Bishop-Gromov's inequality: a central tool in
Geometry
joint with G. Courtois, S. Gallot and A. Sambusetti

G. BESSON

CNRS - Université Grenoble Alpes

Geometry beyond Riemann: Curvature and Rigidity
Wien, October 18, 2023

O INSTITUT
l FOURIER



Sommaire

Bishop-Gromov's Inequality: Riemannian manifolds
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Basics

(X", g) Riem. manifold, 0 = sectional curvature.
ve T Xst g(v,v)=1,
{v,ez,..., e} orthonormal basis.

Ricci(v, v) := o(v,e),
i=2

where o (v, ;) = sectional curvature of the plane (v, ¢;).

Notation: Ricci > k <= Vv Ricci(v,v) > &k
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by, n(r) = volume of its balls of radius r,

Theorem (R. Bishop, M. Gromov)

(X", g), n>2, complete Riem. man., Ricci > (n— 1)k, for
Kk € R:

VolB(x, R) < by n(R)

Y X
e VolB(x, r) by.n(r)

when 0 < r < R < 400 .

equality iff (X, g) = X".
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X" closed Riem. manifold s.t. Ricci > —(n— 1),

Definition

An e-packing ~ P = {B(x1,¢),..., B(xk,€)} (disjoint balls)
Packx(e) := max{#P}.

Then

Packx () < max (

xeX

VolB(x, diam(X)) < b_1, (diam(X))
VolB(x, €) b_1n(e)

Proof.
1% ineq.: if P = {B(x;,€)}ic; maximal packing, then

Vol X (VolB (x, diam(X)) >

P< =
#P < minycx VolB(x, ¢) Tea)%( VolB(x, €)

2" ineq.: Bishop-Gromov's inequality.
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Gromov-Hausdorff topology

Definition
X, Y metric spaces (distances dx, dy), we say that

deH((X,dx), (Y,dy)) <e

iff 3 (g/3)-nets Rx C X, Ry C Y, 3¢ : Rx — Ry bijective
s.t.,Vx, x' € Rx,

dx (x,x') — g < dy(p(x), p(x')) < dx(x, x') + %

~» GH topology on M := {compact length metric spaces}/ ~

1som.
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Gromov's precompactness Il

Mian(n, D) := {closed Riem. n-man : Ricci > —(n—1), diam < D}

Corollary (Gromov's precompactness Theorem)
Muan(n, D)/ ~ s relatively compact in M for dg.

Isom.

Proof.
Q C M precompact <= Ve, M — Packpy(e) is bounded on Q

By Bishop-Gromov:
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Another application

Theorem (Gromov, Gallot)
VM c Mman(”a D):

dim H;(M,R) < C(n, D)

The proof will be described later, in the context of metric spaces.
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Doubling hypothesis
Definition
A proper metric measured space (X, d, u) is C-doubling at scale

ro > 0 iff, for every r € [%,2@}, we have

M(B(X72r)) <C (1)

0 < pu(B(x,r)) < +oo and W(Blxr) =

for every x € X.
» Much weaker than the classical doubling condition, which
supposes (1) for every r €]0, +oc].
» Under this “doubling hypothesis”, local geometry may be

arbitrary.
» Ricci > —(n—1) = C-doubling at every scale ry > 0, with
C . b_17,,(4r0)

- b_1,,,(r0/2)'
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1st Betti numbers of a metric space

(X, d) compact length space admitting a (metric) universal
covering 7 : (X, d) — (X, d),

I ~ m1(X) = group of deck-transformations of 7.
Theorem

Ifdlam(X) < D and 3u, T-invariant measure on X, such that
(X, d, p) is C-doubling at some scale ry > 0, then

dim Hy(X,R) < €20
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Sketch of proof
Suppose ry > % D for simplicity.
If 3S C T finite s.t. # (I'/(S)) < oo, consider

p: T =T/ T]=Hi(X,Z) = Hi(X,R),
©(S) generates Hi(X,R) as a vector space, hence
dim Hy(X,R) < #S.

Vr > 0 and Vx € X, we construct such S C ' (Gromov) as follows:
S is a maximal family of v € I'* s.t. Vv, 71,72 € S with 1 # s,

d(x,vx) <2D+2r and d(y1x,72x) > 2r.

Choose r = ry/2 and the doubling property,

1(B(x,2D + 3r)) < 1(B(x,4r)) <3

BT B S nBlon2)
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Gromov-hyperbolic spaces
(X, d) proper, c is a geodesic d(c(t), c(t')) = |t — t|.
(X, d) is said to be geodesic if Vx,y € X 3 a geodesic joining x
and y.
Definition
(X, d) proper, geodesic metric space is d-hyperbolic if all triangles
are 6-thin.

In negatively curved manifolds: 6> ~ ————
|curvature max|

Gives no information about local geometry or topology.
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Definition of Entropy

(X, d) proper geodesic space, ' C Isom(X) discrete subgroup,
MN\X compact,
u loc. finite, non trivial, I-invariant, Borel measure on X, then

Ent(X, d) := lim %In (u(B(x, R)))

» does not depend on x and u,

» “Entropy bounded above” will replace the stronger hypothesis
“Ricci curvature bounded below".
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Bishop-Gromov's inequality

We say that a group I acts geometrically on a (proper) metric
space (X, d) if it acts by isometries, faithfully, properly and
co-compactly.

The counting measure of an orbit is then uf = > 1)

yelr “rx:
Theorem (BCGS)
I acting geometrically on a d-hyperbolic space (X, d) with

Ent(X,d) <H and diam(X/I) <D,

then, Vx € X
! ’ r(B R 25/4
YR > r>10(D +4), ”X((X’))33<R> eSHR

(True also for any I-invariant measure.)
~» Doubling Property
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Idea for the proof
» General trivial property: B(x,R)N B(z,r) D B(y, n), where
1
r = §(R+ r—d(x,z)).

» If X is d-hyperbolic: B(x,R) N B(z,r) C B(y, r2) (red ball),
1
where r, = E(R +r—d(x,z)) + 6.

0>
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A finiteness theorem: hyperbolic metric spaces

Yr(x) :={yerl:d(x,vx) <R}
Theorem (BCGS)

Let 6 >0, H,D >0, I C Isom(X, d) non cyclic torsion-free
discrete subgroup, (X, d) d-hyperbolic space satisfying

diam(M\X) <D and Ent(X,d)<H,
then, for every x € X, X19(p+5)(x) generates I' and

#X10(p+s)(x) < N(6,H, D).

Set Ry = 10(D + (5)



A detour: hyperbolic marked groups

I finitely generated (non-cyclic, torsion-free),



A detour: hyperbolic marked groups

I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,



A detour: hyperbolic marked groups

I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,

» X =(G(I,X) = Cayley graph,



A detour: hyperbolic marked groups
I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,
» X =(G(I,X) = Cayley graph,
I = {vertices} and y ~ 7' < 3Is € X, ' =4s.



A detour: hyperbolic marked groups
I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,
> X =G(I,x) = Cayley graph,
I = {vertices} and y ~ 7' < 3Is € X, ' =4s.
» 1-dim edges are isometric to [0, 1].



A detour: hyperbolic marked groups
I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,
> X =G(I,x) = Cayley graph,
I = {vertices} and y ~ 7' < 3Is € X, ' =4s.
» 1-dim edges are isometric to [0, 1].

» [ acts by isometries on G



A detour: hyperbolic marked groups
I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,
> X =G(I,x) = Cayley graph,
I = {vertices} and y ~ 7' < 3Is € X, ' =4s.
» 1-dim edges are isometric to [0, 1].
» [ acts by isometries on G ~ diam(G/I') = 1.



A detour: hyperbolic marked groups
I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,
> X =G(I,x) = Cayley graph,
I = {vertices} and y ~ 7' < 3Is € X, ' =4s.
» 1-dim edges are isometric to [0, 1].
» [ acts by isometries on G ~ diam(G/I') = 1.

P counting measure on the vertices.



A detour: hyperbolic marked groups
I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,
> X =G(I,x) = Cayley graph,
I = {vertices} and y ~ 7' < 3Is € X, ' =4s.
» 1-dim edges are isometric to [0, 1].
» [ acts by isometries on G ~ diam(G/I') = 1.
P counting measure on the vertices.
Definition
(I, X) is a d-hyperbolic marked group if G(I', X) is.

Hence



A detour: hyperbolic marked groups
I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,
> X =G(I,x) = Cayley graph,
I = {vertices} and y ~ 7' < 3Is € X, ' =4s.
» 1-dim edges are isometric to [0, 1].
» [ acts by isometries on G ~ diam(G/I') = 1.
P counting measure on the vertices.
Definition
(I, X) is a d-hyperbolic marked group if G(I', X) is.
Hence
#5 < N(5,H,1).



A detour: hyperbolic marked groups
I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,

> X =G(I,x) = Cayley graph,
I = {vertices} and y ~ 7' < 3Is € X, ' =4s.

» 1-dim edges are isometric to [0, 1].

» [ acts by isometries on G ~» diam(G/I') = 1.

P counting measure on the vertices.
Definition
(I, X) is a d-hyperbolic marked group if G(I', X) is.
Hence

#Y < N(5,H,1).

There exists a presentation of I with X and finitely many relations
of length < 46§ + 6,



A detour: hyperbolic marked groups
I finitely generated (non-cyclic, torsion-free), ¥ = ¥~ ! finite
generating set,
> X =G(I,x) = Cayley graph,
I = {vertices} and y ~ 7' < 3Is € X, ' =4s.
» 1-dim edges are isometric to [0, 1].
» [ acts by isometries on G ~ diam(G/I') = 1.
P counting measure on the vertices.
Definition
(I, X) is a d-hyperbolic marked group if G(I', X) is.
Hence
#5 < N(5,H,1).

There exists a presentation of I with X and finitely many relations
of length < 46§ + 6,

Theorem
The number of such marked groups (I',X) is bounded by N'(6, H).
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» 1st tool: our Bishop-Gromov inequality on §-hyperbolic
spaces.

» 2nd tool: when ' C Isom(X, d), apply the
Theorem (Breuillard-Green-Tao)
VC > 1, Jv = v(C) such that for I torsion-free group, if AC T
finite satisfies
#(A- A) < C(#A), (2)
then 3Gy C T nilpotent, 3v1,...,v, €T s.t.
AC U i Gop -

i=1

C-doubling of u! at scale 3Ry ~» (2) for A := X3g,(x) then,

ZgRO(X) C U ’)/,'Go .
i=1

([ is &'(8, D)-hyp., torsion-free ~» nilpotent = Z).
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Finiteness theorem: sketch of proof

Replace Gy by Go unique maximal extension of Gy (exists when I’
torsion-free hyperbolic).

v

Z3RO(X) (- U ’7,'G0.
i=1

Vs € ¥ap(x) C T generating set, g — sgs— ! is injective from
Go N Xogr,(x) to sGos™1 N X3g,(x) (triangular inequality).

If # (Eo N ZQRO(X)) > v (s@os_1 N Z3R0(x)) > U~
Jg1 # & € sGos ' NX3gr,(x) and gi1,8 €7iGo~

g lg € GoNsGos ! = sGos =Gy = Go AT =T cyclic.

A contradiction. Therefore, # (Go N Eag,(x)) < v and

#¥ R (x) < V2.
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