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Itinerary: Theta correspondence, Rallis inner product formula,
Siegel-Weil formula, Rankin-Selberg integrals of the doubling
method, L-functions.

F-a number field, A - its ring of adeles.
m- an irreducible, automorphic, cuspidal representation of

Span(A).

6, (m)-theta lift to Ox(A); Ospp-corresponding to a quadratic
space (V, Q), dimgV =2m, Witt(Q) = r < m, xy-quadratic
character. 6,,(7) is spanned by

e = [ 020 Men(0)d. e On(). & € S(VIAY)

Gfp’(g, h) is a theta series on §J4m,,(A), restricted to the (image
of the) dual pair Spap(A) x Oom(A),

05(9.h) = > wy(g. Me(x).

XeV(F)n
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To determine the non-vanishing of 0,(7), consider (formally)
the inner product (65" (ox), 052(¢%)), ¢, ¢' € S(V(A)"):

[ ertainte | [ 6o mo% (g h)ah | gy
[SP2n* Span] Oznm]

(1)

Product formula:

65 (91, W02 (G, h) = 037 (91, ), ). (2)

The r.h.s. is a theta series on §38mn(A), restricted to
Span(A) x Oom(A), and then to (Spap(A) x Spop(A)) x Oom(A).
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Next, interpret the integral

(@,g) = /[O g R)ah. g < Spun(k), @ € S(V(AF)
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Next, interpret the integral
(0.9)= | 62(g.h)dh. g€ Spun(t). € S(V(A)).
[OQm]
It is absolutely convergent when r =0, 0r2m —r > 2n+ 1.
In this range, we have
The Siegel-Weil formula (Weil, Kudla-Rallis)

I(®,9) = vE(fos,9) -
= 2

E(fs s)- the Eisenstein series on Sps,(A) attached to
’”dcspf:("f(@)xw det -|S and the Siegel-Weil section

fo.5(9) = wy(g. 1)®(0)]a(g)[s ™" 2.
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Regularization: Intherange 2m —r <2n+1, r > 1, Kudla
and Rallis found z € Zgp, (), Z' € Z,,,(F,), at one
archimedean place v, such that

@ wy(Z)P =wy(Z)P, e S(V(A)2M),

° 9:””(2)(')(9, h) is rapidly decreasing in h € Op(F)\Ozm(A).
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Regularization: Intherange 2m —r <2n+1, r > 1, Kudla
and Rallis found z € Zgp, (), Z' € 2o, (F,), at One
archimedean place v, such that

@ wy(Z)P =wy(Z)P, e S(V(A)2M),

° 9:””(2)(')(9, h) is rapidly decreasing in h € Op(F)\Ozm(A).

Then they take an Eisenstein series E(h, () on Oxp(A),
attached to the maximal parabolic subgroup with Levi part
GL; x Op(m—r) and | det /€. It has a constant residue at

r+1
(=m- "%

Consider

_ 1 wi(2)®
£(9.9.0) = 53 /[Ozm]ew (9. ME(h,C)ah,  (3)

P(¢) is the polynomial obtained by the action of z’ on E(h, ¢).
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Theorem: £(g, ®,() is an Eisenstein series on Spsn(A),

attached to the maximal parabolic subgroup with Levi part

GLr x Sp2(2nfr) and | det “C ® Qipz(znir)(" O( Van))'
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Theorem: £(g, ®,() is an Eisenstein series on Spsn(A),
attached to the maximal parabolic subgroup with Levi part

GLr x Spa(2n-ry and | det-|° ® 6, JPaten=n "(10(Var))-
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has a double pole at ¢ = m — &
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Theorem: £(g, ®,() is an Eisenstein series on Spsn(A),
attached to the maximal parabolic subgroup with Levi part

GLr X SPaan_ry and |det < ® 622" (1 ().

If m < n(then2m—r < 2n+1), P(m—"5') # 0; £(g, ®.¢) has
a simple pole at ( = m — 5.
Ifm>n(and2m—r<2n+1) then P(m— 1) = 0; £(g, ¢, ()
has a double pole at ¢ = m — &

109 | By(g,®)+--- m<n

£(g.9,¢) = {< i) B e (4)
—(m- ,H)) +<_(m_%) +.--- m>n
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The regularized Siegel-Weil formula:
1. When m < n,

2B_1 (g, d)) = Valm_n+%E(f¢7s,g) = Hesn_m_%E(fq,/’S,g). (5)
for s - Siegel-Weil section, ¢’ € S(V/(A)2");
dimg V' = 4n+2 —2m, V' in the same Witt class of V

(complementary quadratic space to V).
2. When2n+2<2m<2n+r-+1,

B_2(9,®) = B-1(g,®') = Res,_y, , 1E(fos, ).  (6)
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The regularized Siegel-Weil formula:
1. When m < n,

2B—1 (g7 (D) = Valm_,H_%E(fq),S?g) = Resn_m_%E(fd)’,&g)' (5)

for s - Siegel-Weil section, ¢’ € S(V/(A)2");

dimg V' = 4n+2 —2m, V' in the same Witt class of V
(complementary quadratic space to V).

2. When2n+2<2m<2n+r-+1,

B_2(9.%) = B1(9.¢) = Res,_y,_, 1E(fos.9).  (6)
Using (5), (6), (031 (or), 9;’22(90;)) can be expressed as

ReS_m n_1, / 0r(91)¢'=(92)E(f5 5, (91, 92))d(G1, 92)

2
[Sp2nx Span]

(7)
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of PS-Rallis. It represents the L-function L(7 x xv, S+ %) (up
to normalization).

Theorem (Kudla-Rallis): Let x be a quadratic character of
F*\A*. Assume that LS(7 x y, s) has a pole at s = k > 1. Then
k <[3] +1. Let m= n+ k. Then there is a quadratic space V'’
of dimension 4n+2 —2m = 2n+2 — 2k, xy = X, such that the
theta lift of 7 to O(V')(A) = Oopy2_2ok(A) is non-trivial.

We want to follow a similar itinerary, guided by the

poles of the L-functions for Spy,(A) x GLy(A), L(7 x 7, 8).
We now know the generalized doubling integrals for

Spon x GLg by Cai, Friedberg, Ginzburg and Kaplan.

What would be an analogous new theta correspondence?

What would be a new Siegel-Weil formula?
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The following correspondence is constructed using new "theta
kernels". This was done by Ginzburg (IMRN 2003).

Each irreducible, self-dual, automorphic, cuspidal
representation 7 of GL4(A) determines a family of such theta
kernels, and hence a related ©.-correspondence.

To simplify the exposition, we restrict to 7 on GLy(A), with trivial
central character, such that L(7, 1) # 0.
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The following correspondence is constructed using new "theta
kernels". This was done by Ginzburg (IMRN 2003).

Each irreducible, self-dual, automorphic, cuspidal
representation 7 of GL4(A) determines a family of such theta
kernels, and hence a related ©.-correspondence.

To simplify the exposition, we restrict to 7 on GLy(A), with trivial
central character, such that L(7, 1) # 0.

Consider an Eisenstein series on Spak(A), E(fa(rk),s), related
to Indgf:(kg)A(r, k)| det-|, where A(r, k) is the Speh
representation of GLyk(A) attached to (the parabolic induction
from)
k—1 k—3 1—k

T|det:| 2 x 7|det:| 2 X .- x T|det:| 2 .
D. Jiang, B. Liu and L. Zhang determined the positive poles of
the corresponding normalized Eisenstein series. These are
obtainedats= & & -1,k -2 ...
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On(rk) = {AReS,_k E(fa(rk)s)}-
2
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Consider the residual representation at largest pole s = g
On(rk) = {RESe_kE(fa(rh).s)}-

The elements 0, k) € ©a(r k) are our new "theta series".

Let n < 2k. Restrict Oa(- k) 10 Span(A) x Spak—2n(A) (direct
sum embedding).

©a(rk)-correspondence: Let m be an irreducible, automorphic,
cuspidal representation of Spo,(A). Define, for h € Spak_2n(A),

T4 Oncri0) (h) = /[ . (9@ P)do
p2n

We get representations O, k() of Spak—_2n(A), kK > 3.
They satisfy the tower property: at the first k, such that
O a(rk)(m) is nontrivial, it is cuspidal.
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Theorem:

@ Assume that the first occurrence for ris at 5 < k < n.
Then 7 is CAP with respect to

Span(A) n—k
ndoz(nfk)(A)A(T) n—k)|det:| 2z ®o,

o- irreducible, cuspidal representation of Spsx_2n(A).

@ If the first occurrence is at kK > n, then = lifts to a CAP
representation with respect to

Sp - n(A) k—n
ndoz(‘:::)(A) A(r,k — n)|det-| 2 @ .
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Theorem:

@ Assume that the first occurrence for risat 7 < k < n
Then 7 is CAP with respect to

Span(A) n—k
ndoz(nfk)(A)A(T) n—k)|det:| 2z ®o,

o- irreducible, cuspidal representation of Spsx_2n(A).

@ If the first occurrence is at kK > n, then = lifts to a CAP
representation with respect to

ndgps ) A(r, k — )| det | 2" @ .

Remark: We conjecture that the first occurrence k < %
Inner product: We want to test the non-vanishing of © k) ()
on Spsk—_2n(A). Consider the inner product

(Tjkizn(gpﬂa QA(T,/()) T4k zn(gprra 0/ (7— k)))
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A new theta correspondence
[e]e]ele] ]

Formally, this is

/ ox(91)¢5(92) /QATk) g1, N, k)(gg,h)dh dg1dgo.
[Sp2nx Sp2n] SPan—2«]
(8)
We need to make sense out of the dh-integral.

First, find an analog of the product formula of theta series,
asin (2).

Then look for an analog of the regularized Siegel-Weil
formula, which will relate the inner product to the generalized
doubling integrals, representing LS(r x 7, s + %), focusing at
s=n—k+ 3.
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3 < k < n). We can prove the following approximate analog of
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Assume that 7 < k < 2n. (Eventually, we will be interested in
3 < k < n). We can prove the following approximate analog of
the product formula of theta series.

Theorem (formal): Given Oa(; 2n+k) € ©a(r,2n+k)>

On(r.k) € On(r k) there exist H’A(ﬂk) € On(rhy I =1,..,N,
such that

/9A(T,2n+k)(X,U'f(g1,Qz))eA(T,k)(XWB;n(U)dXdU: (9)
[Uzn] [Spac]

=

- Z/ 9A(7’7k)(921 h)elA(ﬂk)(g'l ) h)dh
[SPak—2n]

i=1
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Assume that 7 < k < 2n. (Eventually, we will be interested in
3 < k < n). We can prove the following approximate analog of
the product formula of theta series.

Theorem (formal): Given Oa(; 2n+k) € ©a(r,2n+k)>

On(r.k) € On(r k) there exist H’A(ﬂk) € On(rhy I =1,..,N,
such that

Oa(r2nik) (X, U - (91, 92))0a(r k) (X)¥y, (U)dxau = (9)

[Uzn] [Spac]
N —
= Z/ QA(TJ()(gZa h)9'A(77k)(g1 s h)dh
i—1 * [SPak—2n]
bn Y1 Yo y3
In yé
Uzn(A) - u = lon Y5 | € Spen(A);

Ih vy

IZn



I, 0
Vi, (U) =0 [ tr [ (1,02.¥3) | O O ;
0 I,

For (g1, 92) € Span(A) x Span(A),
(o]

a by

a b
H(91,92) = [07) € Spsn(A), g1 = (C: d:) )
Cq o

g5



I, 0
Vi, (U) =0 [ tr [ (1,02.¥3) | O O ;
0 I,

For (g1, 92) € Span(A) x Span(A),

o1
ai b4

a; b

t(g1,92) = 9 € Spen(A), g1 = (' 7).
c; d
C d1 1 1

g
The relation (9) is still at the formal level. Our starting point is
the dx integral inside (9). Consider, for h € Spgp(A),

I(OA(r2n1k) On(r k), D) = / On(r2n+k) (9 MOa(r.k)(9)Ag.
[Spak] (1 0)



I, 0
Vi, (U) =0 [ tr [ (1,02.¥3) | O O ;
0 I,

For (g1, 92) € Span(A) x Span(A),

g1
a4 b a; by

t(91,92) = 92 € Spgn(A), 91 = :
c; d
C d1 1 1

g
The relation (9) is still at the formal level. Our starting point is
the dx integral inside (9). Consider, for h € Spgp(A),

I(OA(r2n1k) On(r k), D) = / On(r2n+k) (9 MOa(r.k)(9)Ag.
[Spak]
(10)
We regularize this integral.
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using convolution against spherical functions on one member of
the dual pair at one finite place. In the same spirit, we take a
finite place v, where 7, is unramified, O ;. 2n1x) is

Spak(Ov) x Spgn(Oy)-right invariant, and 0 - x) is Spak(Ov)-
right invariant.
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Ichino obtained the regularization of the Kudla-Rallis integrals
using convolution against spherical functions on one member of
the dual pair at one finite place. In the same spirit, we take a
finite place v, where 7, is unramified, O ;. 2n1x) is

Spak(Ov) x Spgn(Oy)-right invariant, and 0 - x) is Spak(Ov)-
right invariant.

Theorem: There is an algebra homomorphism
n: H(Spsn(Fv)//Spsn(Ov)) — H(Spak(Fv)//Spak(Ov), s.t.

(1 ®&v) * On(r2nik) = (Mg, ® 1) * On(r2n1k)-

There is ¢€9 € H(Spsn(Fv)//Spsn(Oy)), such that the function
g (1®&9)« Oa(r.2n+k)(9; ) is rapidly decreasing in
Spak(F)\Spak(A), uniformly in h inside bounded sets of a
Siegel domain of Spg,(F)\Spsn(A).
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We regularize the integral (10) by

Ifeg(eA(r,szrk)v HA(T,k)) h) =

o / (19 €9) % Baprane (0. Mapi(9)dg. (1)
[SPak]

The constant c is obtained from the action of Mgy ON O (7 k). Itis
nonzero when k < n(and then 4k — 2n < 2n). It is zero when
n<k<2n.
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We regularize the integral (10) by

Ifeg(eA(r,szrk)v HA(T,k)) h) =

o / (19 €9) % Baprane (0. Mapi(9)dg. (1)
[SPak]

The constant c is obtained from the action of Mgy ON O (7 k). Itis
nonzero when k < n(and then 4k — 2n < 2n). It is zero when
n<k<2n.

More generally, write in (11),

On(rk) = Res_kE(oa(rh).c)-
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Define, for h € Spgn(A),

E(QA(T,er-k)? PA(T,k),¢ h) =
1
= T /[S (19D 0 2nii0(0: NE (a0
v Pak
(12)

where P(qv‘c) is the polynomial in q;—LC obtained by the action of
Mgy ON E(@(rk).¢)-
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Define, for h € Spgn(A),
E(QA(T,er-k)? PA(T,k),¢ h) =

1 / 0
= _ (1 ®£ )*HA 7,2n+k (gvh)E(SOA T,k ,C?g)dga
P(qu) [Spax] Y (ren+) ()
(12)
where P(qv‘c) is the polynomial in q;—LC obtained by the action of
Mgy ON E(@(rk).¢)-

Theorem: E(Oa(r2n+k) Pa(rk)¢> D) is an Eisenstein series on
Spsn(A), attached to

SPen(A
IndOf:(l(%) )A(T’ k)| det - ® ©a(r.20—k):
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The polynomial P(g;, °) in (12) satisfies
k K
P(q, %) #0,for k < n; P(q,2)=0,forn<k<2n.
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(o] le]

The polynomial P(g;, °) in (12) satisfies

_k _k
P(q,?) #0,for k <n; P(q,2)=0,for n< k <2n.

Thus,

E(On(r2n+k) Pa(rk).c D) =

{ B_1(0a(r,2n1k),0n(r k), 4+ k<n
9 _—

3
B_2(0a(r,2n1k),0n(rk),1)
(C=3)

(13)
4+, n<k<2n.
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(o] le]

The polynomial P(g;, °) in (12) satisfies

_k _k

P(q,?) #0,for k <n; P(q,2)=0,for n< k <2n.
Thus,
E(On(r2n+k) Pa(rk).c D) =

B_1(0a(r,2n+k)0a(r,k):M) +..- k<n
_k ’ -
B—Z(GA(T,ZCfHkZ)’OA("'sk)’h) + n<k<2n 19)
(C—5)2 ’ -

Conjecture (regularized Siegel-Weil formula):
871 (QA(T,2n+k)7 9A(T,k)7 h) = Va/ueS:kan*(fA(T,Zn),Sa h) =

= Ress—n-kE"(fa(r2n)5: 1), for k <n.

787

For n < k < 2n,

B _2(0a(r2n+k), On(r.k)s ) = R€Ss—k—nE™*(fa(r,2n),s, )-




A regularized Siegel-Weil formula (conjecture)

ooe

We can write an explicit section fa(- 2p) s in terms of
(1®&D) % Oa(r2n+k) and Oa(, k) (analog of the Weil-Siegel
section fy s).

f/A(T,2n),s is the image of fa(2n),s Under the intertwining
operator. (Work in progress).
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n > k. We know that, necessarily, n— k < 3,i.e. 7 <k (G.S.).
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Assume that LS(7 x 7, s) has its largest pole at s =n—k+ 2,
n > k. We know that, necessarily, n— k < 3,i.e. 7 <k (G.S.).

Using the generalized doubling integrals representing
LS(7T x T, 8), there are data, such that

Reso-rnor [ ox(0) | Elfaran.s: il @) (u)cludg £ 0.
[Sp2n] [Uzn]
(Yu,,- asin (9)).

Using the regularized Siegel-Weil formula, for some choice of
data,

/ ©r(9) B_1(0a(r.2n+k) Oa(r.k)» U(len, 9))1,) (u)dudg # 0.
[Sp2n] [Uzn]

Then, from (12), (9),

[ 6@ [ Ontray(0: T (r Fcdg 0.
[Sp2n] [Spak—2n]
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Hence

T2 (o, O (740 (h) = /[s 1%(9)%(7,@(9’ h)dg # 0. (14)
P2n

Thus, ©a (7 k) (1), the O (7 k) -lift of m to Spak_2n(A), is

nontrivial. Since s = n— k + 3 is the largest pole of LS(x x 7, s),
one can show that © 5, x)(7) is cuspidal. This will prove

Theorem: Assume that LS(w x 7, s) has its largest pole at
S=/{+ % 1 < ¢ < 3. Then ©x(;n_¢)(7) is cuspidal. Let o be an
irreducible summand (on Spo,_4¢(A)). Then = is CAP with
respect to

Spon(A 2
/ndofj(é) )A(T7 0)|det |2 ® o.
Hence the functorial lift of = to GLop41(A) has the form

A(r,20) 8- --
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Note the case ¢/ = J, n-even,i.e. n— k= 7,andso k = 1.
Then (14) is identically zero. Indeed,

Toons )0 = [ on(@)0(r (00 =0.
[Sp2n]
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Note the case ¢/ = J, n-even,i.e. n— k= 7,andso k = 1.
Then (14) is identically zero. Indeed,

(o)D) = [

LPfr(g)@A(T,g)(g)dg =0.
[Sp2n]

This will imply

Corollary: Let 7 be an irreducible, cuspidal representation of
GLo(A), with trivial central character, such that L(r, 3) # 0.
Then there is no CAP representation of Spo,(A) (n even) with
respect to

Span(A n n
gl A, 5)ldet 5.




Applications
[e]e]e] le}

Note the case ¢/ = J, n-even,i.e. n— k= 7,andso k = 1.
Then (14) is identically zero. Indeed,

Toons )0 = [ on(@)0(r (00 =0.
[Sp2n]

This will imply

Corollary: Let 7 be an irreducible, cuspidal representation of
GLo(A), with trivial central character, such that L(r, 3) # 0.
Then there is no CAP representation of Spo,(A) (n even) with
respect to

Span(A n n
gl A, 5)ldet 5.

Remark: When L(r, }) = 0, such CAP representations exist
(Piatetski-Shapiro, lkeda).



Happy Birthday, Gordan!
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