Bishop-Gromov's inequality: a central tool in Geometry

joint with G. Courtois, S. Gallot and A. Sambusetti

G. Besson

CNRS - Université Grenoble Alpes

Geometry beyond Riemann: Curvature and Rigidity Wien, October 18, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sommaire

Bishop-Gromov's Inequality: Riemannian manifolds

Generalization to metric spaces

BG for Gromov-hyperbolic spaces

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

 (X^n, g) Riem. manifold, σ = sectional curvature. $v \in T_x X$ s.t. g(v, v) = 1,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 (X^n, g) Riem. manifold, σ = sectional curvature. $v \in T_x X$ s.t. g(v, v) = 1, $\{v, e_2, \dots, e_n\}$ orthonormal basis.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 (X^n, g) Riem. manifold, σ = sectional curvature. $v \in T_x X$ s.t. g(v, v) = 1, $\{v, e_2, \dots, e_n\}$ orthonormal basis.

$$\operatorname{Ricci}(v,v) := \sum_{i=2}^{n} \sigma(v,e_i),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where $\sigma(v, e_i)$ = sectional curvature of the plane $\langle v, e_i \rangle$.

 (X^n, g) Riem. manifold, σ = sectional curvature. $v \in T_x X$ s.t. g(v, v) = 1, $\{v, e_2, \dots, e_n\}$ orthonormal basis.

$$\operatorname{Ricci}(v,v) := \sum_{i=2}^{n} \sigma(v,e_i),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where $\sigma(v, e_i)$ = sectional curvature of the plane $\langle v, e_i \rangle$.

Notation: Ricci $\geq \kappa \iff \forall v \quad \text{Ricci}(v, v) \geq \kappa$

 $X_{\kappa}^{n} = 1$ -connected manifold of constant curvature κ , $b_{\kappa,n}(r) =$ volume of its balls of radius r,

 $X_{\kappa}^{n} = 1$ -connected manifold of constant curvature κ , $b_{\kappa,n}(r) =$ volume of its balls of radius r,

Theorem (R. Bishop, M. Gromov)

 $(X^n, g), n \ge 2$, complete Riem. man., Ricci $\ge (n-1)\kappa$, for $\kappa \in \mathbf{R}$:

 $X_{\kappa}^{n} = 1$ -connected manifold of constant curvature κ , $b_{\kappa,n}(r) =$ volume of its balls of radius r,

Theorem (R. Bishop, M. Gromov)

 $(X^n, g), n \ge 2$, complete Riem. man., Ricci $\ge (n-1)\kappa$, for $\kappa \in \mathbf{R}$:

$$\forall x \in X, \quad \frac{\operatorname{Vol} B(x, R)}{\operatorname{Vol} B(x, r)} \leq \frac{b_{\kappa, n}(R)}{b_{\kappa, n}(r)} \text{ when } 0 < r \leq R < +\infty \ .$$

 $X_{\kappa}^{n} = 1$ -connected manifold of constant curvature κ , $b_{\kappa,n}(r) =$ volume of its balls of radius r,

Theorem (R. Bishop, M. Gromov) (X^n , g), $n \ge 2$, complete Riem. man., Ricci $\ge (n-1)\kappa$, for $\kappa \in \mathbf{R}$:

$$\forall x \in X, \quad \frac{\mathrm{Vol}B(x,R)}{\mathrm{Vol}B(x,r)} \leq \frac{b_{\kappa,n}(R)}{b_{\kappa,n}(r)} \text{ when } 0 < r \leq R < +\infty \ .$$

equality iff $(X, g) = X_{\kappa}^{n}$.

 X^n closed Riem. manifold s.t. Ricci $\geq -(n-1)$,

 X^n closed Riem. manifold s.t. Ricci $\geq -(n-1)$, Definition An ε -packing $\rightsquigarrow P = \{B(x_1, \varepsilon), \dots, B(x_k, \varepsilon)\}$ (disjoint balls) Pack_X(ε) := max{#P}.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 X^n closed Riem. manifold s.t. Ricci $\geq -(n-1)$, Definition An ε -packing $\rightsquigarrow P = \{B(x_1, \varepsilon), \dots, B(x_k, \varepsilon)\}$ (disjoint balls) $\operatorname{Pack}_X(\varepsilon) := \max\{\#P\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then

$$\operatorname{Pack}_{X}(\varepsilon) \leq \max_{x \in X} \left(\frac{\operatorname{Vol}B(x, \operatorname{diam}(X))}{\operatorname{Vol}B(x, \varepsilon)} \right)$$

 X^n closed Riem. manifold s.t. Ricci $\geq -(n-1)$, Definition An ε -packing $\rightsquigarrow P = \{B(x_1, \varepsilon), \dots, B(x_k, \varepsilon)\}$ (disjoint balls) $\operatorname{Pack}_X(\varepsilon) := \max\{\#P\}.$

$$\operatorname{Pack}_{X}(\varepsilon) \leq \max_{x \in X} \left(\frac{\operatorname{Vol}B(x, \operatorname{diam}(X))}{\operatorname{Vol}B(x, \varepsilon)} \right) \leq \frac{b_{-1,n}(\operatorname{diam}(X))}{b_{-1,n}(\varepsilon)}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 X^n closed Riem. manifold s.t. Ricci $\geq -(n-1)$, Definition An ε -packing $\rightsquigarrow P = \{B(x_1, \varepsilon), \dots, B(x_k, \varepsilon)\}$ (disjoint balls) $\operatorname{Pack}_X(\varepsilon) := \max\{\#P\}.$

$$\operatorname{Pack}_{X}(\varepsilon) \leq \max_{x \in X} \left(\frac{\operatorname{Vol}B(x, \operatorname{diam}(X))}{\operatorname{Vol}B(x, \varepsilon)} \right) \leq \frac{b_{-1,n} \left(\operatorname{diam}(X) \right)}{b_{-1,n} \left(\varepsilon \right)}.$$

Proof.

 1^{st} ineq.: if $P = \{B(x_i, \varepsilon)\}_{i \in I}$ maximal packing, then

$$\#P \leq \frac{\operatorname{Vol} X}{\min_{x \in X} \operatorname{Vol} B(x, \varepsilon)} = \max_{x \in X} \left(\frac{\operatorname{Vol} B(x, \operatorname{diam}(X))}{\operatorname{Vol} B(x, \varepsilon)} \right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

 X^n closed Riem. manifold s.t. Ricci $\geq -(n-1)$, Definition An ε -packing $\rightsquigarrow P = \{B(x_1, \varepsilon), \dots, B(x_k, \varepsilon)\}$ (disjoint balls) $\operatorname{Pack}_X(\varepsilon) := \max\{\#P\}.$

$$\frac{\operatorname{Pack}_{X}(\varepsilon)}{\operatorname{Pack}_{X}(\varepsilon)} \leq \max_{x \in X} \left(\frac{\operatorname{Vol}B(x, \operatorname{diam}(X))}{\operatorname{Vol}B(x, \varepsilon)} \right) \leq \frac{b_{-1,n}(\operatorname{diam}(X))}{b_{-1,n}(\varepsilon)}$$

Proof.

 1^{st} ineq.: if $P = \{B(x_i, \varepsilon)\}_{i \in I}$ maximal packing, then

$$\#P \leq \frac{\operatorname{Vol} X}{\min_{x \in X} \operatorname{Vol} B(x, \varepsilon)} = \max_{x \in X} \left(\frac{\operatorname{Vol} B(x, \operatorname{diam}(X))}{\operatorname{Vol} B(x, \varepsilon)} \right)$$

2nd ineq.: Bishop-Gromov's inequality.

Gromov-Hausdorff topology

Definition X, Y metric spaces (distances d_X , d_Y), we say that

 $d_{GH}((X, d_X), (Y, d_Y)) < \varepsilon$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

iff $\exists (\varepsilon/3)$ -nets $R_X \subset X$, $R_Y \subset Y$, $\exists \varphi : R_X \to R_Y$ bijective s.t.,

Gromov-Hausdorff topology

Definition

X, Y metric spaces (distances d_X , d_Y), we say that

$$d_{GH}((X, d_X), (Y, d_Y)) < \varepsilon$$

iff $\exists (\varepsilon/3)$ -nets $R_X \subset X$, $R_Y \subset Y$, $\exists \varphi : R_X \to R_Y$ bijective s.t., $\forall x, x' \in R_X$,

$$d_X(x,x') - rac{\varepsilon}{3} < d_Y(\varphi(x),\varphi(x')) < d_X(x,x') + rac{\varepsilon}{3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Gromov-Hausdorff topology

Definition

X, Y metric spaces (distances d_X , d_Y), we say that

 $d_{GH}((X, d_X), (Y, d_Y)) < \varepsilon$

iff $\exists (\varepsilon/3)$ -nets $R_X \subset X$, $R_Y \subset Y$, $\exists \varphi : R_X \to R_Y$ bijective s.t., $\forall x, x' \in R_X$,

$$d_X(x,x') - \frac{\varepsilon}{3} < d_Y(\varphi(x),\varphi(x')) < d_X(x,x') + \frac{\varepsilon}{3}$$

 $\rightsquigarrow \mathsf{GH} \text{ topology on } \mathcal{M} := \{ \mathsf{compact length metric spaces} \} \big/ \underset{\mathit{isom.}}{\sim}$

 $\mathcal{M}_{\mathrm{man}}(n, D) := \{ \text{closed Riem. } n \text{-man} : \mathrm{Ricci} \ge -(n-1), \, \mathrm{diam} \le D \}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\mathcal{M}_{\mathrm{man}}(n,D) := \{ \text{closed Riem. } n\text{-man} : \mathrm{Ricci} \ge -(n-1), \, \mathrm{diam} \le D \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary (Gromov's precompactness Theorem) $\mathcal{M}_{man}(n, D) / \underset{isom.}{\sim}$ is relatively compact in \mathcal{M} for d_{GH} .

 $\mathcal{M}_{\mathrm{man}}(n,D) := \{ \text{closed Riem. } n\text{-man} : \mathrm{Ricci} \ge -(n-1), \, \mathrm{diam} \le D \}$

Corollary (Gromov's precompactness Theorem) $\mathcal{M}_{man}(n, D) / \underset{isom.}{\sim}$ is relatively compact in \mathcal{M} for d_{GH} .

Proof.

 $\mathcal{Q} \subset \mathcal{M} \text{ precompact } \iff \forall \varepsilon, \ M \mapsto \operatorname{Pack}_{M}(\varepsilon) \text{ is bounded on } \mathcal{Q}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\mathcal{M}_{\mathrm{man}}(n,D) := \{ \text{closed Riem. } n\text{-man} : \mathrm{Ricci} \ge -(n-1), \, \mathrm{diam} \le D \}$

Corollary (Gromov's precompactness Theorem) $\mathcal{M}_{man}(n, D) / \underset{isom.}{\sim}$ is relatively compact in \mathcal{M} for d_{GH} . Proof.

 $\mathcal{Q} \subset \mathcal{M} \text{ precompact } \iff \forall \varepsilon, \ M \mapsto \operatorname{Pack}_{\mathcal{M}}(\varepsilon) \text{ is bounded on } \mathcal{Q}$

By Bishop-Gromov:

$$\operatorname{Pack}_{M}(\varepsilon) \leq \frac{b_{-1,n}(D)}{b_{-1,n}(\varepsilon)} = C(n,\varepsilon,D) \; .$$

Another application

Theorem (Gromov, Gallot) $\forall M \in \mathcal{M}_{man}(n, D),$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Another application

Theorem (Gromov, Gallot) $\forall M \in \mathcal{M}_{man}(n, D),$

 $\dim H_1(M,\mathbf{R}) \leq C(n,D)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Another application

Theorem (Gromov, Gallot) $\forall M \in \mathcal{M}_{man}(n, D),$

$\dim H_1(M,\mathbf{R}) \leq C(n,D)$

The proof will be described later, in the context of metric spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sommaire

Bishop-Gromov's Inequality: Riemannian manifolds

Generalization to metric spaces

BG for Gromov-hyperbolic spaces

Definition

A proper metric measured space (X, d, μ)

Definition

A proper metric measured space (X, d, μ) is C-doubling at scale $r_0 > 0$ iff, for every $r \in \left[\frac{r_0}{2}, 2r_0\right]$, we have

$$0 < \mu(B(x,r)) < +\infty \text{ and } \frac{\mu(B(x,2r))}{\mu(B(x,r))} \leq C$$
, (1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for every $x \in X$.

Definition

A proper metric measured space (X, d, μ) is C-doubling at scale $r_0 > 0$ iff, for every $r \in \left[\frac{r_0}{2}, 2r_0\right]$, we have

$$0 < \mu(B(x,r)) < +\infty ext{ and } rac{\mu(B(x,2r))}{\mu(B(x,r))} \leq C,$$
 (1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for every $x \in X$.

Much weaker than the classical doubling condition, which supposes (1) for every r ∈]0, +∞[.

Definition

A proper metric measured space (X, d, μ) is C-doubling at scale $r_0 > 0$ iff, for every $r \in \left[\frac{r_0}{2}, 2r_0\right]$, we have

$$0 < \mu(B(x,r)) < +\infty \text{ and } rac{\mu(B(x,2r))}{\mu(B(x,r))} \leq C,$$
 (1)

for every $x \in X$.

- Much weaker than the classical doubling condition, which supposes (1) for every r ∈]0, +∞[.
- Under this "doubling hypothesis", local geometry may be arbitrary.

Definition

A proper metric measured space (X, d, μ) is C-doubling at scale $r_0 > 0$ iff, for every $r \in \left[\frac{r_0}{2}, 2r_0\right]$, we have

$$0 < \mu(B(x,r)) < +\infty \text{ and } rac{\mu(B(x,2r))}{\mu(B(x,r))} \leq C,$$
 (1)

for every $x \in X$.

- Much weaker than the classical doubling condition, which supposes (1) for every r ∈]0, +∞[.
- Under this "doubling hypothesis", local geometry may be arbitrary.

• Ricci
$$\geq -(n-1) \implies C$$
-doubling at every scale $r_0 > 0$, with $C = \frac{b_{-1,n}(4r_0)}{b_{-1,n}(r_0/2)}$.

(X, d) compact length space admitting a (metric) universal covering $\pi : (\widetilde{X}, \widetilde{d}) \to (X, d)$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(X, d) compact length space admitting a (metric) universal covering $\pi : (\widetilde{X}, \widetilde{d}) \to (X, d)$, $\Gamma \simeq \pi_1(X) = \text{group of deck-transformations of } \pi$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(X, d) compact length space admitting a (metric) universal covering $\pi : (\widetilde{X}, \widetilde{d}) \to (X, d)$, $\Gamma \simeq \pi_1(X) =$ group of deck-transformations of π . Theorem If diam $(X) \leq D$ and $\exists \mu$, Γ -invariant measure on \widetilde{X} , such that $(\widetilde{X}, \widetilde{d}, \mu)$ is C-doubling at some scale $r_0 > 0$, then

(X, d) compact length space admitting a (metric) universal covering $\pi : (\widetilde{X}, \widetilde{d}) \to (X, d)$, $\Gamma \simeq \pi_1(X) =$ group of deck-transformations of π . Theorem If diam $(X) \leq D$ and $\exists \mu$, Γ -invariant measure on \widetilde{X} , such that $(\widetilde{X}, \widetilde{d}, \mu)$ is C-doubling at some scale $r_0 > 0$, then

dim $H_1(X, \mathbf{R}) \leq C^{23\frac{D}{r_0}+40}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
Sketch of proof Suppose $r_0 \ge \frac{4}{5}D$ for simplicity.

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Suppose $r_0 \geq \frac{4}{5}D$ for simplicity. If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma/\langle S \rangle) < \infty$,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Suppose $r_0 \geq \frac{4}{5}D$ for simplicity. If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma/\langle S \rangle) < \infty$, consider

 $\varphi: \Gamma \to \Gamma/[\Gamma,\Gamma] = H_1(X,Z) \to H_1(X,\mathbf{R}),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Suppose $r_0 \ge \frac{4}{5} D$ for simplicity. If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma/\langle S \rangle) < \infty$, consider

$$\varphi: \Gamma \to \Gamma/[\Gamma,\Gamma] = H_1(X,Z) \to H_1(X,\mathbf{R}),$$

 $\varphi(S)$ generates $H_1(X, \mathbf{R})$ as a vector space, hence

Suppose $r_0 \ge \frac{4}{5} D$ for simplicity. If $\exists S \subset \Gamma$ finite s.t. $\# (\Gamma / \langle S \rangle) < \infty$, consider

$$\varphi: \Gamma \to \Gamma/[\Gamma,\Gamma] = H_1(X,Z) \to H_1(X,\mathbf{R}),$$

 $\varphi(S)$ generates $H_1(X, \mathbf{R})$ as a vector space, hence

 $\dim H_1(X,\mathbf{R}) \leq \#S.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Suppose $r_0 \geq \frac{4}{5} D$ for simplicity. If $\exists S \subset \Gamma$ finite s.t. $\# (\Gamma / \langle S \rangle) < \infty$, consider

$$\varphi: \Gamma \to \Gamma/[\Gamma,\Gamma] = H_1(X,Z) \to H_1(X,\mathbf{R}),$$

 $\varphi(S)$ generates $H_1(X, \mathbf{R})$ as a vector space, hence

 $\dim H_1(X,\mathbf{R}) \leq \#S.$

 $\forall r > 0$ and $\forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows:

Suppose $r_0 \geq \frac{4}{5} D$ for simplicity. If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma/\langle S \rangle) < \infty$, consider

$$\varphi: \Gamma \to \Gamma/[\Gamma,\Gamma] = H_1(X,Z) \to H_1(X,\mathbf{R}),$$

 $\varphi(S)$ generates $H_1(X, \mathbf{R})$ as a vector space, hence

 $\dim H_1(X,\mathbf{R}) \leq \#S.$

 $\forall r > 0 \text{ and } \forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows: S is a maximal family of $\gamma \in \Gamma^*$ s.t. $\forall \gamma, \gamma_1, \gamma_2 \in S$ with $\gamma_1 \neq \gamma_2$,

Suppose $r_0 \ge \frac{4}{5}D$ for simplicity. If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma/\langle S \rangle) < \infty$, consider

$$\varphi: \Gamma \to \Gamma/[\Gamma,\Gamma] = H_1(X,Z) \to H_1(X,\mathbf{R}),$$

 $\varphi(S)$ generates $H_1(X, \mathbf{R})$ as a vector space, hence

 $\dim H_1(X,\mathbf{R}) \leq \#S.$

 $\forall r > 0 \text{ and } \forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows: S is a maximal family of $\gamma \in \Gamma^*$ s.t. $\forall \gamma, \gamma_1, \gamma_2 \in S$ with $\gamma_1 \neq \gamma_2$,

 $d(x,\gamma x) \leq 2D+2r$ and $d(\gamma_1 x,\gamma_2 x) \geq 2r$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Suppose $r_0 \geq \frac{4}{5} D$ for simplicity. If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma/\langle S \rangle) < \infty$, consider

$$\varphi: \Gamma \to \Gamma/[\Gamma,\Gamma] = H_1(X,Z) \to H_1(X,\mathbf{R}),$$

 $\varphi(S)$ generates $H_1(X, \mathbf{R})$ as a vector space, hence

 $\dim H_1(X,\mathbf{R}) \leq \#S.$

 $\forall r > 0 \text{ and } \forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows: S is a maximal family of $\gamma \in \Gamma^*$ s.t. $\forall \gamma, \gamma_1, \gamma_2 \in S$ with $\gamma_1 \neq \gamma_2$,

$$d(x,\gamma x) \leq 2D+2r$$
 and $d(\gamma_1 x,\gamma_2 x) \geq 2r$.

Choose $r = r_0/2$ and the doubling property,

Suppose $r_0 \geq \frac{4}{5} D$ for simplicity. If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma/\langle S \rangle) < \infty$, consider

$$\varphi: \Gamma \to \Gamma/[\Gamma,\Gamma] = H_1(X,Z) \to H_1(X,\mathbf{R}),$$

 $\varphi(S)$ generates $H_1(X, \mathbf{R})$ as a vector space, hence

 $\dim H_1(X,\mathbf{R}) \leq \#S.$

 $\forall r > 0 \text{ and } \forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows: S is a maximal family of $\gamma \in \Gamma^*$ s.t. $\forall \gamma, \gamma_1, \gamma_2 \in S$ with $\gamma_1 \neq \gamma_2$,

$$d(x,\gamma x) \leq 2D+2r$$
 and $d(\gamma_1 x,\gamma_2 x) \geq 2r$.

A D N A 目 N A E N A E N A B N A C N

Choose $r = r_0/2$ and the doubling property,

$$\#S \leq \frac{\mu(B(x,2D+3r))}{\mu(B(x,r))}$$

Suppose $r_0 \geq \frac{4}{5} D$ for simplicity. If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma/\langle S \rangle) < \infty$, consider

$$\varphi: \Gamma \to \Gamma/[\Gamma,\Gamma] = H_1(X,Z) \to H_1(X,\mathbf{R}),$$

 $\varphi(S)$ generates $H_1(X, \mathbf{R})$ as a vector space, hence

 $\dim H_1(X,\mathbf{R}) \leq \#S.$

 $\forall r > 0 \text{ and } \forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows: S is a maximal family of $\gamma \in \Gamma^*$ s.t. $\forall \gamma, \gamma_1, \gamma_2 \in S$ with $\gamma_1 \neq \gamma_2$,

$$d(x,\gamma x) \leq 2D+2r$$
 and $d(\gamma_1 x,\gamma_2 x) \geq 2r$.

Choose $r = r_0/2$ and the doubling property,

$$\#S \leq \frac{\mu(B(x,2D+3r))}{\mu(B(x,r))} \leq \frac{\mu(B(x,4r_0))}{\mu(B(x,r_0/2))} \leq C^3$$

Sommaire

Bishop-Gromov's Inequality: Riemannian manifolds

Generalization to metric spaces

BG for Gromov-hyperbolic spaces

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

(X, d) proper, c is a geodesic d(c(t), c(t')) = |t' - t|.

(X, d) proper, c is a geodesic d(c(t), c(t')) = |t' - t|.

(X, d) is said to be *geodesic* if $\forall x, y \in X \exists$ a geodesic joining x and y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(X, d) proper, c is a geodesic d(c(t), c(t')) = |t' - t|.

(X, d) is said to be *geodesic* if $\forall x, y \in X \exists$ a geodesic joining x and y.

Definition

(X, d) proper, geodesic metric space is δ -hyperbolic if all triangles are δ -thin.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(X, d) proper, c is a geodesic d(c(t), c(t')) = |t' - t|.

(X, d) is said to be *geodesic* if $\forall x, y \in X \exists$ a geodesic joining x and y.

Definition

(X, d) proper, geodesic metric space is δ -hyperbolic if all triangles are δ -thin.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(X, d) proper, c is a geodesic d(c(t), c(t')) = |t' - t|.

(X, d) is said to be *geodesic* if $\forall x, y \in X \exists$ a geodesic joining x and y.

Definition

(X, d) proper, geodesic metric space is δ -hyperbolic if all triangles are δ -thin.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(X, d) proper, c is a geodesic d(c(t), c(t')) = |t' - t|.

(X, d) is said to be *geodesic* if $\forall x, y \in X \exists$ a geodesic joining x and y.

Definition

(X, d) proper, geodesic metric space is δ -hyperbolic if all triangles are δ -thin.

In negatively curved manifolds: $\delta^2 \simeq \frac{1}{|\text{curvature max}|}.$

Gives no information about local geometry or topology.

(X, d) proper geodesic space, $\Gamma \subset \mathrm{Isom}(X)$ discrete subgroup, $\Gamma \backslash X$ compact,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(X, d) proper geodesic space, $\Gamma \subset \mathrm{Isom}(X)$ discrete subgroup, $\Gamma \backslash X$ compact,

 μ loc. finite, non trivial, $\Gamma\text{-invariant},$ Borel measure on X, then

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(X, d) proper geodesic space, $\Gamma \subset \text{Isom}(X)$ discrete subgroup, $\Gamma \setminus X$ compact,

 μ loc. finite, non trivial, Γ -invariant, Borel measure on X, then

$$\operatorname{Ent}(X,d) := \lim_{R \to +\infty} \frac{1}{R} \ln \left(\mu(B(x,R)) \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(X, d) proper geodesic space, $\Gamma \subset \text{Isom}(X)$ discrete subgroup, $\Gamma \setminus X$ compact,

 μ loc. finite, non trivial, Γ -invariant, Borel measure on X, then

$$\operatorname{Ent}(X,d) := \lim_{R \to +\infty} \frac{1}{R} \ln \left(\mu(B(x,R)) \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• does not depend on x and μ ,

(X, d) proper geodesic space, $\Gamma \subset \text{Isom}(X)$ discrete subgroup, $\Gamma \setminus X$ compact,

 μ loc. finite, non trivial, $\Gamma\text{-invariant},$ Borel measure on X, then

$$\operatorname{Ent}(X,d) := \lim_{R \to +\infty} \frac{1}{R} \ln \left(\mu(B(x,R)) \right)$$

 "Entropy bounded above" will replace the stronger hypothesis "Ricci curvature bounded below".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We say that a group Γ acts *geometrically* on a (proper) metric space (X, d) if it acts by isometries, faithfully, properly and co-compactly.

We say that a group Γ acts *geometrically* on a (proper) metric space (X, d) if it acts by isometries, faithfully, properly and co-compactly.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The counting measure of an orbit is then $\mu_x^{\Gamma} = \sum_{\gamma \in \Gamma} \delta_{\gamma x}$.

We say that a group Γ acts *geometrically* on a (proper) metric space (X, d) if it acts by isometries, faithfully, properly and co-compactly.

The counting measure of an orbit is then $\mu_x^{\Gamma} = \sum_{\gamma \in \Gamma} \delta_{\gamma x}$.

Theorem (BCGS)

 Γ acting geometrically on a δ -hyperbolic space (X,d) with

 $\operatorname{Ent}(X,d) \leq H$ and $\operatorname{diam}(X/\Gamma) \leq D$,

We say that a group Γ acts *geometrically* on a (proper) metric space (X, d) if it acts by isometries, faithfully, properly and co-compactly.

The counting measure of an orbit is then $\mu_x^{\Gamma} = \sum_{\gamma \in \Gamma} \delta_{\gamma x}$.

Theorem (BCGS)

 Γ acting geometrically on a $\delta\text{-hyperbolic space}\left(X,d\right)$ with

$$\operatorname{Ent}(X,d) \leq H$$
 and $\operatorname{diam}(X/\Gamma) \leq D$,

then, $\forall x \in X$, $\forall R \ge r \ge 10 (D + \delta), \quad \frac{\mu_x^{\Gamma} \left(B(x, R) \right)}{\mu_x^{\Gamma} \left(B(x, r) \right)} \le 3 \left(\frac{R}{r} \right)^{25/4} e^{6HR} .$

We say that a group Γ acts *geometrically* on a (proper) metric space (X, d) if it acts by isometries, faithfully, properly and co-compactly.

The counting measure of an orbit is then $\mu_x^{\Gamma} = \sum_{\gamma \in \Gamma} \delta_{\gamma x}$.

Theorem (BCGS)

 Γ acting geometrically on a $\delta\text{-hyperbolic space}\left(X,d\right)$ with

$$\operatorname{Ent}(X,d) \leq H$$
 and $\operatorname{diam}(X/\Gamma) \leq D$,

then, $\forall x \in X$, $\forall R \ge r \ge 10 (D + \delta), \quad \frac{\mu_x^{\Gamma} \left(B(x, R) \right)}{\mu_x^{\Gamma} \left(B(x, r) \right)} \le 3 \left(\frac{R}{r} \right)^{25/4} e^{6HR} .$

(True also for any Γ -invariant measure.) \rightsquigarrow Doubling Property

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▶ General trivial property: $B(x, R) \cap B(z, r) \supset B(y, r_1)$, where

$$r_1 = \frac{1}{2}(R + r - d(x, z)).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• General trivial property: $B(x, R) \cap B(z, r) \supset B(y, r_1)$, where $r_1 = \frac{1}{2}(R + r - d(x, z))$.

• General trivial property: $B(x, R) \cap B(z, r) \supset B(y, r_1)$, where

 $r_1 = \frac{1}{2}(R + r - d(x, z)).$

▶ If X is δ -hyperbolic: $B(x, R) \cap B(z, r) \subset B(y, r_2)$ (red ball), where $r_2 = \frac{1}{2}(R + r - d(x, z)) + \delta$.

・ロト 4 目 ト 4 目 ト 4 目 ・ つんぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\Sigma_R(x) := \{\gamma \in \Gamma : d(x, \gamma x) \leq R\}.$$

$$\Sigma_{R}(x) := \{ \gamma \in \Gamma : d(x, \gamma x) \leq R \}.$$

Theorem (BCGS)
Let $\delta \geq 0$, $H, D > 0$, $\Gamma \subset \text{Isom}(X, d)$ non cyclic torsion-free
discrete subgroup, $(X, d) \delta$ -hyperbolic space satisfying

diam $(\Gamma \setminus X) \leq D$ and $\operatorname{Ent}(X, d) \leq H$,

(ロ)、(型)、(E)、(E)、 E) の(()

$$\Sigma_R(x) := \{ \gamma \in \Gamma : d(x, \gamma x) \le R \}.$$

Theorem (BCGS)

Let $\delta \ge 0$, H, D > 0, $\Gamma \subset \text{Isom}(X, d)$ non cyclic torsion-free discrete subgroup, (X, d) δ -hyperbolic space satisfying

 $\operatorname{diam}(\Gamma \setminus X) \leq D$ and $\operatorname{Ent}(X, d) \leq H$,

then, for every $x \in X$, $\Sigma_{10(D+\delta)}(x)$ generates Γ and

 $\#\Sigma_{10(D+\delta)}(x) \leq N(\delta, H, D).$

$$\Sigma_R(x) := \{ \gamma \in \Gamma : d(x, \gamma x) \le R \}.$$

Theorem (BCGS)

Let $\delta \ge 0$, H, D > 0, $\Gamma \subset \text{Isom}(X, d)$ non cyclic torsion-free discrete subgroup, (X, d) δ -hyperbolic space satisfying

diam $(\Gamma \setminus X) \leq D$ and $\operatorname{Ent}(X, d) \leq H$,

then, for every $x \in X$, $\Sigma_{10(D+\delta)}(x)$ generates Γ and

$$\#\Sigma_{10(D+\delta)}(x) \leq N(\delta, H, D).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Set $R_0 = 10(D + \delta)$.
Γ finitely generated (non-cyclic, torsion-free),

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma = \Sigma^{-1}$ finite generating set,

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

•
$$X = \mathcal{G}(\Gamma, \Sigma) = \text{Cayley graph},$$

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma = \Sigma^{-1}$ finite generating set,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{array}{l} \blacktriangleright \ X = \mathcal{G}(\Gamma, \Sigma) = \text{Cayley graph}, \\ \Gamma = \{\text{vertices}\} \text{ and } \gamma \sim \gamma' \Leftrightarrow \exists s \in \Sigma, \quad \gamma' = \gamma s. \end{array}$$

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{array}{l} \blacktriangleright \ X = \mathcal{G}(\Gamma, \Sigma) = \text{Cayley graph,} \\ \Gamma = \{\text{vertices}\} \text{ and } \gamma \sim \gamma' \Leftrightarrow \exists s \in \Sigma, \quad \gamma' = \gamma s. \end{array}$$

▶ 1-dim edges are isometric to [0, 1].

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{array}{l} \blacktriangleright \ X = \mathcal{G}(\Gamma, \Sigma) = \text{Cayley graph}, \\ \Gamma = \{\text{vertices}\} \text{ and } \gamma \sim \gamma' \Leftrightarrow \exists s \in \Sigma, \quad \gamma' = \gamma s. \end{array}$$

▶ 1-dim edges are isometric to [0, 1].

• Γ acts by isometries on $\mathcal G$

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{array}{l} \blacktriangleright \ X = \mathcal{G}(\Gamma, \Sigma) = \text{Cayley graph,} \\ \Gamma = \{\text{vertices}\} \text{ and } \gamma \sim \gamma' \Leftrightarrow \exists s \in \Sigma, \quad \gamma' = \gamma s. \end{array}$$

▶ 1-dim edges are isometric to [0, 1].

• Γ acts by isometries on $\mathcal{G} \rightsquigarrow \operatorname{diam}(\mathcal{G}/\Gamma) = 1$.

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$\begin{array}{l} \blacktriangleright \ X = \mathcal{G}(\Gamma, \Sigma) = \text{Cayley graph}, \\ \Gamma = \{\text{vertices}\} \text{ and } \gamma \sim \gamma' \Leftrightarrow \exists s \in \Sigma, \quad \gamma' = \gamma s. \end{array}$

▶ 1-dim edges are isometric to [0, 1].

- Γ acts by isometries on $\mathcal{G} \rightsquigarrow \operatorname{diam}(\mathcal{G}/\Gamma) = 1$.
- counting measure on the vertices.

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

$$\begin{array}{l} \blacktriangleright \ X = \mathcal{G}(\Gamma, \Sigma) = \text{Cayley graph,} \\ \Gamma = \{\text{vertices}\} \text{ and } \gamma \sim \gamma' \Leftrightarrow \exists s \in \Sigma, \quad \gamma' = \gamma s. \end{array}$$

▶ 1-dim edges are isometric to [0, 1].

- Γ acts by isometries on $\mathcal{G} \rightsquigarrow \operatorname{diam}(\mathcal{G}/\Gamma) = 1$.
- counting measure on the vertices.

Definition

 (Γ, Σ) is a δ -hyperbolic marked group if $\mathcal{G}(\Gamma, \Sigma)$ is.

Hence

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

$$\begin{array}{l} \blacktriangleright \ X = \mathcal{G}(\Gamma, \Sigma) = \text{Cayley graph,} \\ \Gamma = \{\text{vertices}\} \text{ and } \gamma \sim \gamma' \Leftrightarrow \exists s \in \Sigma, \quad \gamma' = \gamma s. \end{array}$$

▶ 1-dim edges are isometric to [0, 1].

- Γ acts by isometries on $\mathcal{G} \rightsquigarrow \operatorname{diam}(\mathcal{G}/\Gamma) = 1$.
- counting measure on the vertices.

Definition

 (Γ, Σ) is a δ -hyperbolic marked group if $\mathcal{G}(\Gamma, \Sigma)$ is.

Hence

$$\#\Sigma \leq N(\delta, H, 1)$$
.

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

$$\begin{array}{l} \blacktriangleright \ X = \mathcal{G}(\Gamma, \Sigma) = \text{Cayley graph,} \\ \Gamma = \{\text{vertices}\} \text{ and } \gamma \sim \gamma' \Leftrightarrow \exists s \in \Sigma, \quad \gamma' = \gamma s. \end{array}$$

▶ 1-dim edges are isometric to [0, 1].

- Γ acts by isometries on $\mathcal{G} \rightsquigarrow \operatorname{diam}(\mathcal{G}/\Gamma) = 1$.
- counting measure on the vertices.

Definition

 (Γ, Σ) is a δ -hyperbolic marked group if $\mathcal{G}(\Gamma, \Sigma)$ is.

Hence

$$\#\Sigma \leq N(\delta, H, 1)$$
.

There exists a presentation of Γ with Σ and finitely many relations of length $\leq 4\delta+6,$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

$$\begin{array}{l} \blacktriangleright \ X = \mathcal{G}(\Gamma, \Sigma) = \text{Cayley graph,} \\ \Gamma = \{\text{vertices}\} \text{ and } \gamma \sim \gamma' \Leftrightarrow \exists s \in \Sigma, \quad \gamma' = \gamma s. \end{array}$$

▶ 1-dim edges are isometric to [0, 1].

- Γ acts by isometries on $\mathcal{G} \rightsquigarrow \operatorname{diam}(\mathcal{G}/\Gamma) = 1$.
- counting measure on the vertices.

Definition

 (Γ, Σ) is a δ -hyperbolic marked group if $\mathcal{G}(\Gamma, \Sigma)$ is.

Hence

$$\#\Sigma \leq N(\delta, H, 1)$$
.

There exists a presentation of Γ with Σ and finitely many relations of length $\leq 4\delta+6,$

Theorem

The number of such marked groups (Γ, Σ) is bounded by $N'(\delta, H)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.

▶ 2nd tool: when $\Gamma \subset \text{Isom}(X, d)$, apply the

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- ▶ 2nd tool: when $\Gamma \subset \text{Isom}(X, d)$, apply the
- Theorem (Breuillard-Green-Tao)

 $\forall C \ge 1, \exists \nu = \nu(C) \text{ such that for } \Gamma \text{ torsion-free group, if } A \subset \Gamma$ finite satisfies $\#(A \cdot A) \le C(\#A),$ (2)

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- ▶ 2nd tool: when $\Gamma \subset \text{Isom}(X, d)$, apply the
- Theorem (Breuillard-Green-Tao)

 $\forall C \ge 1, \exists \nu = \nu(C)$ such that for Γ torsion-free group, if $A \subset \Gamma$ finite satisfies

$$\#(A \cdot A) \le C(\#A), \tag{2}$$

then $\exists G_0 \subset \Gamma$ nilpotent, $\exists \gamma_1, \dots, \gamma_{\nu} \in \Gamma$ s.t. $A \subset \bigcup_{i=1}^{\nu} \gamma_i G_0$.

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- ▶ 2nd tool: when $\Gamma \subset \text{Isom}(X, d)$, apply the

Theorem (Breuillard-Green-Tao)

 $\forall C \ge 1, \exists \nu = \nu(C)$ such that for Γ torsion-free group, if $A \subset \Gamma$ finite satisfies

$$\#(A \cdot A) \le C(\#A), \tag{2}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

then $\exists G_0 \subset \Gamma$ nilpotent, $\exists \gamma_1, \dots, \gamma_{\nu} \in \Gamma$ s.t. $A \subset \bigcup_{i=1}^{\nu} \gamma_i G_0$.

C-doubling of μ_x^{Γ} at scale $3R_0 \rightsquigarrow (2)$ for $A := \Sigma_{3R_0}(x)$ then,

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- ▶ 2nd tool: when $\Gamma \subset \text{Isom}(X, d)$, apply the

Theorem (Breuillard-Green-Tao)

 $\forall C \ge 1, \exists \nu = \nu(C)$ such that for Γ torsion-free group, if $A \subset \Gamma$ finite satisfies

$$\#(A \cdot A) \le C(\#A), \tag{2}$$

then $\exists G_0 \subset \Gamma$ nilpotent, $\exists \gamma_1, \dots, \gamma_{\nu} \in \Gamma$ s.t. $A \subset \bigcup_{i=1}^{\nu} \gamma_i G_0$.

C-doubling of μ_x^{Γ} at scale $3R_0 \rightsquigarrow (2)$ for $A := \Sigma_{3R_0}(x)$ then,

$$\Sigma_{3R_0}(x) \subset \bigcup_{i=1}^{\nu} \gamma_i G_0.$$

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- ▶ 2nd tool: when $\Gamma \subset \text{Isom}(X, d)$, apply the

Theorem (Breuillard-Green-Tao)

 $\forall C \ge 1, \exists \nu = \nu(C)$ such that for Γ torsion-free group, if $A \subset \Gamma$ finite satisfies

$$\#(A \cdot A) \le C(\#A), \tag{2}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

then
$$\exists G_0 \subset \Gamma$$
 nilpotent, $\exists \gamma_1, \dots, \gamma_{\nu} \in \Gamma$ s.t.
 $A \subset \bigcup_{i=1}^{\nu} \gamma_i G_0$.

C-doubling of μ_x^{Γ} at scale $3R_0 \rightsquigarrow (2)$ for $A := \Sigma_{3R_0}(x)$ then,

$$\Sigma_{3R_0}(x)\subset \bigcup_{i=1}^{\nu}\gamma_iG_0.$$

(Γ is $\delta'(\delta, D)$ -hyp., torsion-free \rightsquigarrow nilpotent = **Z**).

Replace G_0 by \overline{G}_0 unique maximal extension of G_0 (exists when Γ torsion-free hyperbolic).

Replace G_0 by \overline{G}_0 unique maximal extension of G_0 (exists when Γ torsion-free hyperbolic).

$$\Sigma_{3R_0}(x) \subset \bigcup_{i=1}^{\nu} \gamma_i \overline{G}_0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Replace G_0 by \overline{G}_0 unique maximal extension of G_0 (exists when Γ torsion-free hyperbolic).

$$\Sigma_{3R_0}(x) \subset \bigcup_{i=1}^{\nu} \gamma_i \overline{G}_0.$$

 $\forall s \in \Sigma_{2D}(x) \subset \Gamma$ generating set, $g \mapsto sgs^{-1}$ is injective from $\overline{G}_0 \cap \Sigma_{2R_0}(x)$ to $s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x)$ (triangular inequality).

Replace G_0 by \overline{G}_0 unique maximal extension of G_0 (exists when Γ torsion-free hyperbolic).

$$\Sigma_{3R_0}(x)\subset \bigcup_{i=1}^{\nu} \gamma_i\overline{G}_0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\begin{aligned} \forall s \in \Sigma_{2D}(x) \subset \mathsf{\Gamma} \text{ generating set, } g \mapsto sgs^{-1} \text{ is injective from} \\ \overline{G}_0 \cap \Sigma_{2R_0}(x) \text{ to } s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x) \text{ (triangular inequality).} \\ \text{If } \# \left(\overline{G}_0 \cap \Sigma_{2R_0}(x)\right) > \nu \rightsquigarrow \# \left(s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x)\right) > \nu \rightsquigarrow \end{aligned}$

Replace G_0 by \overline{G}_0 unique maximal extension of G_0 (exists when Γ torsion-free hyperbolic).

$$\Sigma_{3R_0}(x) \subset \bigcup_{i=1}^{\nu} \gamma_i \overline{G}_0.$$

 $\begin{aligned} \forall s \in \Sigma_{2D}(x) \subset \mathsf{\Gamma} \text{ generating set, } g \mapsto sgs^{-1} \text{ is injective from} \\ \overline{G}_0 \cap \Sigma_{2R_0}(x) \text{ to } s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x) \text{ (triangular inequality).} \\ \text{If } \# \left(\overline{G}_0 \cap \Sigma_{2R_0}(x)\right) > \nu \rightsquigarrow \# \left(s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x)\right) > \nu \rightsquigarrow \\ \exists g_1 \neq g_2 \in s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x) \text{ and } g_1, g_2 \in \gamma_i\overline{G}_0 \rightsquigarrow \end{aligned}$

Replace G_0 by \overline{G}_0 unique maximal extension of G_0 (exists when Γ torsion-free hyperbolic).

$$\Sigma_{3R_0}(x) \subset \bigcup_{i=1}^{\nu} \gamma_i \overline{G}_0.$$

 $\begin{aligned} \forall s \in \Sigma_{2D}(x) \subset \mathsf{\Gamma} \text{ generating set, } g \mapsto sgs^{-1} \text{ is injective from} \\ \overline{G}_0 \cap \Sigma_{2R_0}(x) \text{ to } s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x) \text{ (triangular inequality).} \\ \text{If } \# \left(\overline{G}_0 \cap \Sigma_{2R_0}(x)\right) > \nu \rightsquigarrow \# \left(s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x)\right) > \nu \rightsquigarrow \\ \exists g_1 \neq g_2 \in s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x) \text{ and } g_1, g_2 \in \gamma_i\overline{G}_0 \rightsquigarrow \\ g^{-1}g_2 \in \overline{G}_0 \cap s\overline{G}_0s^{-1} \Rightarrow s\overline{G}_0s^{-1} = \overline{G}_0 \Rightarrow \overline{G}_0 \trianglelefteq \mathsf{\Gamma} \end{aligned}$

Replace G_0 by \overline{G}_0 unique maximal extension of G_0 (exists when Γ torsion-free hyperbolic).

$$\Sigma_{3R_0}(x) \subset \bigcup_{i=1}^{\nu} \gamma_i \overline{G}_0.$$

 $\begin{aligned} \forall s \in \Sigma_{2D}(x) \subset \Gamma \text{ generating set, } g \mapsto sgs^{-1} \text{ is injective from} \\ \overline{G}_0 \cap \Sigma_{2R_0}(x) \text{ to } s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x) \text{ (triangular inequality).} \\ \text{If } \# \left(\overline{G}_0 \cap \Sigma_{2R_0}(x)\right) > \nu \rightsquigarrow \# \left(s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x)\right) > \nu \rightsquigarrow \\ \exists g_1 \neq g_2 \in s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x) \text{ and } g_1, g_2 \in \gamma_i\overline{G}_0 \rightsquigarrow \\ g^{-1}g_2 \in \overline{G}_0 \cap s\overline{G}_0s^{-1} \Rightarrow s\overline{G}_0s^{-1} = \overline{G}_0 \Rightarrow \overline{G}_0 \trianglelefteq \Gamma \Rightarrow \Gamma \text{ cyclic.} \\ \text{A contradiction.} \end{aligned}$

Replace G_0 by \overline{G}_0 unique maximal extension of G_0 (exists when Γ torsion-free hyperbolic).

$$\Sigma_{3R_0}(x) \subset \bigcup_{i=1}^{\nu} \gamma_i \overline{G}_0.$$

 $\begin{aligned} \forall s \in \Sigma_{2D}(x) \subset \Gamma \text{ generating set, } g \mapsto sgs^{-1} \text{ is injective from} \\ \overline{G}_0 \cap \Sigma_{2R_0}(x) \text{ to } s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x) \text{ (triangular inequality).} \\ \text{If } \# \left(\overline{G}_0 \cap \Sigma_{2R_0}(x)\right) > \nu \rightsquigarrow \# \left(s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x)\right) > \nu \rightsquigarrow \\ \exists g_1 \neq g_2 \in s\overline{G}_0s^{-1} \cap \Sigma_{3R_0}(x) \text{ and } g_1, g_2 \in \gamma_i\overline{G}_0 \rightsquigarrow \\ g^{-1}g_2 \in \overline{G}_0 \cap s\overline{G}_0s^{-1} \Rightarrow s\overline{G}_0s^{-1} = \overline{G}_0 \Rightarrow \overline{G}_0 \trianglelefteq \Gamma \Rightarrow \Gamma \text{ cyclic.} \\ \text{A contradiction. Therefore, } \# \left(\overline{G}_0 \cap \Sigma_{2R_0}(x)\right) \le \nu \text{ and} \end{aligned}$

 $\#\Sigma_{R_0}(x) \leq \nu^2 \, .$

THANKS

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

A two-years post-doctoral position in Grenoble

Starting September 2024.

- Hilbert geometries on subspaces of projective spaces in real, complex or non Archimedean fields,
- Hilbert geometries and generalisations on real and complex Riemannian manifolds,
- Boundaries of character varieties,
- Non Archimedean representations and actions on Euclidean buildings,
- Group actions in complex hyperbolic geometry, Anosov representations.

Contact : Anne.Parreau@univ-grenoble-alpes.fr