Bishop-Gromov's inequality: a central tool in Geometry

joint with G. Courtois, S. Gallot and A. Sambusetti

G. BESSON

CNRS - Université Grenoble Alpes
Geometry beyond Riemann: Curvature and Rigidity Wien, October 18, 2023

Sommaire

Bishop-Gromov's Inequality: Riemannian manifolds

Generalization to metric spaces

BG for Gromov-hyperbolic spaces

Basics

$\left(X^{n}, g\right)$ Riem. manifold, $\sigma=$ sectional curvature.
$v \in T_{x} X$ s.t. $g(v, v)=1$,

Basics

$\left(X^{n}, g\right)$ Riem. manifold, $\sigma=$ sectional curvature.
$v \in T_{x} X$ s.t. $g(v, v)=1$,
$\left\{v, e_{2}, \ldots, e_{n}\right\}$ orthonormal basis.

Basics

$\left(X^{n}, g\right)$ Riem. manifold, $\sigma=$ sectional curvature.
$v \in T_{x} X$ s.t. $g(v, v)=1$, $\left\{v, e_{2}, \ldots, e_{n}\right\}$ orthonormal basis.

$$
\operatorname{Ricci}(v, v):=\sum_{i=2}^{n} \sigma\left(v, e_{i}\right),
$$

where $\sigma\left(v, e_{i}\right)=$ sectional curvature of the plane $\left\langle v, e_{i}\right\rangle$.

Basics

$\left(X^{n}, g\right)$ Riem. manifold, $\sigma=$ sectional curvature.
$v \in T_{x} X$ s.t. $g(v, v)=1$, $\left\{v, e_{2}, \ldots, e_{n}\right\}$ orthonormal basis.

$$
\operatorname{Ricci}(v, v):=\sum_{i=2}^{n} \sigma\left(v, e_{i}\right),
$$

where $\sigma\left(v, e_{i}\right)=$ sectional curvature of the plane $\left\langle v, e_{i}\right\rangle$.
Notation: $\operatorname{Ricci} \geq \kappa \Longleftrightarrow \forall v \quad \operatorname{Ricci}(v, v) \geq \kappa$

Statement

$X_{\kappa}^{n}=1$-connected manifold of constant curvature κ, $b_{\kappa, n}(r)=$ volume of its balls of radius r,

Statement

$X_{\kappa}^{n}=1$-connected manifold of constant curvature κ, $b_{\kappa, n}(r)=$ volume of its balls of radius r,
Theorem (R. Bishop, M. Gromov)
$\left(X^{n}, g\right), n \geq 2$, complete Riem. man., Ricci $\geq(n-1) \kappa$, for $\kappa \in \mathbf{R}$:

Statement

$X_{\kappa}^{n}=1$-connected manifold of constant curvature κ, $b_{\kappa, n}(r)=$ volume of its balls of radius r,
Theorem (R. Bishop, M. Gromov)
$\left(X^{n}, g\right), n \geq 2$, complete Riem. man., Ricci $\geq(n-1) \kappa$, for $\kappa \in \mathbf{R}$:

$$
\forall x \in X, \quad \frac{\operatorname{Vol} B(x, R)}{\operatorname{Vol} B(x, r)} \leq \frac{b_{\kappa, n}(R)}{b_{\kappa, n}(r)} \text { when } 0<r \leq R<+\infty .
$$

Statement

$X_{\kappa}^{n}=1$-connected manifold of constant curvature κ, $b_{\kappa, n}(r)=$ volume of its balls of radius r,
Theorem (R. Bishop, M. Gromov)
$\left(X^{n}, g\right), n \geq 2$, complete Riem. man., Ricci $\geq(n-1) \kappa$, for $\kappa \in \mathbf{R}$:

$$
\forall x \in X, \quad \frac{\operatorname{Vol} B(x, R)}{\operatorname{Vol} B(x, r)} \leq \frac{b_{\kappa, n}(R)}{b_{\kappa, n}(r)} \text { when } 0<r \leq R<+\infty .
$$

equality iff $(X, g)=X_{\kappa}^{n}$.

Gromov's precompactness I

X^{n} closed Riem. manifold s.t. Ricci $\geq-(n-1)$,

Gromov's precompactness I

X^{n} closed Riem. manifold s.t. Ricci $\geq-(n-1)$,
Definition
An ε-packing $\leadsto P=\left\{B\left(x_{1}, \varepsilon\right), \ldots, B\left(x_{k}, \varepsilon\right)\right\}$ (disjoint balls)

$$
\operatorname{Pack}_{X}(\varepsilon):=\max \{\# P\} .
$$

Gromov's precompactness I

X^{n} closed Riem. manifold s.t. Ricci $\geq-(n-1)$,
Definition
An ε-packing $\leadsto P=\left\{B\left(x_{1}, \varepsilon\right), \ldots, B\left(x_{k}, \varepsilon\right)\right\}$ (disjoint balls)

$$
\operatorname{Pack}_{X}(\varepsilon):=\max \{\# P\} .
$$

Then

$$
\operatorname{Pack}_{X}(\varepsilon) \leq \max _{x \in X}\left(\frac{\operatorname{Vol} B(x, \operatorname{diam}(X))}{\operatorname{Vol} B(x, \varepsilon)}\right)
$$

Gromov's precompactness I

X^{n} closed Riem. manifold s.t. Ricci $\geq-(n-1)$,
Definition
An ε-packing $\leadsto P=\left\{B\left(x_{1}, \varepsilon\right), \ldots, B\left(x_{k}, \varepsilon\right)\right\}$ (disjoint balls)

$$
\operatorname{Pack}_{X}(\varepsilon):=\max \{\# P\} .
$$

Then

$$
\operatorname{Pack}_{X}(\varepsilon) \leq \max _{x \in X}\left(\frac{\operatorname{Vol} B(x, \operatorname{diam}(X))}{\operatorname{Vol} B(x, \varepsilon)}\right) \leq \frac{b_{-1, n}(\operatorname{diam}(X))}{b_{-1, n}(\varepsilon)}
$$

Gromov's precompactness I

X^{n} closed Riem. manifold s.t. Ricci $\geq-(n-1)$,
Definition
An ε-packing $\leadsto P=\left\{B\left(x_{1}, \varepsilon\right), \ldots, B\left(x_{k}, \varepsilon\right)\right\}$ (disjoint balls)

$$
\operatorname{Pack}_{X}(\varepsilon):=\max \{\# P\} .
$$

Then

$$
\operatorname{Pack}_{X}(\varepsilon) \leq \max _{x \in X}\left(\frac{\operatorname{Vol} B(x, \operatorname{diam}(X))}{\operatorname{Vol} B(x, \varepsilon)}\right) \leq \frac{b_{-1, n}(\operatorname{diam}(X))}{b_{-1, n}(\varepsilon)}
$$

Proof.
$1^{\text {st }}$ ineq.: if $P=\left\{B\left(x_{i}, \varepsilon\right)\right\}_{i \in I}$ maximal packing, then

$$
\# P \leq \frac{\operatorname{Vol} X}{\min _{x \in X} \operatorname{Vol} B(x, \varepsilon)}=\max _{x \in X}\left(\frac{\operatorname{Vol} B(x, \operatorname{diam}(X))}{\operatorname{Vol} B(x, \varepsilon)}\right)
$$

Gromov's precompactness I

X^{n} closed Riem. manifold s.t. Ricci $\geq-(n-1)$,
Definition
An ε-packing $\leadsto P=\left\{B\left(x_{1}, \varepsilon\right), \ldots, B\left(x_{k}, \varepsilon\right)\right\}$ (disjoint balls)

$$
\operatorname{Pack}_{X}(\varepsilon):=\max \{\# P\} .
$$

Then

$$
\operatorname{Pack}_{X}(\varepsilon) \leq \max _{x \in X}\left(\frac{\operatorname{Vol} B(x, \operatorname{diam}(X))}{\operatorname{Vol} B(x, \varepsilon)}\right) \leq \frac{b_{-1, n}(\operatorname{diam}(X))}{b_{-1, n}(\varepsilon)}
$$

Proof.
$1^{\text {st }}$ ineq.: if $P=\left\{B\left(x_{i}, \varepsilon\right)\right\}_{i \in I}$ maximal packing, then

$$
\# P \leq \frac{\operatorname{Vol} X}{\min _{x \in X} \operatorname{Vol} B(x, \varepsilon)}=\max _{x \in X}\left(\frac{\operatorname{Vol} B(x, \operatorname{diam}(X))}{\operatorname{Vol} B(x, \varepsilon)}\right)
$$

$2^{\text {nd }}$ ineq.: Bishop-Gromov's inequality.

Gromov-Hausdorff topology

Definition
X, Y metric spaces (distances d_{X}, d_{Y}), we say that

$$
d_{G H}\left(\left(X, d_{X}\right),\left(Y, d_{Y}\right)\right)<\varepsilon
$$

iff $\exists(\varepsilon / 3)$-nets $R_{X} \subset X, R_{Y} \subset Y, \exists \varphi: R_{X} \rightarrow R_{Y}$ bijective s.t.,

Gromov-Hausdorff topology

Definition

X, Y metric spaces (distances d_{X}, d_{Y}), we say that

$$
d_{G H}\left(\left(X, d_{X}\right),\left(Y, d_{Y}\right)\right)<\varepsilon
$$

iff $\exists(\varepsilon / 3)$-nets $R_{X} \subset X, R_{Y} \subset Y, \exists \varphi: R_{X} \rightarrow R_{Y}$ bijective s.t., $\forall x, x^{\prime} \in R_{X}$,

$$
d_{X}\left(x, x^{\prime}\right)-\frac{\varepsilon}{3}<d_{Y}\left(\varphi(x), \varphi\left(x^{\prime}\right)\right)<d_{X}\left(x, x^{\prime}\right)+\frac{\varepsilon}{3} .
$$

Gromov-Hausdorff topology

Definition

X, Y metric spaces (distances d_{X}, d_{Y}), we say that

$$
d_{G H}\left(\left(X, d_{X}\right),\left(Y, d_{Y}\right)\right)<\varepsilon
$$

iff $\exists(\varepsilon / 3)$-nets $R_{X} \subset X, R_{Y} \subset Y, \exists \varphi: R_{X} \rightarrow R_{Y}$ bijective s.t., $\forall x, x^{\prime} \in R_{X}$,

$$
d_{X}\left(x, x^{\prime}\right)-\frac{\varepsilon}{3}<d_{Y}\left(\varphi(x), \varphi\left(x^{\prime}\right)\right)<d_{X}\left(x, x^{\prime}\right)+\frac{\varepsilon}{3} .
$$

$\leadsto \mathrm{GH}$ topology on $\mathcal{M}:=\{$ compact length metric spaces $\} / \underset{\text { isom. }}{\sim}$

Gromov's precompactness II

$$
\mathcal{M}_{\operatorname{man}}(n, D):=\{\text { closed Riem. } n \text {-man }: \text { Ricci } \geq-(n-1), \operatorname{diam} \leq D\}
$$

Gromov's precompactness II

$\mathcal{M}_{\text {man }}(n, D):=\{$ closed Riem. n-man $: \operatorname{Ricci} \geq-(n-1), \operatorname{diam} \leq D\}$

Corollary (Gromov's precompactness Theorem)
$\mathcal{M}_{\text {man }}(n, D) / \underset{\text { isom. }}{\sim}$ is relatively compact in \mathcal{M} for $d_{G H}$.

Gromov's precompactness II

$\mathcal{M}_{\text {man }}(n, D):=\{$ closed Riem. n-man $: \operatorname{Ricci} \geq-(n-1), \operatorname{diam} \leq D\}$

Corollary (Gromov's precompactness Theorem)
$\mathcal{M}_{\text {man }}(n, D) / \underset{\text { isom. }}{\sim}$ is relatively compact in \mathcal{M} for $d_{G H}$.
Proof.
$\mathcal{Q} \subset \mathcal{M}$ precompact $\Longleftrightarrow \forall \varepsilon, \quad M \mapsto \operatorname{Pack}_{M}(\varepsilon)$ is bounded on \mathcal{Q}

Gromov's precompactness II

$\mathcal{M}_{\text {man }}(n, D):=\{$ closed Riem. n-man $: \operatorname{Ricci} \geq-(n-1), \operatorname{diam} \leq D\}$

Corollary (Gromov's precompactness Theorem)
$\mathcal{M}_{\text {man }}(n, D) / \underset{\text { isom. }}{\sim}$ is relatively compact in \mathcal{M} for $d_{G H}$.
Proof.
$\mathcal{Q} \subset \mathcal{M}$ precompact $\Longleftrightarrow \forall \varepsilon, \quad M \mapsto \operatorname{Pack}_{M}(\varepsilon)$ is bounded on \mathcal{Q}
By Bishop-Gromov:

$$
\operatorname{Pack}_{M}(\varepsilon) \leq \frac{b_{-1, n}(D)}{b_{-1, n}(\varepsilon)}=C(n, \varepsilon, D)
$$

Another application

Theorem (Gromov, Gallot)
$\forall M \in \mathcal{M}_{\operatorname{man}}(n, D)$,

Another application

Theorem (Gromov, Gallot)
$\forall M \in \mathcal{M}_{\text {man }}(n, D)$,

$$
\operatorname{dim} H_{1}(M, \mathbf{R}) \leq C(n, D)
$$

Another application

Theorem (Gromov, Gallot)
$\forall M \in \mathcal{M}_{\text {man }}(n, D)$,

$$
\operatorname{dim} H_{1}(M, \mathbf{R}) \leq C(n, D)
$$

The proof will be described later, in the context of metric spaces.

Sommaire

Bishop-Gromov's Inequality: Riemannian manifolds

Generalization to metric spaces

BG for Gromov-hyperbolic spaces

Doubling hypothesis

Definition
A proper metric measured space (X, d, μ)

Doubling hypothesis

Definition

A proper metric measured space (X, d, μ) is C-doubling at scale $r_{0}>0$ iff, for every $r \in\left[\frac{r_{0}}{2}, 2 r_{0}\right]$, we have

$$
\begin{equation*}
0<\mu(B(x, r))<+\infty \text { and } \frac{\mu(B(x, 2 r))}{\mu(B(x, r))} \leq C, \tag{1}
\end{equation*}
$$

for every $x \in X$.

Doubling hypothesis

Definition

A proper metric measured space (X, d, μ) is C-doubling at scale $r_{0}>0$ iff, for every $r \in\left[\frac{r_{0}}{2}, 2 r_{0}\right]$, we have

$$
\begin{equation*}
0<\mu(B(x, r))<+\infty \text { and } \frac{\mu(B(x, 2 r))}{\mu(B(x, r))} \leq C \tag{1}
\end{equation*}
$$

for every $x \in X$.

- Much weaker than the classical doubling condition, which supposes (1) for every $r \in] 0,+\infty[$.

Doubling hypothesis

Definition

A proper metric measured space (X, d, μ) is C-doubling at scale $r_{0}>0$ iff, for every $r \in\left[\frac{r_{0}}{2}, 2 r_{0}\right]$, we have

$$
\begin{equation*}
0<\mu(B(x, r))<+\infty \text { and } \frac{\mu(B(x, 2 r))}{\mu(B(x, r))} \leq C \tag{1}
\end{equation*}
$$

for every $x \in X$.

- Much weaker than the classical doubling condition, which supposes (1) for every $r \in] 0,+\infty[$.
- Under this "doubling hypothesis", local geometry may be arbitrary.

Doubling hypothesis

Definition

A proper metric measured space (X, d, μ) is C-doubling at scale $r_{0}>0$ iff, for every $r \in\left[\frac{r_{0}}{2}, 2 r_{0}\right]$, we have

$$
\begin{equation*}
0<\mu(B(x, r))<+\infty \text { and } \frac{\mu(B(x, 2 r))}{\mu(B(x, r))} \leq C \tag{1}
\end{equation*}
$$

for every $x \in X$.

- Much weaker than the classical doubling condition, which supposes (1) for every $r \in] 0,+\infty[$.
- Under this "doubling hypothesis", local geometry may be arbitrary.
- Ricci $\geq-(n-1) \Longrightarrow$-doubling at every scale $r_{0}>0$, with $C=\frac{\bar{b}_{-1, n}\left(4 r_{0}\right)}{b_{-1, n}\left(r_{0} / 2\right)}$.

1st Betti numbers of a metric space

(X, d) compact length space admitting a (metric) universal covering $\pi:(\widetilde{X}, \tilde{d}) \rightarrow(X, d)$,

1st Betti numbers of a metric space

(X, d) compact length space admitting a (metric) universal covering $\pi:(\widetilde{X}, \tilde{d}) \rightarrow(X, d)$,
$\Gamma \simeq \pi_{1}(X)=$ group of deck-transformations of π.

1st Betti numbers of a metric space

(X, d) compact length space admitting a (metric) universal covering $\pi:(\widetilde{X}, \tilde{d}) \rightarrow(X, d)$,
$\Gamma \simeq \pi_{1}(X)=$ group of deck-transformations of π.
Theorem
If $\operatorname{diam}(X) \leq D$ and $\exists \mu$, Γ-invariant measure on \widetilde{X}, such that $(\widetilde{X}, \tilde{d}, \mu)$ is C-doubling at some scale $r_{0}>0$, then

1st Betti numbers of a metric space

(X, d) compact length space admitting a (metric) universal covering $\pi:(\widetilde{X}, \tilde{d}) \rightarrow(X, d)$,
$\Gamma \simeq \pi_{1}(X)=$ group of deck-transformations of π.
Theorem
If $\operatorname{diam}(X) \leq D$ and $\exists \mu$, Γ-invariant measure on \widetilde{X}, such that $(\widetilde{X}, \tilde{d}, \mu)$ is C-doubling at some scale $r_{0}>0$, then

$$
\operatorname{dim} H_{1}(X, \mathbf{R}) \leq C^{23 \frac{D}{r_{0}}+40}
$$

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.
If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma /\langle S\rangle)<\infty$,

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.
If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma /\langle S\rangle)<\infty$, consider

$$
\varphi: \Gamma \rightarrow \Gamma /[\Gamma, \Gamma]=H_{1}(X, Z) \rightarrow H_{1}(X, \mathbf{R}),
$$

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.
If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma /\langle S\rangle)<\infty$, consider

$$
\varphi: \Gamma \rightarrow \Gamma /[\Gamma, \Gamma]=H_{1}(X, Z) \rightarrow H_{1}(X, \mathbf{R}),
$$

$\varphi(S)$ generates $H_{1}(X, \mathbf{R})$ as a vector space, hence

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.
If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma /\langle S\rangle)<\infty$, consider

$$
\varphi: \Gamma \rightarrow \Gamma /[\Gamma, \Gamma]=H_{1}(X, Z) \rightarrow H_{1}(X, \mathbf{R}),
$$

$\varphi(S)$ generates $H_{1}(X, \mathbf{R})$ as a vector space, hence $\operatorname{dim} H_{1}(X, \mathbf{R}) \leq \# S$.

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.
If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma /\langle S\rangle)<\infty$, consider

$$
\varphi: \Gamma \rightarrow \Gamma /[\Gamma, \Gamma]=H_{1}(X, Z) \rightarrow H_{1}(X, \mathbf{R}),
$$

$\varphi(S)$ generates $H_{1}(X, \mathbf{R})$ as a vector space, hence $\operatorname{dim} H_{1}(X, \mathbf{R}) \leq \# S$.
$\forall r>0$ and $\forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows:

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.
If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma /\langle S\rangle)<\infty$, consider

$$
\varphi: \Gamma \rightarrow \Gamma /[\Gamma, \Gamma]=H_{1}(X, Z) \rightarrow H_{1}(X, \mathbf{R}),
$$

$\varphi(S)$ generates $H_{1}(X, \mathbf{R})$ as a vector space, hence

$$
\operatorname{dim} H_{1}(X, \mathbf{R}) \leq \# S
$$

$\forall r>0$ and $\forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows: S is a maximal family of $\gamma \in \Gamma^{*}$ s.t. $\forall \gamma, \gamma_{1}, \gamma_{2} \in S$ with $\gamma_{1} \neq \gamma_{2}$,

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.
If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma /\langle S\rangle)<\infty$, consider

$$
\varphi: \Gamma \rightarrow \Gamma /[\Gamma, \Gamma]=H_{1}(X, Z) \rightarrow H_{1}(X, \mathbf{R}),
$$

$\varphi(S)$ generates $H_{1}(X, \mathbf{R})$ as a vector space, hence

$$
\operatorname{dim} H_{1}(X, \mathbf{R}) \leq \# S
$$

$\forall r>0$ and $\forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows: S is a maximal family of $\gamma \in \Gamma^{*}$ s.t. $\forall \gamma, \gamma_{1}, \gamma_{2} \in S$ with $\gamma_{1} \neq \gamma_{2}$,

$$
d(x, \gamma x) \leq 2 D+2 r \quad \text { and } \quad d\left(\gamma_{1} x, \gamma_{2} x\right) \geq 2 r
$$

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.
If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma /\langle S\rangle)<\infty$, consider

$$
\varphi: \Gamma \rightarrow \Gamma /[\Gamma, \Gamma]=H_{1}(X, Z) \rightarrow H_{1}(X, \mathbf{R}),
$$

$\varphi(S)$ generates $H_{1}(X, \mathbf{R})$ as a vector space, hence

$$
\operatorname{dim} H_{1}(X, \mathbf{R}) \leq \# S
$$

$\forall r>0$ and $\forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows: S is a maximal family of $\gamma \in \Gamma^{*}$ s.t. $\forall \gamma, \gamma_{1}, \gamma_{2} \in S$ with $\gamma_{1} \neq \gamma_{2}$,

$$
d(x, \gamma x) \leq 2 D+2 r \quad \text { and } \quad d\left(\gamma_{1} x, \gamma_{2} x\right) \geq 2 r
$$

Choose $r=r_{0} / 2$ and the doubling property,

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.
If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma /\langle S\rangle)<\infty$, consider

$$
\varphi: \Gamma \rightarrow \Gamma /[\Gamma, \Gamma]=H_{1}(X, Z) \rightarrow H_{1}(X, \mathbf{R}),
$$

$\varphi(S)$ generates $H_{1}(X, \mathbf{R})$ as a vector space, hence

$$
\operatorname{dim} H_{1}(X, \mathbf{R}) \leq \# S
$$

$\forall r>0$ and $\forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows: S is a maximal family of $\gamma \in \Gamma^{*}$ s.t. $\forall \gamma, \gamma_{1}, \gamma_{2} \in S$ with $\gamma_{1} \neq \gamma_{2}$,

$$
d(x, \gamma x) \leq 2 D+2 r \quad \text { and } \quad d\left(\gamma_{1} x, \gamma_{2} x\right) \geq 2 r
$$

Choose $r=r_{0} / 2$ and the doubling property,

$$
\# S \leq \frac{\mu(B(x, 2 D+3 r))}{\mu(B(x, r))}
$$

Sketch of proof

Suppose $r_{0} \geq \frac{4}{5} D$ for simplicity.
If $\exists S \subset \Gamma$ finite s.t. $\#(\Gamma /\langle S\rangle)<\infty$, consider

$$
\varphi: \Gamma \rightarrow \Gamma /[\Gamma, \Gamma]=H_{1}(X, Z) \rightarrow H_{1}(X, \mathbf{R}),
$$

$\varphi(S)$ generates $H_{1}(X, \mathbf{R})$ as a vector space, hence

$$
\operatorname{dim} H_{1}(X, \mathbf{R}) \leq \# S
$$

$\forall r>0$ and $\forall x \in X$, we construct such $S \subset \Gamma$ (Gromov) as follows: S is a maximal family of $\gamma \in \Gamma^{*}$ s.t. $\forall \gamma, \gamma_{1}, \gamma_{2} \in S$ with $\gamma_{1} \neq \gamma_{2}$,

$$
d(x, \gamma x) \leq 2 D+2 r \quad \text { and } \quad d\left(\gamma_{1} x, \gamma_{2} x\right) \geq 2 r
$$

Choose $r=r_{0} / 2$ and the doubling property,

$$
\# S \leq \frac{\mu(B(x, 2 D+3 r))}{\mu(B(x, r))} \leq \frac{\mu\left(B\left(x, 4 r_{0}\right)\right)}{\mu\left(B\left(x, r_{0} / 2\right)\right)} \leq C^{3}
$$

Sommaire

Bishop-Gromov's Inequality: Riemannian manifolds

Generalization to metric spaces

BG for Gromov-hyperbolic spaces

Gromov-hyperbolic spaces

(X, d) proper, c is a geodesic $d\left(c(t), c\left(t^{\prime}\right)\right)=\left|t^{\prime}-t\right|$.

Gromov-hyperbolic spaces

(X, d) proper, c is a geodesic $d\left(c(t), c\left(t^{\prime}\right)\right)=\left|t^{\prime}-t\right|$.
(X, d) is said to be geodesic if $\forall x, y \in X \quad \exists$ a geodesic joining x and y.

Gromov-hyperbolic spaces

(X, d) proper, c is a geodesic $d\left(c(t), c\left(t^{\prime}\right)\right)=\left|t^{\prime}-t\right|$.
(X, d) is said to be geodesic if $\forall x, y \in X \quad \exists$ a geodesic joining x and y.
Definition
(X, d) proper, geodesic metric space is δ-hyperbolic if all triangles are δ-thin.

Gromov-hyperbolic spaces

(X, d) proper, c is a geodesic $d\left(c(t), c\left(t^{\prime}\right)\right)=\left|t^{\prime}-t\right|$.
(X, d) is said to be geodesic if $\forall x, y \in X \quad \exists$ a geodesic joining x and y.

Definition
(X, d) proper, geodesic metric space is δ-hyperbolic if all triangles are δ-thin.

Gromov-hyperbolic spaces

(X, d) proper, c is a geodesic $d\left(c(t), c\left(t^{\prime}\right)\right)=\left|t^{\prime}-t\right|$.
(X, d) is said to be geodesic if $\forall x, y \in X \quad \exists$ a geodesic joining x and y.

Definition
(X, d) proper, geodesic metric space is δ-hyperbolic if all triangles are δ-thin.

In negatively curved manifolds: $\delta^{2} \simeq \frac{1}{\mid \text { curvature } \max \mid}$.

Gromov-hyperbolic spaces

(X, d) proper, c is a geodesic $d\left(c(t), c\left(t^{\prime}\right)\right)=\left|t^{\prime}-t\right|$.
(X, d) is said to be geodesic if $\forall x, y \in X \quad \exists$ a geodesic joining x and y.
Definition
(X, d) proper, geodesic metric space is δ-hyperbolic if all triangles are δ-thin.

In negatively curved manifolds: $\delta^{2} \simeq \frac{1}{\mid \text { curvature max } \mid}$.
Gives no information about local geometry or topology.

Definition of Entropy

(X, d) proper geodesic space, $\Gamma \subset \operatorname{Isom}(X)$ discrete subgroup, $\Gamma \backslash X$ compact,

Definition of Entropy

(X, d) proper geodesic space, $\Gamma \subset \operatorname{Isom}(X)$ discrete subgroup, $\Gamma \backslash X$ compact,
μ loc. finite, non trivial, Γ-invariant, Borel measure on X, then

Definition of Entropy

(X, d) proper geodesic space, $\Gamma \subset \operatorname{Isom}(X)$ discrete subgroup, $\Gamma \backslash X$ compact, μ loc. finite, non trivial, Γ-invariant, Borel measure on X, then

$$
\operatorname{Ent}(X, d):=\lim _{R \rightarrow+\infty} \frac{1}{R} \ln (\mu(B(x, R)))
$$

Definition of Entropy

(X, d) proper geodesic space, $\Gamma \subset \operatorname{Isom}(X)$ discrete subgroup, $\Gamma \backslash X$ compact, μ loc. finite, non trivial, Γ-invariant, Borel measure on X, then

$$
\operatorname{Ent}(X, d):=\lim _{R \rightarrow+\infty} \frac{1}{R} \ln (\mu(B(x, R)))
$$

- does not depend on x and μ,

Definition of Entropy

(X, d) proper geodesic space, $\Gamma \subset \operatorname{Isom}(X)$ discrete subgroup, $\Gamma \backslash X$ compact, μ loc. finite, non trivial, Γ-invariant, Borel measure on X, then

$$
\operatorname{Ent}(X, d):=\lim _{R \rightarrow+\infty} \frac{1}{R} \ln (\mu(B(x, R)))
$$

- does not depend on x and μ,
- "Entropy bounded above" will replace the stronger hypothesis "Ricci curvature bounded below".

Bishop-Gromov's inequality

We say that a group Γ acts geometrically on a (proper) metric space (X, d) if it acts by isometries, faithfully, properly and co-compactly.

Bishop-Gromov's inequality

We say that a group Γ acts geometrically on a (proper) metric space (X, d) if it acts by isometries, faithfully, properly and co-compactly.
The counting measure of an orbit is then $\mu_{x}^{\Gamma}=\sum_{\gamma \in \Gamma} \delta_{\gamma x}$.

Bishop-Gromov's inequality

We say that a group Γ acts geometrically on a (proper) metric space (X, d) if it acts by isometries, faithfully, properly and co-compactly.
The counting measure of an orbit is then $\mu_{x}^{\Gamma}=\sum_{\gamma \in \Gamma} \delta_{\gamma x}$.
Theorem (BCGS)
Γ acting geometrically on a δ-hyperbolic space (X, d) with

$$
\operatorname{Ent}(X, d) \leq H \quad \text { and } \quad \operatorname{diam}(X / \Gamma) \leq D,
$$

Bishop-Gromov's inequality

We say that a group Γ acts geometrically on a (proper) metric space (X, d) if it acts by isometries, faithfully, properly and co-compactly.
The counting measure of an orbit is then $\mu_{x}^{\Gamma}=\sum_{\gamma \in \Gamma} \delta_{\gamma x}$.

Theorem (BCGS)

Γ acting geometrically on a δ-hyperbolic space (X, d) with

$$
\operatorname{Ent}(X, d) \leq H \quad \text { and } \quad \operatorname{diam}(X / \Gamma) \leq D,
$$

then, $\forall x \in X$,

$$
\forall R \geq r \geq 10(D+\delta), \quad \frac{\mu_{x}^{\Gamma}(B(x, R))}{\mu_{x}^{\Gamma}(B(x, r))} \leq 3\left(\frac{R}{r}\right)^{25 / 4} e^{6 H R}
$$

Bishop-Gromov's inequality

We say that a group Γ acts geometrically on a (proper) metric space (X, d) if it acts by isometries, faithfully, properly and co-compactly.
The counting measure of an orbit is then $\mu_{x}^{\Gamma}=\sum_{\gamma \in \Gamma} \delta_{\gamma x}$.

Theorem (BCGS)

Γ acting geometrically on a δ-hyperbolic space (X, d) with

$$
\operatorname{Ent}(X, d) \leq H \quad \text { and } \quad \operatorname{diam}(X / \Gamma) \leq D,
$$

then, $\forall x \in X$,

$$
\forall R \geq r \geq 10(D+\delta), \quad \frac{\mu_{x}^{\Gamma}(B(x, R))}{\mu_{x}^{\Gamma}(B(x, r))} \leq 3\left(\frac{R}{r}\right)^{25 / 4} e^{6 H R}
$$

(True also for any Γ-invariant measure.)
$~$ Doubling Property

Idea for the proof

Idea for the proof

- General trivial property: $B(x, R) \cap B(z, r) \supset B\left(y, r_{1}\right)$, where

$$
r_{1}=\frac{1}{2}(R+r-d(x, z)) .
$$

Idea for the proof

- General trivial property: $B(x, R) \cap B(z, r) \supset B\left(y, r_{1}\right)$, where

$$
r_{1}=\frac{1}{2}(R+r-d(x, z)) .
$$

- If X is δ-hyperbolic:

Idea for the proof

- General trivial property: $B(x, R) \cap B(z, r) \supset B\left(y, r_{1}\right)$, where

$$
r_{1}=\frac{1}{2}(R+r-d(x, z))
$$

- If X is δ-hyperbolic: $B(x, R) \cap B(z, r) \subset B\left(y, r_{2}\right)$ (red ball), where $r_{2}=\frac{1}{2}(R+r-d(x, z))+\delta$.

A finiteness theorem: hyperbolic metric spaces

$$
\Sigma_{R}(x):=\{\gamma \in \Gamma: d(x, \gamma x) \leq R\} .
$$

A finiteness theorem: hyperbolic metric spaces

$\Sigma_{R}(x):=\{\gamma \in \Gamma: d(x, \gamma x) \leq R\}$.
Theorem (BCGS)
Let $\delta \geq 0, H, D>0, \Gamma \subset \operatorname{Isom}(X, d)$ non cyclic torsion-free discrete subgroup, $(X, d) \delta$-hyperbolic space satisfying

$$
\operatorname{diam}(\Gamma \backslash X) \leq D \quad \text { and } \quad \operatorname{Ent}(X, d) \leq H
$$

A finiteness theorem: hyperbolic metric spaces

$\Sigma_{R}(x):=\{\gamma \in \Gamma: d(x, \gamma x) \leq R\}$.
Theorem (BCGS)
Let $\delta \geq 0, H, D>0, \Gamma \subset \operatorname{Isom}(X, d)$ non cyclic torsion-free discrete subgroup, $(X, d) \delta$-hyperbolic space satisfying

$$
\operatorname{diam}(\Gamma \backslash X) \leq D \quad \text { and } \quad \operatorname{Ent}(X, d) \leq H
$$

then, for every $x \in X, \Sigma_{10(D+\delta)}(x)$ generates Γ and

$$
\# \Sigma_{10(D+\delta)}(x) \leq N(\delta, H, D)
$$

A finiteness theorem: hyperbolic metric spaces

$\Sigma_{R}(x):=\{\gamma \in \Gamma: d(x, \gamma x) \leq R\}$.
Theorem (BCGS)
Let $\delta \geq 0, H, D>0, \Gamma \subset \operatorname{Isom}(X, d)$ non cyclic torsion-free discrete subgroup, $(X, d) \delta$-hyperbolic space satisfying

$$
\operatorname{diam}(\Gamma \backslash X) \leq D \quad \text { and } \quad \operatorname{Ent}(X, d) \leq H
$$

then, for every $x \in X, \Sigma_{10(D+\delta)}(x)$ generates Γ and

$$
\# \Sigma_{10(D+\delta)}(x) \leq N(\delta, H, D)
$$

Set $R_{0}=10(D+\delta)$.

A detour: hyperbolic marked groups

「 finitely generated (non-cyclic, torsion-free),

A detour: hyperbolic marked groups

Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

A detour: hyperbolic marked groups

Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

- $X=\mathcal{G}(\Gamma, \Sigma)=$ Cayley graph,

A detour: hyperbolic marked groups
Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

- $X=\mathcal{G}(\Gamma, \Sigma)=$ Cayley graph,
$\Gamma=\{$ vertices $\}$ and $\gamma \sim \gamma^{\prime} \Leftrightarrow \exists s \in \Sigma, \quad \gamma^{\prime}=\gamma s$.

A detour: hyperbolic marked groups

Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

- $X=\mathcal{G}(\Gamma, \Sigma)=$ Cayley graph, $\Gamma=\{$ vertices $\}$ and $\gamma \sim \gamma^{\prime} \Leftrightarrow \exists s \in \Sigma, \quad \gamma^{\prime}=\gamma s$.
- 1-dim edges are isometric to $[0,1]$.

A detour: hyperbolic marked groups

Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

- $X=\mathcal{G}(\Gamma, \Sigma)=$ Cayley graph, $\Gamma=\{$ vertices $\}$ and $\gamma \sim \gamma^{\prime} \Leftrightarrow \exists s \in \Sigma, \quad \gamma^{\prime}=\gamma s$.
- 1-dim edges are isometric to $[0,1]$.
- 「 acts by isometries on \mathcal{G}

A detour: hyperbolic marked groups

Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

- $X=\mathcal{G}(\Gamma, \Sigma)=$ Cayley graph, $\Gamma=\{$ vertices $\}$ and $\gamma \sim \gamma^{\prime} \Leftrightarrow \exists s \in \Sigma, \quad \gamma^{\prime}=\gamma s$.
- 1-dim edges are isometric to $[0,1]$.
- Γ acts by isometries on $\mathcal{G} \leadsto \operatorname{diam}(\mathcal{G} / \Gamma)=1$.

A detour: hyperbolic marked groups

Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

- $X=\mathcal{G}(\Gamma, \Sigma)=$ Cayley graph, $\Gamma=\{$ vertices $\}$ and $\gamma \sim \gamma^{\prime} \Leftrightarrow \exists s \in \Sigma, \quad \gamma^{\prime}=\gamma s$.
- 1-dim edges are isometric to $[0,1]$.
- Γ acts by isometries on $\mathcal{G} \leadsto \operatorname{diam}(\mathcal{G} / \Gamma)=1$.
- counting measure on the vertices.

A detour: hyperbolic marked groups

Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

- $X=\mathcal{G}(\Gamma, \Sigma)=$ Cayley graph, $\Gamma=\{$ vertices $\}$ and $\gamma \sim \gamma^{\prime} \Leftrightarrow \exists s \in \Sigma, \quad \gamma^{\prime}=\gamma s$.
- 1-dim edges are isometric to $[0,1]$.
- Γ acts by isometries on $\mathcal{G} \leadsto \operatorname{diam}(\mathcal{G} / \Gamma)=1$.
- counting measure on the vertices.

Definition
(Γ, Σ) is a δ-hyperbolic marked group if $\mathcal{G}(\Gamma, \Sigma)$ is.
Hence

A detour: hyperbolic marked groups

Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

- $X=\mathcal{G}(\Gamma, \Sigma)=$ Cayley graph, $\Gamma=\{$ vertices $\}$ and $\gamma \sim \gamma^{\prime} \Leftrightarrow \exists s \in \Sigma, \quad \gamma^{\prime}=\gamma s$.
- 1-dim edges are isometric to $[0,1]$.
- Γ acts by isometries on $\mathcal{G} \leadsto \operatorname{diam}(\mathcal{G} / \Gamma)=1$.
- counting measure on the vertices.

Definition
(Γ, Σ) is a δ-hyperbolic marked group if $\mathcal{G}(\Gamma, \Sigma)$ is.
Hence

$$
\# \Sigma \leq N(\delta, H, 1)
$$

A detour: hyperbolic marked groups

Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

- $X=\mathcal{G}(\Gamma, \Sigma)=$ Cayley graph, $\Gamma=\{$ vertices $\}$ and $\gamma \sim \gamma^{\prime} \Leftrightarrow \exists s \in \Sigma, \quad \gamma^{\prime}=\gamma s$.
- 1-dim edges are isometric to $[0,1]$.
- Γ acts by isometries on $\mathcal{G} \leadsto \operatorname{diam}(\mathcal{G} / \Gamma)=1$.
- counting measure on the vertices.

Definition

(Γ, Σ) is a δ-hyperbolic marked group if $\mathcal{G}(\Gamma, \Sigma)$ is.
Hence

$$
\# \Sigma \leq N(\delta, H, 1)
$$

There exists a presentation of Γ with Σ and finitely many relations of length $\leq 4 \delta+6$,

A detour: hyperbolic marked groups

Γ finitely generated (non-cyclic, torsion-free), $\Sigma=\Sigma^{-1}$ finite generating set,

- $X=\mathcal{G}(\Gamma, \Sigma)=$ Cayley graph, $\Gamma=\{$ vertices $\}$ and $\gamma \sim \gamma^{\prime} \Leftrightarrow \exists s \in \Sigma, \quad \gamma^{\prime}=\gamma s$.
- 1-dim edges are isometric to $[0,1]$.
- Γ acts by isometries on $\mathcal{G} \leadsto \operatorname{diam}(\mathcal{G} / \Gamma)=1$.
- counting measure on the vertices.

Definition

(Γ, Σ) is a δ-hyperbolic marked group if $\mathcal{G}(\Gamma, \Sigma)$ is.
Hence

$$
\# \Sigma \leq N(\delta, H, 1)
$$

There exists a presentation of Γ with Σ and finitely many relations of length $\leq 4 \delta+6$,

Theorem
The number of such marked groups (Γ, Σ) is bounded by $N^{\prime}(\delta, H)$.

Finiteness theorem: main tools

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.

Finiteness theorem: main tools

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- 2nd tool: when $\Gamma \subset \operatorname{Isom}(X, d)$, apply the

Finiteness theorem: main tools

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- 2nd tool: when $\Gamma \subset \operatorname{Isom}(X, d)$, apply the Theorem (Breuillard-Green-Tao)
$\forall C \geq 1, \exists \nu=\nu(C)$ such that for Γ torsion-free group, if $A \subset \Gamma$ finite satisfies

$$
\begin{equation*}
\#(A \cdot A) \leq C(\# A) \tag{2}
\end{equation*}
$$

Finiteness theorem: main tools

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- 2nd tool: when $\Gamma \subset \operatorname{Isom}(X, d)$, apply the Theorem (Breuillard-Green-Tao)
$\forall C \geq 1, \exists \nu=\nu(C)$ such that for Γ torsion-free group, if $A \subset \Gamma$ finite satisfies

$$
\begin{equation*}
\#(A \cdot A) \leq C(\# A) \tag{2}
\end{equation*}
$$

then $\exists G_{0} \subset \Gamma$ nilpotent, $\exists \gamma_{1}, \ldots,{ }_{\nu}, \gamma_{\nu} \in \Gamma$ s.t.

$$
A \subset \bigcup_{i=1} \gamma_{i} G_{0}
$$

Finiteness theorem: main tools

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- 2nd tool: when $\Gamma \subset \operatorname{Isom}(X, d)$, apply the Theorem (Breuillard-Green-Tao)
$\forall C \geq 1, \exists \nu=\nu(C)$ such that for Γ torsion-free group, if $A \subset \Gamma$ finite satisfies

$$
\begin{equation*}
\#(A \cdot A) \leq C(\# A) \tag{2}
\end{equation*}
$$

then $\exists G_{0} \subset \Gamma$ nilpotent, $\exists \gamma_{1}, \ldots,{ }_{\nu}, \gamma_{\nu} \in \Gamma$ s.t.

$$
A \subset \bigcup_{i=1} \gamma_{i} G_{0}
$$

C-doubling of μ_{x}^{Γ} at scale $3 R_{0} \leadsto(2)$ for $A:=\Sigma_{3 R_{0}}(x)$ then,

Finiteness theorem: main tools

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- 2nd tool: when $\Gamma \subset \operatorname{Isom}(X, d)$, apply the Theorem (Breuillard-Green-Tao)
$\forall C \geq 1, \exists \nu=\nu(C)$ such that for Γ torsion-free group, if $A \subset \Gamma$ finite satisfies

$$
\begin{equation*}
\#(A \cdot A) \leq C(\# A) \tag{2}
\end{equation*}
$$

then $\exists G_{0} \subset \Gamma$ nilpotent, $\exists \gamma_{1}, \ldots, \gamma_{\nu} \in \Gamma$ s.t.

$$
A \subset \bigcup_{i=1} \gamma_{i} G_{0}
$$

C-doubling of μ_{x}^{Γ} at scale $3 R_{0} \leadsto(2)$ for $A:=\Sigma_{3 R_{0}}(x)$ then,

$$
\Sigma_{3 R_{0}}(x) \subset \bigcup_{i=1}^{\nu} \gamma_{i} G_{0}
$$

Finiteness theorem: main tools

- 1st tool: our Bishop-Gromov inequality on δ-hyperbolic spaces.
- 2nd tool: when $\Gamma \subset \operatorname{Isom}(X, d)$, apply the Theorem (Breuillard-Green-Tao)
$\forall C \geq 1, \exists \nu=\nu(C)$ such that for Γ torsion-free group, if $A \subset \Gamma$ finite satisfies

$$
\begin{equation*}
\#(A \cdot A) \leq C(\# A) \tag{2}
\end{equation*}
$$

then $\exists G_{0} \subset \Gamma$ nilpotent, $\exists \gamma_{1}, \ldots, \gamma_{\nu} \in \Gamma$ s.t.

$$
A \subset \bigcup_{i=1} \gamma_{i} G_{0}
$$

C-doubling of μ_{x}^{Γ} at scale $3 R_{0} \leadsto(2)$ for $A:=\Sigma_{3 R_{0}}(x)$ then,

$$
\Sigma_{3 R_{0}}(x) \subset \bigcup_{i=1}^{\nu} \gamma_{i} G_{0}
$$

(Γ is $\delta^{\prime}(\delta, D)$-hyp., torsion-free \leadsto nilpotent $=\mathbf{Z}$).

Finiteness theorem: sketch of proof

Replace G_{0} by \bar{G}_{0} unique maximal extension of G_{0} (exists when Γ torsion-free hyperbolic).

Finiteness theorem: sketch of proof

Replace G_{0} by \bar{G}_{0} unique maximal extension of G_{0} (exists when Γ torsion-free hyperbolic).

$$
\Sigma_{3 R_{0}}(x) \subset \bigcup_{i=1}^{\nu} \gamma_{i} \bar{G}_{0}
$$

Finiteness theorem: sketch of proof

Replace G_{0} by \bar{G}_{0} unique maximal extension of G_{0} (exists when Γ torsion-free hyperbolic).

$$
\Sigma_{3 R_{0}}(x) \subset \bigcup_{i=1}^{\nu} \gamma_{i} \bar{G}_{0}
$$

$\forall s \in \Sigma_{2 D}(x) \subset \Gamma$ generating set, $g \mapsto s g s^{-1}$ is injective from $\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)$ to $s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)$ (triangular inequality).

Finiteness theorem: sketch of proof

Replace G_{0} by \bar{G}_{0} unique maximal extension of G_{0} (exists when Γ torsion-free hyperbolic).

$$
\Sigma_{3 R_{0}}(x) \subset \bigcup_{i=1}^{\nu} \gamma_{i} \bar{G}_{0}
$$

$\forall s \in \Sigma_{2 D}(x) \subset \Gamma$ generating set, $g \mapsto s g s^{-1}$ is injective from $\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)$ to $s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)$ (triangular inequality).
If $\#\left(\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)\right)>\nu \leadsto \#\left(s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)\right)>\nu \leadsto$

Finiteness theorem: sketch of proof

Replace G_{0} by \bar{G}_{0} unique maximal extension of G_{0} (exists when Γ torsion-free hyperbolic).

$$
\Sigma_{3 R_{0}}(x) \subset \bigcup_{i=1}^{\nu} \gamma_{i} \bar{G}_{0}
$$

$\forall s \in \Sigma_{2 D}(x) \subset \Gamma$ generating set, $g \mapsto s g s^{-1}$ is injective from $\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)$ to $s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)$ (triangular inequality).
If $\#\left(\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)\right)>\nu \leadsto \#\left(s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)\right)>\nu \leadsto$
$\exists g_{1} \neq g_{2} \in s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x) \quad$ and $\quad g_{1}, g_{2} \in \gamma_{i} \bar{G}_{0} \leadsto$

Finiteness theorem: sketch of proof

Replace G_{0} by \bar{G}_{0} unique maximal extension of G_{0} (exists when Γ torsion-free hyperbolic).

$$
\Sigma_{3 R_{0}}(x) \subset \bigcup_{i=1}^{\nu} \gamma_{i} \bar{G}_{0}
$$

$\forall s \in \Sigma_{2 D}(x) \subset \Gamma$ generating set, $g \mapsto s g s^{-1}$ is injective from $\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)$ to $s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)$ (triangular inequality).
If $\#\left(\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)\right)>\nu \leadsto \#\left(s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)\right)>\nu \leadsto$
$\exists g_{1} \neq g_{2} \in s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x) \quad$ and $\quad g_{1}, g_{2} \in \gamma_{i} \bar{G}_{0} \leadsto$
$g^{-1} g_{2} \in \bar{G}_{0} \cap s \bar{G}_{0} s^{-1} \Rightarrow s \bar{G}_{0} s^{-1}=\bar{G}_{0} \Rightarrow \bar{G}_{0} \unlhd \Gamma$

Finiteness theorem: sketch of proof

Replace G_{0} by \bar{G}_{0} unique maximal extension of G_{0} (exists when Γ torsion-free hyperbolic).

$$
\Sigma_{3 R_{0}}(x) \subset \bigcup_{i=1}^{\nu} \gamma_{i} \bar{G}_{0}
$$

$\forall s \in \Sigma_{2 D}(x) \subset \Gamma$ generating set, $g \mapsto s g s^{-1}$ is injective from $\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)$ to $s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)$ (triangular inequality).

If $\#\left(\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)\right)>\nu \leadsto \#\left(s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)\right)>\nu \leadsto$
$\exists g_{1} \neq g_{2} \in s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x) \quad$ and $\quad g_{1}, g_{2} \in \gamma_{i} \bar{G}_{0} \leadsto$
$g^{-1} g_{2} \in \bar{G}_{0} \cap s \bar{G}_{0} s^{-1} \Rightarrow s \bar{G}_{0} s^{-1}=\bar{G}_{0} \Rightarrow \bar{G}_{0} \unlhd \Gamma \Rightarrow \Gamma$ cyclic.
A contradiction.

Finiteness theorem: sketch of proof

Replace G_{0} by \bar{G}_{0} unique maximal extension of G_{0} (exists when Γ torsion-free hyperbolic).

$$
\Sigma_{3 R_{0}}(x) \subset \bigcup_{i=1}^{\nu} \gamma_{i} \bar{G}_{0}
$$

$\forall s \in \Sigma_{2 D}(x) \subset \Gamma$ generating set, $g \mapsto s g s^{-1}$ is injective from $\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)$ to $s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)$ (triangular inequality).

If \# $\left(\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)\right)>\nu \leadsto \#\left(s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)\right)>\nu \leadsto$
$\exists g_{1} \neq g_{2} \in s \bar{G}_{0} s^{-1} \cap \Sigma_{3 R_{0}}(x)$ and $g_{1}, g_{2} \in \gamma_{i} \bar{G}_{0} \leadsto$
$g^{-1} g_{2} \in \bar{G}_{0} \cap s \bar{G}_{0} s^{-1} \Rightarrow s \bar{G}_{0} s^{-1}=\bar{G}_{0} \Rightarrow \bar{G}_{0} \unlhd \Gamma \Rightarrow \Gamma$ cyclic.
A contradiction. Therefore, $\#\left(\bar{G}_{0} \cap \Sigma_{2 R_{0}}(x)\right) \leq \nu$ and

$$
\# \Sigma_{R_{0}}(x) \leq \nu^{2}
$$

THANKS

A two-years post-doctoral position in Grenoble

Starting September 2024.

- Hilbert geometries on subspaces of projective spaces in real, complex or non Archimedean fields,
- Hilbert geometries and generalisations on real and complex Riemannian manifolds,
- Boundaries of character varieties,
- Non Archimedean representations and actions on Euclidean buildings,
- Group actions in complex hyperbolic geometry, Anosov representations.

Contact : Anne.Parreau@univ-grenoble-alpes.fr

