding chopping maps. Then for
x, y ∈ R,

1

10
‖Φ(x)− Φ(y)‖22 ≤ ∆|x− y|1{|x−y|>∆} + |x− y|21{|x−y|<∆} ≤ 10‖Φ(x)− Φ(y)‖22.

We omit the details of the proof which is based on a case-by-case analysis. To give
an illustration of why the statement is correct in one case, assume that x = m∆ + α and
y = n∆ + β for m ≥ n > 0 and 0 < α, β < ∆. If m− n ≥ 3 then

m− n
2

∆ ≤ |x− y| ≤ 2(m− n)∆,
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implying that ∆|x− y|1{|x−y|>∆} + |x− y|21{|x−y|<∆} = ∆|x− y|, and

1

2
(m− n)∆2 ≤ ∆|x− y| ≤ 2(m− n)∆2.

On the other hand

Φ(x) =

0, ..., 0︸ ︷︷ ︸
k<0

,∆, ...,∆︸ ︷︷ ︸
k=1,...,m

, α,︸︷︷︸
k=m+1

, 0, ....︸︷︷︸
k>m+1

 .

Φ(y) =

0, ..., 0︸ ︷︷ ︸
k<0

,∆, ...,∆︸ ︷︷ ︸
k=1,...,n

, β︸︷︷︸
k=n+1

, 0, ...,︸︷︷︸
k>n+1

 ,

and thus
‖Φ(x)− Φ(y)‖22 = (∆− β)2 + (m− n− 1)∆2 + α2.

Since m− n− 1 ≥ (m− n)/3 if follows that

‖Φ(x)− Φ(y)‖22 ≥ (m− n− 1)∆2 ≥ m− n
3

∆2

and
‖Φ(x)− Φ(y)‖22 ≤ (m− n)∆2 + 2∆2 ≤ 2(m− n)∆2,

proving the wanted equivalence.
Verifying the other cases is equally simple.

Let us turn to the question of separation and the way the vector-valued mapping Φ
preserves it.

Lemma 12.16. There exists an absolute constant c for which the following holds. If x, y ∈ Rd
satisfy that

p∑
i=1

(x− y)∗i +
√
p

∑
i>p

((x− y)∗i )
2

1/2

≥ δ,

then for ∆ = δ/4p one has that

‖Φ(x)− Φ(y)‖2 ≥ cδ/
√
p.

In particular, if x, y are δ-separated with respect to the Lp(E) norm endowed on Rd, that
is exhibited by the `2 distance between Φ(x) and Φ(y), as long as the scale of the chopping
maps is selected wisely.
Proof. Applying Lemma 12.15 and the fact that

‖Φ(x)− Φ(y)‖22 =

d∑
i=1

(Φ(xi)− Φ(yi))
2 ,

it suffices to show that for ∆ = δ/4p we have

d∑
i=1

∆|xi − yi|1{|xi−yi|>∆} + |xi − yi|21{|xi−yi|<∆} &
δ2

p
.
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Without loss os generality assume that (|xi− yi|)di=1 is non-increasing and let us consider two
cases. First, if

∑p
i=1 |xi − yi| ≥ δ/2, then

p∑
i=1

|xi − yi|1{|xi−yi|≥δ/4p} ≥
δ

4
;

indeed,
∑p

i=1 |xi − yi|1{|xi−yi|<δ/4p} ≤ p · (δ/4p) = δ/4. Therefore,

∆ ·
p∑
i=1

|xi − yi|1{|xi−yi|≥δ/4p} ≥
δ

4p
· δ

4
=

δ2

16p
,

as required.

If, on the other hand,
∑p

i=1 |xi − yi| ≤ δ/2 then by monotonicity,

|xp − yp| ≤
1

p

p∑
i=1

|xi − yi| ≤
δ

2p
.

And, since by the separation condition

p∑
i=1

|xi − yi|+
√
p

∑
i>p

(xi − yi)2

1/2

≥ δ,

it is evident that

p
∑
i>p

(xi − yi)2 ≥ δ2 − δ2

4
≥ δ2

2
.

Let I = {i > p : |xi − yi| ≥ δ/4p}. If |I| ≥ p/4 then again,

∆
∑
i∈I
|xi − yi| ≥

δ

4p

δ

4p

p

4
=

δ2

64p
;

otherwise, |I| ≤ p/4, implying that

∑
i∈I
|xi − yi|2 ≤ |xp − yp|2|I| ≤

δ2

4p2
· p

4
=

δ2

16p
,

and thus on the complement Ic in {p+ 1, ...., d} we have |xi − yi| ≤ δ/4p and

∑
i∈Ic
|xi − yi|2 ≥

δ2

4p
− δ2

16p
≥ δ2

16p
;

thus, ∑
i∈Ic
|xi − yi|21{|xi−yi|≤δ/4p} ≥

δ2

16
,

completing the proof.
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Finally, let us show that the Bernoulli process indexed by T dominates the Bernoulli
process indexed by Φ(T ), which is the final component needed for the proof of Theorem 12.7.

Recall that
Φ(T ) =

{
(Φ(ti))

d
i=1 : (ti)

d
i=1 ∈ T

}
,

and view each Φ(t) ∈ Φ(T ) as a vector indexed by pairs (i, k) for i ∈ {1, ..., d} and k ∈ Z\{0}.
This set of indices is denoted by Λ.

Let {εi,k : (i, k) ∈ Λ} and (ε′i)
d
i=1 be independent Bernoulli random variables. Thus,

(εi,k)(i,k)∈Λ and (ε′iεi,k)(i,k)∈Λ have the same distribution. With that in mind, set

ZΦ(t) =
∑

(i,k)∈Λ

ε′iεi,kφk(ti) =
d∑
i=1

ε′i

∑
k 6=0

εi,kφk(ti)


and note that E supt∈T ZΦ(t) is the expectation of the supremum of the Bernoulli process
indexed by Φ(T ).

Observe that there exists an absolute constant c for which

E sup
t∈T

∣∣∣∣∣
d∑
i=1

εiti

∣∣∣∣∣ ≥ cE sup
t∈T
|ZΦ(t)|.

Indeed, fix a realization of (εi,k)(i,k)∈Λ and let hi(x) =
∑

k 6=0 εi,kφk(x). Thus,

E sup
t∈T
|ZΦ(t)| = E sup

t∈T

∣∣∣∣∣
d∑
i=1

ε′ihi(ti)

∣∣∣∣∣ .
For x, y ∈ R, |hi(x)− hi(y)| ≤ 2|x− y| and h(0) = 0; therefore, by the contraction inequality
for Bernoulli processes,

E sup
t∈T
|ZΦ(t)| = E sup

t∈T

∣∣∣∣∣
d∑
i=1

ε′ihi(ti)

∣∣∣∣∣ ≤ 2E sup
t∈T

∣∣∣∣∣
d∑
i=1

ε′iti

∣∣∣∣∣ .

Exercise 41. Prove that the process t→ ZΦ(t) is well defined.
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Chapter 13

The Combinatorial Dimension

In addition to the covering numbers and to the Bernoulli/gaussian mean-widths of the class,
there is another way of measuring how “rich” a set is, that is extensively used in statistical
learning theory. In its simplest from, the combinatorial dimension captures the largest di-
mension of a combinatorial cube that can be found in a coordinate projection of a binary
valued class of functions F .

This simple version of the combinatorial dimension was introduced by Vapnik and Cher-
vonenkis, and is known as the VC dimension.

Definition 13.1. Let F be a class of {0, 1}-valued functions on a space Ω. The class F
shatters {x1, ..., xn} ⊂ Ω, if for every I ⊂ {1, ..., n} there is a function fI ∈ F for which
fI(xi) = 1 if i ∈ I and fI(xi) = 0 if i 6∈ I. Let

VC(F,Ω) = sup {|A| : A ⊂ Ω, A is shattered by F} .

VC(F,Ω) is the VC dimension of F , but when the underlying space is clear we denote it
by VC(F ).

It is easy to see that σ = {x1, ..., xn} is shattered if

PσF = {(f(xi))
n
i=1 : f ∈ F} = {0, 1}n.

Thus, The VC dimension is the largest cardinality of σ ⊂ Ω for which PσF is as big as it can
be: the combinatorial cube of dimension |σ|.

The real-valued counterpart of the VC dimension, called the combinatorial dimension, is
defined by extending the notion of a shattered set. Unlike the binary-valued case, when every
cube found in PσF is the combinatorial cube of the appropriate dimension, in the real-valued
case there is a tradeoff between the ‘size’ of the cube and the dimension.

Definition 13.2. For ε > 0, a set σ = {x1, ..., xn} ⊂ Ω is ε-shattered by F if there is a
function s : σ → R, which satisfies that for every I ⊂ {1, ..., n} there is some fI ∈ F for
which fI(xi) ≥ s(xi) + ε if i ∈ I, and fI(xi) ≤ s(xi)− ε if i 6∈ I. Let

VC(F,Ω, ε) = sup {|σ| : σ ⊂ Ω, σ is ε−shattered by F} .

fI is called the shattering function of the subset I and the vector (s(xi))
n
i=1 is a witness to

the ε-shattering. In cases where the underlying space is clear we denote the combinatorial
dimension by VC(F, ε).

159



D
RA
FT

160 CHAPTER 13. THE COMBINATORIAL DIMENSION

There is a clear geometric interpretation of shattering, implying that if σ is ε-shattered
by F then PσF contains a ‘cubic structure’. Indeed, consider the “cell”

(s(xi))
n
i=1 + εBn

∞ ⊂ Rn.

The 2n hyperplanes supporting the n−1 dimensional facets of the cell define 2n ‘quadrants’ in
Rn, with each quadrant corresponding to a vector signs (ηi)

n
i=1 ∈ {−1, 1}n. A vector z ∈ Rn

belongs to the quadrant defined by (ηi)
n
i=1 if zi ≥ s(xi) + ε when ηi = 1, and zi ≤ s(xi) − ε

otherwise. The set σ is shattered by F with the witness (s(xi))
n
i=1 if PσF contains at least

one point in each quadrant. Using this geometric picture it is clear that conv(PσF ) contains
(s(xi))

n
i=1 + εBn

∞.

Observe that if F is convex and centrally symmetric and if σ = {x1, ..., xn} is ε-shattered
by F then one may take s(xi) = 0 and

εBn
∞ ⊂ PσF.

Indeed, if σ is ε-shattered with a witness (s(xi))
n
i=1, then for every I ⊂ {1, ..., n} there is some

fI that satisfies fI(xi) ≥ s(xi) + ε if i ∈ I and fI(xi) ≤ s(xi) − ε for i ∈ Ic. For every such
I, let gI = (fI − fIc)/2, which clearly belongs to F because the class is convex and centrally
symmetric. It follows that εBσ

∞ ⊂ PσF , as claimed.

In particular, if {x1, ..., xn} is ε-shattered by F then εBn
∞ ⊂ absconv(F ).

13.1 Metric entropy and the VC dimension

The next lemma, known as the Sauer-Shelah Lemma was proved independently at least three
times, by Sauer [?], Shelah [?] and Vapnik and Chervonenkis [?], and then generalized by
Karpovsky and Milman [?].

Lemma 13.3. Let F be a class of {0, 1}-valued functions and set d = VC(F ). Then, for
every finite subset σ ⊂ Ω of cardinality n,

|PσF | ≤
(en
d

)d
.

In particular, for every 0 < ε ≤ 1/2,

N (ε, F, L∞(σ)) = |PσF | ≤ (en/d)d .

The proof of Lemma 13.3 uses the notion of a hereditary class of sets.

Definition 13.4. Let U be a class of subsets of Ω. The class is hereditary if for every A ∈ U
and B ⊂ A, then B ∈ U .

An natural example of a hereditary class of subsets of {1, ..., n} is the d-cross:

{U ⊂ {1, ..., n} : |U | ≤ d} .

Proof. We identify PσF with a class of sets U , each belongs to {1, ..., n} in the natural way:
each Pσf is of the form f = 1A for A ⊂ {1, ..., n}.
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The assertion of Lemma 13.3 is immediate if U is hereditary. Indeed, a hereditary class
of subsets of {1, ..., n} whose VC dimension is at most d is a subset of the d-cross. And, the
cardinality of the d-cross is

d∑
i=1

(
n

i

)
≤
(en
d

)d
.

Therefore, the proof will be complete by constructing a one-to-one map from U to a hereditary
class U ′ whose VC dimension is at most d.

Define a family of operators Tx in the following way: Tx(U) = U\{x} if x ∈ U and
U\{x} 6∈ U ; otherwise Tx(U) = U . Thus, when viewing U as a subset of {0, 1}n, the operator
Tx makes U ⊂ {0, 1}n more hereditary by ‘pushing down’ points in the combinatorial cube
when there is an empty slot ‘below’ them.

To see that Tx is one-to-one, assume that Tx(U1) = Tx(U2). If Tx(Ui) 6= Ui for i = 1, 2,
then Ui = Tx(Ui) ∪ {x} and thus U1 = U2. Otherwise, if Tx(U1) = U1 and Tx(U2) 6= U2, then
U1 = Tx(U2) and U2 = Tx(U2) ∪ {x}, which is impossible, because U2\{x} ∈ U , and that
would imply that Tx(U2) = U2.

Next, let us show that if I is shattered by Tx(U) then it is also shattered by U . In
particular, that means that the VC dimension cannot increase by the application of Tx.

Consider two cases. First, let x 6∈ I, and in which case, for every U ∈ U , U∩I = Tx(U)∩I.
Thus, if I is shattered by {Tx(U) : U ∈ U} then I is shattered by U .

Next, assume that x ∈ I, and let I ′ ⊂ I\{x}. Let us show that both I ′ and I ′∪{x} belong
to U , implying that I is shattered by U . Indeed, recall that Tx(U) shatters I, and therefore
I ′, I ′ ∪ {x} ∈ Tx(U). By the definition of Tx, I ′ ∪ {x} ∈ U and since x 6∈ I ′ it is evident that
I ′ ∈ U as well—showing that the VC dimension does not increase with the application of Tx.

To complete the proof, let V be a class of subsets of {1, ..., n} and set

H(V) =
∑
V ∈V
|V |.

Let T be the set of finite compositions of operators of the form Tx. Since H(TxV) ≤ H(V),

one has that inf T̃∈T H
(
T̃ (U)

)
is attained. The minimizer T̃ (U) is a hereditary class of sets:

for every x ∈ {1, ..., n}, and every V ∈ T̃ (U), if x ∈ V then V \{x} ∈ T̃ (U) – otherwise, one
may apply Tx and decrease H even further.

Although the L∞ entropy estimate depends on n and thus on the dimension (cardinality)
of the coordinate projection, it is possible to derive dimension free Lp entropy bounds for
1 ≤ p < ∞. The first such bound was proved by Dudley [?] and is based on a combination
of a dimension reduction argument and the Sauer-Shelah Lemma. The dimension reduction
part shows that if K ⊂ F is “well separated” in L1, in the sense that every two points are
different on a number of coordinates that is proportional to n, one can find a much smaller
set of coordinates (whose cardinality depends on the cardinality of K) on which every two
points in K are different on at least one coordinate. We prove the claim for p = 1; the general
case follows because the class contains {0, 1}-valued functions, and for any f, h ∈ F and any
probability measure µ, ‖f − g‖pLp(µ) = ‖f − g‖L1(µ).

Theorem 13.5. There exists an absolute constant c for which the following holds. Let F be
a class of {0, 1}-valued functions on a probability space (Ω, µ). If VC(F ) ≤ d then for any
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0 < ε < 1/2,

N(ε, F, L1(µ)) ≤
(

2

ε

)cd
.

Proof. Consider first an arbitrary empirical measure µn = 1
n

∑n
i=1 δxi , and let us prove the

entropy estimate for such a measure. Set Kε to be any ε-separated subset of F with respect
to the L1(µn) norm and denote its cardinality by D.

Let V = {fi−fj |fi 6= fj ∈ Kε}; thus, |V | ≤ D2, and since Kε is ε-separated and consist of
{0, 1}-valued functions, it follows that every v ∈ V has at least nε coordinates which belong
to {−1, 1}.

Set (Xi)
t
i=1 to be independent {x1, ..., xn}-valued random variables, where for every 1 ≤

i ≤ t and 1 ≤ j ≤ n, Pr(Xi = xj) = 1/n. For any v ∈ V ,

Pr (∀i, v(Xi) = 0) =

t∏
i=1

Pr (v(Xi) = 0) ≤ (1− ε)t,

implying that
Pr (∃v ∈ V, ∀i, v(Xi) = 0) ≤ |V |(1− ε)t ≤ D2(1− ε)t.

Therefore,
Pr (∀v ∈ V, ∃i, 1 ≤ i ≤ t, |v(Xi)| = 1) ≥ 1−D2(1− ε)t,

and if the latter is greater than 0, there is a set I ⊂ {1, ..., n} of cardinality |I| ≤ t and the
mapping (f(xi))

n
i=1 → (f(xi))i∈I is one-to-one. In particular, setting

PIKε =
{

(f(xi))i∈I
∣∣f ∈ Kε

}
,

then |PIKε| = D. ∣∣{(f(xi))i∈I
∣∣f ∈ Kε

}∣∣ = D.

It is straightforward to verify that the choice of t = 2 logD
ε suffices to ensure the existence of

such a set I. Finally, by the Sauer-Shelah Lemma,

D = |PIKε| ≤ |PIF | ≤
(
e|I|
d

)d
≤
(

2e logD

dε

)d
. (13.1)

To complete the proof, note that if α ≥ 1 and α log−1 α ≤ β then α . β log(eβ). By (13.1),

c logD

εd
≤ c

ε
log

(
c logD

εd

)
,

and one may set α = (c logD)/εd and β = 1/ε. Thus, |D| ≤ (2/ε)c
′d, as claimed.

This result was strengthened by Haussler in [?]:

Theorem 13.6. There is a constant C such that, for every class of binary-valued functions
F with VC(F ) = d and every 0 < ε < 1, N(ε, F ) ≤ Cd(4e)dε−d.


