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Thank you organizers!
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Joint work with Illya Koval and Vadim Kaloshin from IST Austria.
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Laplace Spectrum: Solutions of

{ −∆ψj = λ2
j ψj in Ω,

Bψj = 0

Length Spectrum: Closure of lengths of closed (periodic)
geodesics/billiard trajectories + zero.

Poisson Relation: SingSupp cos t
√
−∆ ⊂ LSP.

Inclusion or Equality? When is Poisson relation a strict inequality?
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Motivation

To what extent do the Laplace spectrum and length spectrum
encode the same data?

Can one translate inverse problems from one area to another? Ex.
rigidity phenomena in dynamics / PDE

Are there limitations to using the wave trace for the inverse spectral
problem?

Bouncing balls? Hyperbolic orbits? Nearly glancing + whispering
gallery modes?

This work is inspired by the work of Steve Zelditch, whose advice
was very helpful in the beginning of this project.
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Whispering gallary modes (St. Paul’s Cathedral, London)
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Bouncing ball orbits (NCSU, Raleigh)
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Theorem

Let Ω0 be an ellipse. Then, for a dense set of eccentricities e ∈ (0,∞)
and for each m ∈ N, there exist perturbations Ωε of Ω0 which fix 2m
hyperbolic orbits denoted γi and γ′j with corresponding rational rotation
numbers p/q, p′/q′, q = q′ + 4 mod 8, and εmn (e)→ 0 as n→∞ such
that that: for some length L(ε, e) ∈ LSP(Ωε), w(t) ∈ Cm,α(L− δ, L + δ)
for δ sufficiently small and any α ∈ (0, 1).
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Billiards

Let Ω0 be a smooth, convex planar domain.

β : B∗∂Ω0 → B∗∂Ω0

4 1 Aubry–Mather theory

h = h(x1 − x0),

with h′ = f−1; in other words, h is strictly convex.

Example 1.1.5. In some sense the “simplest” non–integrable monotone twist
map is the so–called standard map

φ : (x, y) "→
(
x + y +

k

2π
sin 2πx, y +

k

2π
sin 2πx

)

where k ≥ 0 is a parameter. This map has been the subject of extensive
analytical and numerical studies. Famous pictures illustrate the transition
from integrability (k = 0) to “chaos” (k ≈ 10).

Example 1.1.6. A particularly interesting class of monotone twist maps comes
from planar convex billiards; we will deal with convex billiards in Chap. 3.
The investigation of such systems goes back to Birkhoff [15] who introduced
them as model case for nonlinear dynamical systems; for a modern survey see
[101].

Fig. 1.2. The billard in a strictly convex domain

Given a strictly convex domain Ω in the Euclidean plane with smooth
boundary ∂Ω, we play the following game. Let a mass point move freely inside
Ω, starting at some initial point on the boundary with some initial direction
pointing into Ω. When the “billiard ball” hits the boundary, it gets reflected
according to the rule “angle of incidence = angle of reflection”; see Fig. 1.2.
The billiard map associates to a pair (point on the boundary, direction), re-
spectively (s, ψ) = (arclength parameter divided by total length, angle with
the tangent), the corresponding data when the points hits the boundary again.
The lift of this map, which is then defined on R × (0, π), is not a monotone
twist map.
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Caustics

A smooth curve C is called a caustic if any tangent line drawn to C
remains a tangent to C after reflection at the boundary.

3.1 Convex billiards 41

ML(Ω) : Q ∩
(
0,

1

2

]
→ R

that associates to any m/n in lowest terms the maximal length of closed
geodesics having rotation number m/n.

The length spectrum of Ω is defined as the set

L(Ω) := N {lengths of closed geodesics in Ω} ∪ N l(∂Ω).

Note that, due to Birkhoff’s theorem, the marked length spectrum is a
well defined map. Moreover, l(∂Ω) = 1 by our standing assumption that the
boundary length is normalized to 1.

The length spectrum contains information about all closed geodesics, al-
beit in an “unformatted” form. In contrast, the marked length spectrum does
give the labelling by the rotation number but only for the closed geodesics of
maximal length.

Have you ever visited the great basilica in Rome and stood in its huge dome
(42m in diameter)? If you are inside the domed roof and try to communicate
with a friend on the other side of the dome. Rather than shouting into the air,
get close to the circular wall and whisper along the wall – you will be heard
clearly on the other side.

This is the effect of what is usually called a “whispering gallery”. The
sound waves get reflected and travel along the wall, always staying close to it.
In the context of billiards, such a whispering gallery is called a caustic.

Fig. 3.3. A convex caustic

Definition 3.1.5. Let Ω be a strictly convex bounded domain in R2. A convex
caustic is a closed C1–curve in the interior of Ω, bounding itself a strictly
convex domain, with the property that each trajectory that is tangent to it
stays tangent after each reflection; see Fig. 3.3.
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Phase space

Map C onto the total phase space B∗∂Ω u Z/`Z× (0, π) to obtain
a smooth closed curve, invariant under the billiard map β.

Use ω(C) for the rotation number of invariant curve.

Lazutkin[73]: In every neighborhood of the boundary there exists a
family of convex caustics whose rotation numbers belong to a
Cantor set of positive measure.
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Lengths

Loop function: `p,q(s) = length of rot. number p/q loop emanating
from x(s) ∈ ∂Ω, if it exists.

Length functional: Lq(x1, · · · , xq) =
∑q

1 |xi+1 − xi |.

Periodic orbits arise as critical points of `p,q,Lq.

Length spectrum is set of critical values of `p,q,Lq.
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Billiards on the ellipse

3.1 Convex billiards 43

which case the trajectory never intersects the segment between the foci) or
the two branches of a confocal hyperbola (where the trajectory always in-
tersects the segment between the foci); see Fig. 3.5. The eccentricity of the
corresponding conic section, for example, can be taken as an integral for the
elliptical billiard. For proofs and further remarks, the reader may consult
[24, 101].

Thus, the confocal ellipses inside an elliptical billiard are convex caustics
in accordance with Def. 3.1.5, so the elliptical billiard is foliated by convex
caustics (up to the segment between the foci). The branches of the confocal
hyperbolae can then be seen as caustics in the more general sense mentioned
above.

(a) Caustics are confocal ellipses and hy-
perbolae

x

y

(b) Phase portrait

Fig. 3.5. The billiard inside an ellipse

The phase portrait of an elliptical billiard is also shown in Fig. 3.5. Al-
though it looks like the phase portrait of the pendulum (Fig. 1.3), the dynam-
ics are quite different. The points (0, 0) and (1/2, 0) and its translates do not
represent equilibrium points anymore, but belong to the two–periodic orbits
corresponding one of the half–axes of the ellipse, and similarly for the other
half–axis. Their rotation number is 1/2, which implies that the islands are not
fixed, but “wander”: they are mapped onto each other.

Bounding the islands we see separatrices, corresponding to the orbits
through the foci. The invariant curves above and below the seperatrices rep-
resent the orbits not intersecting the segment between the foci (i.e., being
tangent to confocal hyperbola).

As an aside, we mention here that a famous conjecture, usually attributed
to Birkhoff, states that the elliptical is, in fact, the only convex billiard with
an integral.

Confocal ellipses and hyperbolas Phase space foliation

Birkhoff Conjecture: The only integrable strictly convex billiards are
ellipses. Integrable means that the union of all convex caustics has a
non-empty interior in R2.

Amir Vig (University of Michigan, Ann Arbor) Cancellations in the Wave Trace 16 / 38



Caustics of disks and ellipses

COMPUTING MATHER’S �-FUNCTION FOR BIRKHOFF BILLIARDS 5059

In particular, ✓ stays constant along the orbit and it represents an integral of motion
for the map. Moreover, this billiard enjoys the peculiar property of having the phase
space – which is topologically a cylinder – completely foliated by homotopically
non-trivial invariant curves C✓0 = {✓ ⌘ ✓0}. These curves correspond to concentric
circles of radii ⇢0 = R cos ✓0 and are examples of what are called caustics, i.e.,
(smooth and convex) curves with the property that if a trajectory is tangent to one
of them, then it will remain tangent after each reflection (see figure 2).

Figure 2. Billiard in a disc

A billiard in a disc is an example of an integrable billiard. There are di↵erent ways
to define global/local integrability for billiards (the equivalence of these notions is
an interesting problem itself):

- either through the existence of an integral of motion, globally or locally near
the boundary (in the circular case an integral of motion is given by I(s, ✓) = ✓),

- or through the existence of a (smooth) foliation of the whole phase space (or
locally in a neighbourhood of the boundary {✓ = 0}), consisting of invariant
curves of the billiard map; for example, in the circular case these are given by
C✓. This property translates (under suitable assumptions) into the existence
of a (smooth) family of caustics, globally or locally near the boundary (in the
circular case, the concentric circles of radii R cos ✓).

In [2], Misha Bialy proved the following beautiful result concerning global inte-
grability (see also [24]):

Theorem (Bialy). If the phase space of the billiard ball map is globally foliated
by continuous invariant curves which are not null-homotopic, then it is a circular
billiard.

However, while circular billiards are the only examples of global integrable bil-
liards, local integrability is still an intriguing open question. One could consider a
billiard in an ellipse: this is in fact (locally) integrable (see Section 3.2). Yet, the
dynamical picture is very distinct from the circular case: as it is showed in figure
3, each trajectory which does not pass through a focal point, is always tangent to
precisely one confocal conic section, either a confocal ellipse or the two branches of
a confocal hyperbola (see for example [22, Chapter 4]). Thus, the confocal ellipses
inside an elliptical billiards are convex caustics, but they do not foliate the whole

5060 ALFONSO SORRENTINO

domain: the segment between the two foci is left out (describing the dynamics
explicitly is much more complicated: see for example [23] and Section 3.2).

Figure 3. Billiard in an ellipse

Question II (Birkho↵). Are there other examples of (locally) integrable billiards?

A negative answer to this question would solve what is generally known as
Birkho↵ conjecture: amongst all convex billiards, the only integrable ones are the
ones in ellipses (a circle is a distinct special case).

Despite its long history and the amount of attention that this conjecture has cap-
tured, it remains essentially open. As far as our understanding of integrable billiards
is concerned, the two most important related results are the above–mentioned the-
orem by Bialy [2] (see also [24]), a result by Delshams and Ramı́rez-Ros [5] in which
they study entire perturbations of elliptic billiards and prove that any nontrivial
symmetric perturbation of the elliptic billiard is not integrable, and a theorem by
Mather [13] which proves the non-existence of caustics (hence, the non-integrability)
if the curvature of the boundary vanishes at one point. This latter justifies the re-
striction of our attention to strictly convex domains.

We shall see in the next subsection how this conjecture/question can be rephrased
as a regularity question for Mather’s � function (see Question II bis).

1.3 - Mather’s minimal average action (or �-function) and billiards.
At the beginning of the eighties Serge Aubry and John Mather developed, in-

dependently, what nowadays is commonly called Aubry–Mather theory. This novel
approach to the study of the dynamics of twist di↵eomorphisms of the annulus,
pointed out the existence of many action-minimizing orbits for any given rotation
number (for a more detailed introduction, see for example [15, 19, 20]).

More precisely, let f : R/Z ⇥ R �! R/Z ⇥ R a monotone twist map, i.e., a

C1 di↵eomorphism such that its lift to the universal cover f̃ satisfies the following
properties (we denote (x1, y1) = f̃(x0, y0)):

(i) f̃(x0 + 1, y0) = f̃(x0, y0) + (1, 0),
(ii) @x1

@y0
> 0 (monotone twist condition),

(iii) f̃ admits a (periodic) generating function h (i.e., it is an exact symplectic
map):

y1 dx1 � y0 dx0 = dh(x0, x1).
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Phase space portrait

The frequency map for billiards inside ellipsoids 14

Figure 1. Phase portrait of the billiard map in (', r) coordinates for a = 1 and b = 4/9.
The dashed black lines enclose the phase space (10). The black points are the hyperbolic two-
periodic points corresponding to the oscillation along the major axis of the ellipse. The black
curves are the separatrices of these hyperbolic points. The magenta points denote the elliptic
two-periodic points corresponding to the oscillation along the minor axis of the ellipse. The
magenta curves are the invariant curves whose rotation number coincides with the frequency
of these elliptic points. The invariant curves with rotation numbers 1/6, 1/4 and 1/3 are
depicted in blue, green and red, respectively. The red points label a three-periodic trajectory
whose caustic is an ellipse. The green points label a four-periodic trajectory whose caustic is
a hyperbola.

4.3. Analytical properties of the rotation number

Let ⇢(�) be the rotation number of the billiard trajectories inside the ellipse Q sharing the
nonsingular caustic Q�. From definition 2 we get that the function ⇢ : E [ H ! R is given
by the quotients of elliptic integrals

⇢(�) = ⇢(�; b, a) =

R min(b,�)

0
dsp

(��s)(b�s)(a�s)

2
R a

max(b,�)
dsp

(��s)(b�s)(a�s)

=

R µ

�
dtp

t(t�1)(t��)

2
R 1

0
dtp

t(t�1)(t��)

, (11)

where the parameters 1 < � < µ are given by � = (a � m)/(a � m) and µ = a/(a � m),
with m = min(b, �) and m = max(b, �). The second equality follows from the change of
variables t = (a� s)/(a�m). The second quotient already appears in [12]. Other equivalent
quotients of elliptic integrals were given in [30, 41]. We have drawn the rotation function ⇢(�)

in figure 2, compare with [41, figure 2].

Proposition 8. The function ⇢ : E [ H ! R given in (11) has the following properties.

(i) It is analytic in ⇤ = E [ H and increasing in E.

Purple dots: bouncing ball orbit on the minor axis.
Black dots: bouncing ball orbit on the major axis.
Green dots: 4-periodic orbit tangent to a confocal hyperbola.
Red dots: 3-periodic orbit tangent to a confocal ellipse.

Amir Vig (University of Michigan, Ann Arbor) Cancellations in the Wave Trace 18 / 38



Wave group

U(t) =

(
cos t
√
−∆ sin t

√
−∆√
−∆

−
√
−∆ sin t

√
−∆ cos t

√
−∆,

)
(1)

Solves:
{

(∂2
t −∆)u = 0,

u
∣∣
t=0

= f , ∂νu
∣∣
t=0

= g .
(2)

For ϕ ∈ S(R),

〈trU(t), ϕ〉 ≡ tr

∫
ϕ(t)U(t) dt
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The Poisson Relation

Anderson-Melrose[77]:

SingSupp

(
Tr cos t

√
−∆B

Ω

)
⊂ {0} ∪ ±LSP(Ω),

Wave trace asymptotics of γ: Tr cos t
√
−∆ ∼

<
{
aγ,0(t − L + i0)−1 +

∞∑

k=0

aγ,k(t − L + i0)k log(t − L + i0)

}
,

Sum over γ, length(γ) = L.
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Balian-Bloch

Let ρ̂ bump fxn supported near L ∈ LSP(Ω).

∫ ∞

0
e ikt ρ̂(t)w(t)dt = tr ρ ∗ kR(k) ∼

∑

length(γ)=L

Dγ(k)
∞∑

j=0

Bγ,jk
−j ,

where

Dγ(k) =
c0e

ikLγe iπsgn∂2L/4

√
| det ∂2L|

is called the symplectic prefactor.
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Potential Theory

Layer potentials:

S`(λ)f (x) =

∫

∂Ω
G0(λ, x , s)f (s)ds, x ∈ R2\∂Ω

D`(λ)f (x) =

∫

∂Ω
∂νsG0(λ, x , s)f (s)ds, x ∈ R2\∂Ω

Boundary operator:

N(λ)f (s) =

∫

∂Ω
∂νs′G0(λ, s, s ′)f (s ′)ds ′, s ∈ ∂Ω, (3)

Dirichlet resolvent:

RΩ
D (λ) = R0(λ)− 2D`(λ)(I + N(λ))−1r∂ΩS`†(λ) (4)

Jump formula:

D`(λ)f± =
1

2
(±I + N(λ))f ,
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Free Green’s fxn:

G0(λ, z , z ′) = H
(1)
0 (λ|z − z ′|) (5)

H
(1)
ν is the Hankel function of the first kind (of order ν)

N(λ|x(s)− x(s ′)|) ∼
(

λ cos2 ϑ

8π|x(s)− x(s ′)|

)1/2

e iλ|x(s)−x(s′)|+3πi/4
∞∑

m=0

cmi
m

λm|x(s)− x(s ′)|m .
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Interior-exterior duality

Let

RX
ρB =

∫ ∞

0
ρ̂(t)w(t)dt

denote smoothed resolvent on domain X with boundary conditons
B = D or N.

Duality:

tr
(
RΩ
ρD(k)⊕ RΩc

ρN(k)− RR2

ρ0 (k)
)

=

∫

R
ρ(k − λ)

∂

∂λ
log det (1 + N(λ)) dλ
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∫

R
ρ(k − λ)

∂

∂λ
log det (1 + N(λ)) dλ

∼
∫

R
ρ(k − λ) tr (1 + N(λ))−1 N ′(λ)dλ

∼
∑

M

(−1)M

M + 1

∫

R
ρ′(k − λ)trN(λ)M+1dλ
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What is NM+1(λ)? If x : ∂Ω 3 s 7→ R2 a parametrization,

N(λ) ∼ e iλ|x(s)−x(s′)|a(λ|x(s)− x(s ′)|) =⇒

NM+1(λ) ∼
∫

N(s, s1)N(s1, s2)N(s1, s2) · · ·N(sM , s
′)ds1 · · · dsM

∼
∫

e iλL(S)ã(λ,S , s, s ′)dS

Recall: L(S) =
∑ |xi+1 − xi | = length functional
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Problem: phase function is not smooth |x − x ′|

Regularize: χ(λ|x(s)− x(s ′)|) a cutoff

N = χN + (1− χ)N = N0 + N1: diagonal + off diagonal

χN ∈ Ψ−1(∂Ω),

(1− χN) a semiclassical (~ = λ−1) FIO quantizing β.

NM =
∑

σ:Z/MZ→{0,1}Nσ where

Nσ = Nσ(0)Nσ(1) · · ·Nσ(M−1).

Main term when all σ = 1.
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Stationary phase

For an isolated critical point (periodic orbit),

∫

Rn

e ikL(S)a(S)dS ∼ (2π/k)n/2 e
ikL(Sγ)e iπsgn∂2L(Sγ)/4

| det ∂2L(Sγ)|1/2

∞∑

j=0

k−jLja(Sγ),

where the Lj are differential operators of order 2j :

Lja(Sγ) =
∑

ν−µ=j

∑

2ν≥3µ

i−j2−ν〈∂2Φ(Sγ)−1∂, ∂〉ν(gµa(Sγ))/µ!ν!.

Here, g(S) = L(S)− L(Sγ)− L′(Sγ)(S − Sγ)− ∂2L(Sγ)(S − Sγ)2.
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Perturbations

Idea: perturb away from the ellipse, where ∂2L is degenerate and
negative semidefinite. Keep track of maximal Hessians.

sgnL = q − 1 and detL = 0.

If orbit rotation numbers p/q and p′/q′, with q ≡ q′ + 4 mod 8,

e iπ(q−1)/4 = minus e iπ(q′−1)/4.

Choose p/q, p′/q′ caustics with same length and a bunch of orbits
to make cancellations
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If perturbation of size δ, ∂2L−1 = O(δ−1).

Then ∂2L−1
ε,δ (Sγ) ∼ V−1(Sγ)δ−1M(Sγ), where M ∈ C∞(∂Ωq)

consisting of minors of ∂2L0 and V is the (q − 1)× (q − 1)
determinant of ∂2L upon quotienting out the degenerate direction.

Furthermore, M = O(‖κΩ‖C0) and is uniformly bounded in δ.

Can show that maximal Hessian terms contribute

a0(Sγ)(hlm)3j(∂3
ijkL)2j .

Multiscale perturbation: fix δ and then introduce ε for each orbit.
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Choose p/q, p′/q′ caustics in the ellipse such that lengths are both
L and q ≡ q′ + 4 mod 8.

Choose m p/q orbits and m p′/q′ orbits with disjoint vertices. U a
small nbhd of vertices.

There exists an arbitrarily small deformation µ1 outside U such that
for every smooth deformation µ2 inside U, there are no other orbits
of length L assuming deformation tangent only at reflection points
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First match symplectic prefactors:

Dγ(k) =
c0e

ikLγe iπsgn∂2L/4

√
| det ∂2L|

Then match terms of form

C (j)δ−3j

4qq

(
q∏

i=1

cos θi
|xi (S)− xi+1(S)|1/2

)
×

(
∂3`p,q(si (γ))

)2j
V−3j(S)M3j(S) + O

(
δ−3j+1

k

)
.
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Use adapted action angle coordinates to switch from length fxnl to
loop fxn

Need to regularize integral, keeping track of dependence on
curvature, to show |σ| ≥ 1 terms don’t contribute to maximal
Hessians

Each orbit has a vector ui = (B1,γi ), · · · ,Bm,γi for 1 ≤ 1 ≤ 2m.

u=vi + wi , vi highest order terms, si remainders.
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Equations are homogeneous: renormalise so that

vi =
(
ε2
i , ε

4
i , · · · , ε2m

i

)

wi =

(
O

(
δ

ε2m

)
, · · · ,O

(
δ

ε

))

Can find a solution
∑

vi = 0 by matching curvatures.

Locally near solution for highest order terms, Vandermonde
determinant:

∂
∑

vi
∂ε

6= 0, (6)

Map ε 7→ v a submersion, so there exists a nearby solution with
remainders.
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Future directions

C∞?

How many lengths can be canceled simultaneously?

Can probably be done for closed manifolds too, eg. surface of
revolution with Maslov = Morse index, Liouville metrics on T2, etc...

When is one guaranteed a singularity at a given length?

Noncoincidence condition of Marvizi-Melrose near boundary?

Robin boundary conditions on an ellipse? (Guillemin-Melrose)

Obstacle scattering? Casimir Energy?
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In memory of Steve Zelditch
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Thank you for your attention!
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