Algebraic structure of the Hopf algebra of double posets

Yannic VARGAS

Instituto Venezolano de Investigaciones Científicas
Universidad Central de Venezuela
Higher Structures Emerging from Renormalisation, 2020

Content

The non-commutative Connes-Kreimer Hopf algebra NCK

The Hopf algebra NCK (Foissy, 2002) is freely generated by the set of all finite rooted planar trees.

Monomials of rooted planar trees \longleftrightarrow Ordered forest

The algebra NCK is graded by the total number of nodes in a forest.

The non-commutative Connes-Kreimer Hopf algebra NCK

The coalgebra structure of NCK is given by admissible cuts:

$$
\Delta(f):=\sum_{S \text { admissible }} f_{S}^{\prime} \otimes f_{S}^{\prime \prime} .
$$

$\bullet \bullet \bullet \quad \bullet \quad f_{s}^{\prime}=\bullet \bullet \quad \bullet \quad \bullet \quad f_{s}^{\prime \prime}=\bullet \bullet \quad \bullet=\bullet$.

There is a map φ from ordered trees to binary trees which induces an isomorphism between NCK and the Hopf algebra of Loday-Ronco LR.

The non-commutative Connes-Kreimer Hopf algebra NCK

The coalgebra structure of NCK is given by admissible cuts:

$$
\Delta(f):=\sum_{S \text { admissible }} f_{S}^{\prime} \otimes f_{S}^{\prime \prime}
$$

There is a map φ from ordered trees to binary trees which induces an isomorphism between NCK and the Hopf algebra of Loday-Ronco LR.

A canonical map from forests to permutations

Let / and \backslash the following operations on binary trees:

We construct φ recursively:

- $\varphi(\emptyset):=\mid$;
- $\varphi\left(\mathrm{B}_{+}(\mathrm{f})\right):=\varphi(\mathrm{f}) / \mathrm{Y}$;
\square if $\mathrm{f}=\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$, then $\varphi(\mathrm{f})=\varphi\left(\mathrm{t}_{1}\right) \backslash \varphi\left(\mathrm{t}_{2}\right) \backslash \cdots \backslash \varphi\left(\mathrm{t}_{\mathrm{n}}\right)$.

A canonical map from forests to permutations

A canonical map from forests to permutations

A canonical map from forests to permutations

Permutation $=$ binary tree with decreasing labelling

Let $\mathfrak{S}_{\mathfrak{n}}$ the symmetric group on $[\mathfrak{n}]:=\{1,2, \ldots, n\}$. For $\sigma \in \mathfrak{S}_{\mathfrak{n}}$, we use the linear notation:

$$
\sigma=\sigma(1) \sigma(2) \cdots \sigma(n)
$$

24315

Permutation $=$ binary tree with decreasing labelling

Operations on trees

Split an ordered tree $\mathfrak{u} \in \mathfrak{S}_{\mathfrak{n}}$ from one of his leaves produces an ordered forest ($u_{0} . u_{1} \ldots, u_{k}$), with labels in $[n]$. We denotes this process by

$$
u \stackrel{r}{\longmapsto}\left(u_{0}, u_{1}, \ldots, u_{k}\right)
$$

For example:
Split ordered tree w to get an ordered forest, $w \xrightarrow{r}\left(w_{0}, \ldots, w_{p}\right)$,

Operations on trees

Graft an ordered forest $\left(u_{0} . u_{1} \ldots, u_{k}\right)$, with labels in [n], onto a tree $v \in \mathfrak{S}_{k}$ gives a tree

$$
\left(u_{0} . u_{1} \ldots, u_{k}\right) / v \in \mathfrak{S}_{\mathfrak{n}+\mathrm{k}}
$$

For instance, the graft of the preceding ordered forest onto the tree

produces

Malvenuto-Reutenauer Hopf algebra SSym

Is the Hopf algebra defined on $\bigoplus_{n \geq 0} \mathbb{K}\left[\mathfrak{S}_{n}\right]$, with basis $\left\{\mathrm{F}_{w}: w \in \mathfrak{S}\right\}$, where the product is the shifted shuffle, and the coproduct is the destandardized deconcatenation.

For $\mathfrak{u} \in \mathfrak{S}_{n}$ and $v \in \mathfrak{S}_{\mathfrak{p}}$, we have:

$$
\begin{aligned}
\mathrm{F}_{\mathfrak{u}} \cdot \mathrm{F}_{v} & =\sum_{\mathfrak{u} \stackrel{\curlyvee}{\longmapsto}\left(\mathfrak{u}_{0}, \mathfrak{u}_{1}, \ldots, \mathfrak{u}_{\mathfrak{p}}\right)} F_{\left(\mathfrak{u}_{0}, \mathfrak{u}_{1}, \ldots, \mathfrak{u}_{\mathfrak{p}}\right) / v,}, \\
\Delta\left(\mathrm{~F}_{\mathbf{u}}\right) & =\sum_{\mathfrak{u} \longmapsto\left(\mathfrak{u}_{0}, \mathfrak{u}_{1}\right)} \mathrm{F}_{\text {st }\left(\mathfrak{u}_{0}\right)} \otimes \mathrm{F}_{\text {st }\left(\mathfrak{u}_{1}\right)} .
\end{aligned}
$$

Malvenuto-Reutenauer Hopf algebra SSym

If $u \in \mathfrak{S}_{n}$ and $v \in \mathfrak{S}_{p}$, then

$$
\mathrm{F}_{\mathfrak{u}} \cdot \mathrm{F}_{v}:=\sum_{\substack{w \in \mathfrak{S}_{n}+\mathfrak{p} \\ \operatorname{st}(w \cap\{1, \ldots, n\})=\mathfrak{u} \\ \operatorname{st}(w \cap\{n+1, \ldots, n+p\})=v}} \mathrm{~F}_{w}
$$

where $w \cap \mathrm{I}$ is the word obtained by erasing the letters in w which are not in I and st is the standardization operator.
For instance,
$F_{12} \cdot F_{21}=F_{1243}+F_{1423}+F_{1432}+F_{4123}+F_{4132}+F_{4312}$.
The set of permutations in the product F_{u}. F_{v} is called the set of shuffles of u and v

Malvenuto-Reutenauer Hopf algebra SSym

If $u \in \mathfrak{S}_{n}$ and $v \in \mathfrak{S}_{p}$, then

$$
\mathrm{F}_{\mathbf{u}} \cdot \mathrm{F}_{v}:=\sum_{\substack{w \in \mathfrak{S}_{n}+\mathrm{p} \\ \operatorname{st}(w \cap\{1, \ldots, n\})=\mathfrak{u} \\ \operatorname{st}(w \cap\{n+1, \ldots, n+p\})=v}} \mathrm{~F}_{w}
$$

where $w \cap \mathrm{I}$ is the word obtained by erasing the letters in w which are not in I and st is the standardization operator.
For instance,

$$
\mathrm{F}_{12} \cdot \mathrm{~F}_{21}=\mathrm{F}_{1243}+\mathrm{F}_{1423}+\mathrm{F}_{1432}+\mathrm{F}_{4123}+\mathrm{F}_{4132}+\mathrm{F}_{4312}
$$

The set of permutations in the product $F_{u} \cdot F_{v}$ is called the set of
shuffles of u and v.

Malvenuto-Reutenauer Hopf algebra SSym

If $u \in \mathfrak{S}_{n}$ and $v \in \mathfrak{S}_{p}$, then

$$
\mathrm{F}_{\mathfrak{u}} \cdot \mathrm{F}_{v}:=\sum_{\substack{w \in \mathfrak{S}_{n}+\mathrm{p} \\ \operatorname{st}(w \cap\{1, \ldots, n\})=\mathfrak{u} \\ \operatorname{st}(w \cap\{n+1, \ldots, n+p\})=v}} \mathrm{~F}_{w}
$$

where $w \cap \mathrm{I}$ is the word obtained by erasing the letters in w which are not in I and st is the standardization operator.
For instance,

$$
\mathrm{F}_{12} \cdot \mathrm{~F}_{21}=\mathrm{F}_{1243}+\mathrm{F}_{1423}+\mathrm{F}_{1432}+\mathrm{F}_{4123}+\mathrm{F}_{4132}+\mathrm{F}_{4312} .
$$

The set of permutations in the product $F_{u} \cdot F_{v}$ is called the set of shuffles of u and v.

Malvenuto-Reutenauer Hopf algebra SSym

If $\boldsymbol{w} \in \mathfrak{S}_{n}$, then

$$
\Delta\left(\mathrm{F}_{w}\right):=\sum_{\mathrm{k}=0}^{n} \mathrm{~F}_{\mathrm{st}\left(w_{1} \cdots w_{k}\right)} \otimes \mathrm{F}_{\mathrm{st}\left(w_{\mathrm{k}+1} \cdots w_{n}\right)} .
$$

We have:
$\Delta\left(F_{312}\right)=F_{\lambda} \otimes F_{312}+F_{1} \otimes F_{12}+F_{21} \otimes F_{1}+F_{312} \otimes F_{\lambda}$.

Malvenuto-Reutenauer Hopf algebra $\mathfrak{S S y m}$

If $w \in \mathfrak{S}_{n}$, then

$$
\Delta\left(\mathrm{F}_{w}\right):=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{~F}_{\mathrm{st}\left(w_{1} \cdots w_{\mathrm{k}}\right)} \otimes \mathrm{F}_{\mathrm{st}\left(w_{\mathrm{k}+1} \cdots w_{n}\right)}
$$

We have:

$$
\Delta\left(F_{312}\right)=F_{\lambda} \otimes F_{312}+F_{1} \otimes F_{12}+F_{21} \otimes F_{1}+F_{312} \otimes F_{\lambda}
$$

The graded dual SSym*

For every permutation \mathfrak{u}, let $G_{\mathfrak{u}}$ the dual basis of the basis element F_{u}. The Hopf-algebraic structure of the graded dual of $\mathfrak{S S y m}$ is described as follows.

- Product rule: if $\mathfrak{u} \in \mathfrak{S}_{\mathfrak{n}}$ and $v \in \mathfrak{S}_{p}$, then

$$
\mathrm{G}_{\mathrm{u}} \mathrm{G}_{v}:=\sum_{\substack{w \in \mathfrak{S}_{n+p} \\ \operatorname{st}\left(w_{1} w_{2} \cdots w_{n}\right)=\mathbf{u} \\ \operatorname{st}\left(w_{n}+1 w_{n}+2 \cdots w_{n}+\mathfrak{p}\right)=v}} \mathrm{G}_{w} .
$$

For instance,

The graded dual SSym*

For every permutation \mathfrak{u}, let $G_{\mathfrak{u}}$ the dual basis of the basis element F_{u}. The Hopf-algebraic structure of the graded dual of $\mathfrak{S S y m}$ is described as follows.

- Product rule: if $u \in \mathfrak{S}_{\mathfrak{n}}$ and $v \in \mathfrak{S}_{\mathfrak{p}}$, then

$$
\mathrm{G}_{\mathcal{u}} \mathrm{G}_{v}:=\sum_{\substack{w \in \mathfrak{S}_{n+p} \\ \operatorname{st}\left(w_{1} w_{2} \cdots w_{n}\right)=\mathfrak{u} \\ \operatorname{st}\left(w_{n}+1 w_{n}+2 \cdots w_{n+p}\right)=v}} \mathrm{G}_{w} .
$$

For instance,

$$
\mathrm{G}_{12} \mathrm{G}_{21}=\mathrm{G}_{1243}+\mathrm{G}_{1342}+\mathrm{G}_{1432}+\mathrm{G}_{2341}+\mathrm{G}_{2431}+\mathrm{G}_{3421} \cdot
$$

The graded dual \mathfrak{S} Sym ${ }^{\star}$

- Coproduct rule: if $\mathfrak{u} \in \mathfrak{S}_{\mathfrak{n}}$, then

$$
\Delta\left(\mathrm{G}_{\mathrm{u}}\right):=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{G}_{\mathrm{st}\left(\mathrm{u}_{[\mathrm{k}]}\right)} \otimes \mathrm{G}_{\mathrm{st}\left(\mathrm{u}^{[\mathrm{k}]}\right)}
$$

We have:

$\Delta\left(G_{312}\right)=G_{\lambda} \otimes G_{312}+G_{1} \otimes G_{21}+G_{12} \otimes G_{1}+G_{312} \otimes G_{\lambda}$.

The graded dual SSym*

- Coproduct rule: if $\mathfrak{u} \in \mathfrak{S}_{\mathfrak{n}}$, then

$$
\Delta\left(\mathrm{G}_{\mathrm{u}}\right):=\sum_{\mathrm{k}=0}^{n} \mathrm{G}_{\mathrm{st}\left(\mathfrak{u}_{[\mathrm{k}]}\right)} \otimes \mathrm{G}_{\mathrm{st}\left(\mathrm{u}^{[\mathrm{k}]}\right)}
$$

We have:

$$
\Delta\left(G_{312}\right)=G_{\lambda} \otimes G_{312}+G_{1} \otimes G_{21}+G_{12} \otimes G_{1}+G_{312} \otimes G_{\lambda}
$$

Relevance of $\mathfrak{S S y m}$ in renormalization

- As a Combinatorial Hopf Algebra (CHA), (almost) every CHA can be realized as a quotient or a sub-Hopf algebra of $\mathfrak{S S y m}$.
■ $\mathfrak{S S y m}$ is a sub-algebra of the convolution algebra of $(\operatorname{End}(\mathbb{K}\langle\mathrm{A}), ш)$:

$$
u \widetilde{\omega} v:=ш \circ(u \otimes v) \circ \delta
$$

- D. Yang used $\mathfrak{S S y m}$ to reinterpret the integration of Lipschitz one-forms along geometric rough paths developed by Lyons as an integration of time-varying exact one-forms along group-valued paths.

SSym as a unital infinitesimal bialgebra

A unital infinitesimal bialgebra (B, \bullet, Δ) is a vector space B equipped with a unital associative product \bullet and a counital coassociative coproduct Δ, such that they satisfies the following compatibility rule:

$$
\Delta(x \bullet y)=(x \otimes 1) \bullet \Delta(y)+\Delta(x) \bullet(1 \otimes y)-x \otimes y
$$

This relation is called the unital infinitesimal relation.

SSym as a unital infinitesimal bialgebra

We introduce two operations, / and \backslash, on the set of permutations \mathfrak{S}. Given $\mathfrak{u} \in \mathfrak{S}_{n}$ and $v \in \mathfrak{S}_{p}$, let

$$
\begin{aligned}
u / v & :=u_{1} \cdots u_{n}\left(v_{1}+n\right) \cdots\left(v_{p}+n\right), \\
u \backslash v & :=\left(u_{1}+p\right) \cdots\left(u_{n}+p\right) v_{1} \cdots v_{p} .
\end{aligned}
$$

In Malvenuto's talk, $\backslash=\square$ and $\backslash=\triangle$.

It is not difficult to show that $(\mathfrak{S}, /)$ and $(\mathfrak{S}, \backslash)$ are monoids, with same unit element λ.

SSym as a unital infinitesimal bialgebra

We introduce two operations, / and \backslash, on the set of permutations \mathfrak{S}. Given $\mathfrak{u} \in \mathfrak{S}_{n}$ and $v \in \mathfrak{S}_{p}$, let

$$
\begin{aligned}
& u / v:=u_{1} \cdots u_{n}\left(v_{1}+n\right) \cdots\left(v_{p}+n\right), \\
& u \backslash v:=\left(u_{1}+p\right) \cdots\left(u_{n}+p\right) v_{1} \cdots v_{p} .
\end{aligned}
$$

In Malvenuto's talk, $/=\square$ and $\backslash=\triangle$.

It is not difficult to show that $(\mathfrak{S}, /)$ and $(\mathfrak{S}, \backslash)$ are monoids, with same unit element λ.

SSym as a unital infinitesimal bialgebra

We introduce two operations, / and \backslash, on the set of permutations \mathfrak{S}. Given $u \in \mathfrak{S}_{n}$ and $v \in \mathfrak{S}_{p}$, let

$$
\begin{aligned}
& u / v:=u_{1} \cdots u_{n}\left(v_{1}+n\right) \cdots\left(v_{p}+n\right), \\
& u \backslash v:=\left(u_{1}+p\right) \cdots\left(u_{n}+p\right) v_{1} \cdots v_{p} .
\end{aligned}
$$

In Malvenuto's talk, $/=\square$ and $\backslash=\triangle$.

It is not difficult to show that $(\mathfrak{S}, /)$ and $(\mathfrak{S}, \backslash)$ are monoids, with same unit element λ.

SSym as a unital infinitesimal bialgebra

If $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{n} \in \mathfrak{S}_{n}$, we define the permutation $\operatorname{rev}(\alpha)$ as

$$
\operatorname{rev}(\alpha):=\alpha_{n} \cdots \alpha_{2} \alpha_{1}
$$

Both operations / and \backslash are related as follows:

$$
\alpha \backslash \beta=\operatorname{rev}(\operatorname{rev}(\alpha) / \operatorname{rev}(\beta))
$$

As the operation rev is an involution, it defines a monoid map rev: $(\mathfrak{S}, \backslash) \rightarrow(\mathfrak{S}, /)$.
The inverse map on permutations acts as an endomorphism on ($\mathfrak{S}, /$) and as an anti-endomorphism on (\mathfrak{S}, \backslash):

Lemma

Let $\alpha, \beta \in \mathfrak{S}$. We have:
(a) $(\alpha / \beta)^{-1}=\alpha^{-1} / \beta^{-1}$;
(b) $(\alpha \backslash \beta)^{-1}=\beta^{-1} \backslash \alpha^{-1}$.

SSym as a unital infinitesimal bialgebra

Theorem

1 The Hopf algebra SSym, together with the product /, is a 2-associative Hopf algebra.

2 The Hopf algebra SSym*, together with the product /, is a 2-associative Hopf algebra, isomorphic to (SSym, /).

3 The Hopf algebras $\mathfrak{S S y m}$ and $\mathfrak{S S y m}{ }^{\star}$, together with the product
, are anti-isomorphic 2-associatives Hopf algebras.

Second basis for SSym

Let P a partially ordered set (poset).
Given $x, y \in P$, con $x<y$, the Mobius function of P is the map $\mu: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P}$ defined as:

- $\mu(x, x)=1 ;$
- $\sum_{x \leq z \leq y} \mu(x, z)=0$.

Second basis for $\mathfrak{S S y m}$: using the Permutohedron

Weak Bruhat order on \mathfrak{S}_{n}

Covering relation:

$$
u \lessdot(i i+1) u,
$$

if the letter \mathfrak{i} appears before $\mathfrak{i}+1$ inside u.

Product rule via weak Bruhat order

Left weak Bruhat order: \leq_{ℓ}.
Right weak Bruhat order: \leq_{r} :

$$
u \leq_{\mathrm{r}} v \Longleftrightarrow \mathrm{u}^{-1} \leq_{\ell} v^{-1}
$$

Theorem (Loday-Ronco)
Let $u \in \mathfrak{G}_{n}, v \in \mathfrak{G}_{n}$. We have

Product rule via weak Bruhat order

Left weak Bruhat order: \leq_{ℓ}.
Right weak Bruhat order: \leq_{r} :

$$
u \leq_{\mathrm{r}} v \Longleftrightarrow \mathrm{u}^{-1} \leq_{\ell} v^{-1}
$$

Theorem (Loday-Ronco)

Let $\mathfrak{u} \in \mathfrak{S}_{n}, v \in \mathfrak{S}_{p}$. We have

$$
\mathrm{G}_{\mathfrak{u}} \mathrm{G}_{v}=\sum_{\mathfrak{u} / v \leq_{\ell} w \leq_{\imath} \mathfrak{u} \backslash v} \mathrm{G}_{w} \quad \text { and } \quad \mathrm{F}_{\mathrm{u}} \mathrm{~F}_{v}=\sum_{\mathfrak{u} / v \leq_{\mathrm{r}} w \leq_{\mathrm{r}} v \backslash \mathfrak{u}} \mathrm{~F}_{w} .
$$

Product rule via weak Bruhat order

Let $\mathfrak{u}=12, v=21 \in \mathfrak{S}_{2}$. Then $\mathfrak{u} / v=1243, \mathfrak{u} \backslash v=3421$ and $v \backslash u=4312$. We have:

$$
\mathrm{G}_{12} \mathrm{G}_{21}=\mathrm{G}_{1243}+\mathrm{G}_{1342}+\mathrm{G}_{1432}+\mathrm{G}_{2341}+\mathrm{G}_{2431}+\mathrm{G}_{3421},
$$ $\mathrm{F}_{12} \mathrm{~F}_{21}=\mathrm{F}_{1243}+\mathrm{F}_{1423}+\mathrm{F}_{1432}+\mathrm{F}_{4123}+\mathrm{F}_{4132}+\mathrm{F}_{4312}$.

Second basis for $\mathfrak{S S y m}$: using the Permutohedron

(Left) weak Bruhat order on \mathfrak{S}_{n}
Covering relation:

$$
u \lessdot(i i+1) u,
$$

if the letter \mathfrak{i} appears before $\mathfrak{i}+1$ inside u.
New basis (Aguiar-Sottile):

$$
M_{u}:=\sum_{u \leq v} \mu(u, v) \mathrm{F}_{v}
$$

$$
M_{3412}=F_{3412}-F_{4312}-F_{3421}+F_{4321} .
$$

Second basis for $\mathfrak{S S y m}$: using the Permutohedron

(Left) weak Bruhat order on \mathfrak{S}_{n}
Covering relation:

$$
u \lessdot(i i+1) u,
$$

if the letter \mathfrak{i} appears before $\mathfrak{i}+1$ inside u.
New basis (Aguiar-Sottile):

$$
M_{u}:=\sum_{u \leq v} \mu(u, v) \mathrm{F}_{v}
$$

$$
M_{3412}=F_{3412}-F_{4312}-F_{3421}+F_{4321}
$$

Product and coproduct of monomials

A formula for the product of the M-bases is not obvious:

$$
\begin{aligned}
M_{312} M_{1}= & \left(F_{312}-F_{321}\right) F_{1} \\
= & \left(F_{3124}+F_{3142}+F_{3412}+F_{4312}\right) \\
& -\left(F_{3214}+F_{3241}+F_{3421}+F_{4321}\right) \\
= & M_{3124}+M_{3142}+M_{3412}++2 M_{4312} \\
& 2 M_{4132}+M_{4123}+M_{4231} .
\end{aligned}
$$

The coproduct is easier.

Indecomposables trees and Prim(SSym)

Prune w along its rightmost branch with all nodes above the cut smaller than all those below to get $w=u \backslash v$:

We say that w is indecomposable if only trivial prunings are possible.
Every $w \in \mathfrak{S}$ is uniquely pruned into indecomposables.

Indecomposables trees and Prim($\mathfrak{S S y m}$)

Theorem (Aguiar-Sottile)

$$
\Delta\left(M_{w}\right)=\sum_{w=u \backslash v} M_{u} \otimes M_{v} .
$$

A basis for Prim(SSym) is then

$$
\left\{M_{w}: w \text { indecomposable }\right\}
$$

Indecomposables trees and Prim($\mathfrak{S S y m}$)

Theorem (Aguiar-Sottile)

$$
\Delta\left(M_{w}\right)=\sum_{w=\mathfrak{u} \backslash v} M_{\mathfrak{u}} \otimes M_{v} .
$$

A basis for Prim (SSym) is then

$$
\left\{M_{w}: w \text { indecomposable }\right\} .
$$

Indecomposables trees and $\operatorname{Prim}(\mathfrak{S S y m})$

Theorem (Aguiar-Sottile)

$$
\Delta\left(M_{w}\right)=\sum_{w=u \backslash v} M_{u} \otimes M_{v} .
$$

A basis for Prim (SSym) is then

$$
\left\{M_{w}: w \text { indecomposable }\right\} .
$$

In particular, $\mathfrak{S S y m}$ is cofree.

Other bases for $\mathfrak{S S y m}$ and $\mathfrak{S S y m}{ }^{\star}$

SSym-bases

SSym*-bases

- F_{u}
- $M_{u}:=\sum_{u \leq \ell v} \mu_{\ell}(u, v) F_{v}$
- $\mathrm{E}_{\mathrm{u}}:=\sum_{\mathfrak{u} \leq{ }_{r} v} \mathrm{~F}_{v}$
- G_{u}
- $\mathrm{H}_{\mathrm{u}}:=\sum_{v \leq_{\ell}} \mathrm{G}_{\mathrm{u}}$
- $\mathrm{N}_{\mathrm{u}}:=\sum_{u \leq r v} \mu_{\mathrm{r}}(\mathrm{u}, v) \mathrm{G}_{v}$

Self-duality of ©Sym

Theorem (Malvenuto, Reutenauer)
 The $\operatorname{map} \mathrm{F}_{\mathfrak{u}} \mapsto \mathrm{G}_{\mathbf{u}^{-1}}$ is an isomorphism of Hopf algebras between $\mathfrak{S S y m}$ and $\mathfrak{S S y m}$.

Theorem (V.)

The man $F_{u} \mapsto H_{r e v(u)}$ is an isomorphism of Hopf algebras between SSym and ©Sym*

In particular, SSym is self-dual.

Self-duality of $\mathfrak{S S y m}$

Theorem (Malvenuto, Reutenauer)

The map $\mathrm{F}_{\mathfrak{u}} \mapsto \mathrm{G}_{\mathfrak{u}^{-1}}$ is an isomorphism of Hopf algebras between $\mathfrak{S S y m}$ and $\mathfrak{S S y m}$.

Theorem (V.)
 The $\operatorname{map} \mathrm{E}_{\mathfrak{u}} \mapsto \mathrm{H}_{\operatorname{rev}(\mathrm{u})}$ is an isomorphism of Hopf algebras between SSym and SSym*.

In particular, ©Sym is self-dual

Self-duality of $\mathfrak{S S y m}$

Theorem (Malvenuto, Reutenauer)

The map $\mathrm{F}_{\mathfrak{u}} \mapsto \mathrm{G}_{\mathfrak{u}^{-1}}$ is an isomorphism of Hopf algebras between $\mathfrak{S S y m}$ and $\mathfrak{S S y m}$.

Theorem (V.)
 The $\operatorname{map} \mathrm{E}_{\mathfrak{u}} \mapsto \mathrm{H}_{\operatorname{rev}(\mathrm{u})}$ is an isomorphism of Hopf algebras between SSym and SSym*.

In particular, \mathfrak{S} Sym is self-dual.

Primitive space from the 2-associative Hopf algebra

If V is a vector space, the tensor module $\bigoplus_{\mathrm{k}>0} \mathrm{~V}^{\otimes \mathrm{k}}$ is endowed with a natural structure of unital infinitesimal bialgebra, , denoted by $\operatorname{lnf}(\mathrm{V})$, considering the concatenation \odot and the deconcatenation Δ_{\odot} :

$$
\begin{gathered}
\left(u_{1} \cdots u_{r}\right) \odot\left(v_{1} \cdots v_{s}\right):=u_{1} \cdots u_{r} v_{1} \cdots v_{s} \\
\Delta_{\odot}\left(u_{1} u_{2} \cdots u_{k}\right)=\sum_{i=0}^{k}\left(u_{1} u_{2} \cdots u_{i}\right) \otimes\left(u_{i+1} u_{i+2} \cdots u_{k}\right)
\end{gathered}
$$

This is an important example of unital infinitesimal bialgebra.
Theorem (Loday, Ronco)
Any connected unital infinitesimal bialgebra B is isomorphic to $\operatorname{lnf}(\operatorname{Prim}(B))$

Primitive space from the 2-associative Hopf algebra

If V is a vector space, the tensor module $\bigoplus_{\mathrm{k} \geq 0} \mathrm{~V}^{\otimes \mathrm{k}}$ is endowed with a natural structure of unital infinitesimal bialgebra, , denoted by $\operatorname{lnf}(\mathrm{V})$, considering the concatenation \odot and the deconcatenation Δ_{\odot} :

$$
\begin{gathered}
\left(u_{1} \cdots u_{r}\right) \odot\left(v_{1} \cdots v_{s}\right):=u_{1} \cdots u_{r} v_{1} \cdots v_{s} \\
\Delta_{\odot}\left(u_{1} u_{2} \cdots u_{k}\right)=\sum_{i=0}^{k}\left(u_{1} u_{2} \cdots u_{i}\right) \otimes\left(u_{i+1} u_{i+2} \cdots u_{k}\right)
\end{gathered}
$$

This is an important example of unital infinitesimal bialgebra.

Theorem (Loday, Ronco)

Any connected unital infinitesimal bialgebra B is isomorphic to $\operatorname{lnf}(\operatorname{Prim}(\mathrm{B}))$.

Primitive space from the 2-associative Hopf algebra

The isomorphism is constructed using the following linear operator: if \bullet and Δ are the product and the coproduct of the unital infinitesimal bialgebra B, let

$$
e:=\sum_{n \geq 0}(-1)^{n}\left(\operatorname{id}_{B}-\iota \varepsilon\right)^{*(n)} \in \operatorname{End}(B)
$$

where $*$ is the convolution product constructed from the product \bullet and the coproduct Δ of B . In other words, $e(c)=0$ if $c \in \mathbb{K}$ and

$$
\left.e\right|_{\mathrm{B}_{+}}=\mathrm{id} \mathrm{~d}_{\mathrm{B}}-\bullet \circ \Delta_{+}+\bullet^{2} \circ \Delta_{+}^{2}-\bullet^{3} \circ \Delta_{+}^{3}+\cdots .
$$

Primitive space from the 2-associative Hopf algebra

From here, an isomorphism between B_{+}and $\operatorname{lnf}(\operatorname{Prim}(B))_{+}$is given by

$$
x \mapsto \sum_{n \geq 1} e^{\otimes n} \Delta_{+}^{(n-1)}(x)
$$

The next proposition allows to construct a basis for the primitive space of a unital infinitesimal bialgebra (B, \bullet, Δ) from special elements of the monoid (B, \bullet). If (M, \bullet) is a monoid, with unit element 1_{M}, we say that $x \in M$ is - -indecomposable if $x \neq 1_{M}$ and $x=y \bullet z$ implies $y=1_{M}$ or $z=1_{M}$; otherwise, we say that χ is \bullet-decomposable. We let $\operatorname{Dec}(M, \bullet)$ and Ind (M, \bullet) the set of decomposables and indecomposables elements of the monoid (M, \bullet), respectively.

Primitive space from the 2-associative Hopf algebra

From here, an isomorphism between B_{+}and $\operatorname{Inf}(\operatorname{Prim}(B))_{+}$is given by

$$
x \mapsto \sum_{n \geq 1} e^{\otimes n} \Delta_{+}^{(n-1)}(x)
$$

The next proposition allows to construct a basis for the primitive space of a unital infinitesimal bialgebra (B, \bullet, Δ) from special elements of the monoid (B, \bullet). If (M, \bullet) is a monoid, with unit element 1_{M}, we say that $x \in M$ is \bullet - indecomposable if $x \neq 1_{M}$ and $x=y \bullet z$ implies $y=1_{M}$ or $z=1_{M}$; otherwise, we say that x is \bullet-decomposable. We let $\operatorname{Dec}(M, \bullet)$ and $\operatorname{Ind}(M, \bullet)$ the set of decomposables and indecomposables elements of the monoid (M, \bullet), respectively.

Primitive space from the 2-associative Hopf algebra

Proposition

The operator e satisfies the following properties:
$1 \operatorname{lm}(\mathrm{e})=\operatorname{Prim}(\mathrm{B})$;
2 $\operatorname{Ker}(\mathrm{e})=\mathbb{K} \operatorname{Dec}(\mathrm{B}, \bullet)$;
3 e is an idempotent.

Corollary

Let (B, \bullet, Δ) a unital infinitesimal bialgebra. The set

$$
\{e(x): x \in \operatorname{Ind}(B, \bullet)\}
$$

is a basis of $\operatorname{Prim}(\mathrm{B})$.

Primitive space of $\mathfrak{S S y m}$, part II

Let $e_{/}\left(\right.$resp. $\left.e_{\backslash}\right)$ the operator associated to the 2-associative Hopf algebra ($\mathfrak{S S y m}, /$) (resp. ($\mathfrak{S S y m}, \backslash$) (see (37)). The sets

$$
\left\{e /\left(\mathrm{F}_{\alpha}\right): \alpha \in \operatorname{Ind}(\mathfrak{S}, /)\right\} \text { and }\left\{e \backslash\left(\mathrm{~F}_{\alpha}\right): \alpha \in \operatorname{Ind}(\mathfrak{S}, \backslash)\right\}
$$

are bases of Prim (SSym).
By definition of $e_{/}\left(\right.$resp. $\left.e_{\ell}\right)$, the element $e_{/}\left(F_{\alpha}\right)$, for $\alpha \in \operatorname{Ind}(\mathbb{S}, /)$ (resp. the element $e_{\backslash}\left(F_{\alpha}\right)$, for $\alpha \in \operatorname{Ind}(\mathfrak{S}, \backslash)$), is an alternating sum with possibly many cancellations.

Primitive space of $\mathfrak{S S y m}$, part II

Let $e_{/}\left(\right.$resp. $\left.e_{\backslash}\right)$ the operator associated to the 2-associative Hopf algebra ($\mathfrak{S S y m}, /$) (resp. ($\mathfrak{S S y m}, \backslash$) (see (37)). The sets

$$
\left\{e /\left(\mathrm{F}_{\alpha}\right): \alpha \in \operatorname{Ind}(\mathfrak{S}, /)\right\} \text { and }\left\{e \backslash\left(\mathrm{~F}_{\alpha}\right): \alpha \in \operatorname{Ind}(\mathfrak{S}, \backslash)\right\}
$$

are bases of $\operatorname{Prim}(\mathfrak{S}$ Sym).
By definition of $e_{/}\left(\right.$resp. $\left.e_{\backslash}\right)$, the element $e /\left(F_{\alpha}\right)$, for $\alpha \in \operatorname{Ind}(\mathfrak{S}, /)$ (resp. the element $e_{\backslash}\left(F_{\alpha}\right)$, for $\alpha \in \operatorname{Ind}(\mathfrak{S}, \backslash)$), is an alternating sum with possibly many cancellations.

Primitive space of $\mathfrak{S S y m}$, part II

$$
\begin{aligned}
& e:=\sum_{n \geq 0}(-1)^{n}\left(\text { id }_{\mathrm{B}}-\iota \varepsilon\right)^{*(n)} \\
& e_{/}\left(\mathrm{F}_{3421}\right)= \mathrm{F}_{3421}-\mathrm{F}_{1 / 321}-\mathrm{F}_{12 / 21}-\mathrm{F}_{231 / 1}+\mathrm{F}_{1 / 1 / 21} \\
&+\mathrm{F}_{1 / 21 / 1}+\mathrm{F}_{12 / 1 / 1}-\mathrm{F}_{1 / 1 / 1 / 1} \\
&= \mathrm{F}_{3421}-\mathrm{F}_{1432}-\mathrm{F}_{1243}-\mathrm{F}_{2314}+\mathrm{F}_{1243}+\mathrm{F}_{1324}+\mathrm{F}_{1234}-\mathrm{F}_{1234} \\
&= \mathrm{F}_{3421}-\mathrm{F}_{1432}-\mathrm{F}_{2314}+\mathrm{F}_{1324} \\
& e_{\backslash\left(\mathrm{F}_{1432}\right)=}=\mathrm{F}_{1432}-\mathrm{F}_{1 \backslash 321}-\mathrm{F}_{12 \backslash 21}-\mathrm{F}_{132 \backslash 1}+\mathrm{F}_{1 \backslash 1 \backslash 21} \\
&+\mathrm{F}_{1 \backslash 21 \backslash 1}+\mathrm{F}_{12 \backslash 1 \backslash 1}+\mathrm{F}_{1 \backslash 1 \backslash 1 \backslash 1} \\
&== \mathrm{F}_{1432}-\mathrm{F}_{4321}-\mathrm{F}_{3421}-\mathrm{F}_{2431}+\mathrm{F}_{4321}+\mathrm{F}_{4321}+\mathrm{F}_{3421}-\mathrm{F}_{4321} \\
&= \mathrm{F}_{1432}-\mathrm{F}_{2431} .
\end{aligned}
$$

Primitive space of $\mathfrak{S S y m}$, part II

If $n \in \mathbb{N}$, let $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{n} \in \mathfrak{S}_{n}$ and $q=q_{1} q_{2} \cdots q_{r} \vdash n$. For $1 \leq k \leq r$, we denotes by $\alpha_{q_{k}}$ the following subword of α formed by the consecutives letters

$$
\alpha_{\mathbf{q}_{k}}:=\alpha_{\mathbf{q}_{1}+\mathbf{q}_{2}+\cdots+\mathbf{q}_{k-1}+1} \alpha_{\mathbf{q}_{1}+\mathbf{q}_{2}+\cdots+\mathbf{q}_{k-1}+2} \cdots \alpha_{\mathbf{q}_{1}+\mathbf{q}_{2}+\cdots+\mathbf{q}_{k-1}+\mathbf{q}_{k}} .
$$

For example, if $\mathrm{q}=\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3}=313 \vdash 7$ and $\alpha=2756143 \in \mathfrak{S}_{7}$, then:

$$
\alpha_{\mathrm{q}_{1}}=275, \alpha_{\mathrm{q}_{2}}=6, \alpha_{\mathrm{q}_{3}}=143 .
$$

Primitive space of $\mathfrak{S S y m}$, part II

Let $\alpha \in \mathfrak{S}_{n}$ and \bullet an associative and unitary product on \mathfrak{S}. Let $\mathrm{q}=\mathrm{q}_{1} \mathrm{q}_{2} \cdots \mathrm{q}_{\mathrm{r}} \vdash \mathrm{n}$ a composition. We say that α is a q -locally free of relative order, or q-locally free (relating to \bullet) if, for every $1 \leq k \leq r$, we have
$\boldsymbol{1} \operatorname{st}\left(\alpha_{\boldsymbol{q}_{k}}\right) \in \operatorname{Ind}(\mathfrak{S}, \bullet)$;
■ $\operatorname{st}\left(\alpha_{\boldsymbol{q}_{k}} \alpha_{\mathbf{q}_{k+1}}\right) \neq \operatorname{st}\left(\alpha_{\boldsymbol{q}_{k}}\right) \bullet \operatorname{st}\left(\alpha_{\boldsymbol{q}_{k+1}}\right)$.
We put $\mathrm{LF}_{\mathbf{q}}(\mathfrak{S}, \bullet)$ the set of q -locally free permutations, considering the monoid structure (\mathfrak{S}, \bullet).

Primitive space of SSym, part II

Let consider, for example, the fixed monoid ($\mathfrak{S}, /$) and the permutation $\alpha=45321$. Then, α is 1211 -locally free, as:

$$
\begin{gathered}
231=\operatorname{st}(453) \neq \operatorname{st}(4) / \operatorname{st}(53)=1 / 21=132, \\
321=\operatorname{st}(532) \neq \operatorname{st}(53) / \operatorname{st}(2)=21 / 1=213, \\
21=\operatorname{st}(21) \neq \operatorname{st}(2) / \operatorname{st}(1)=1 / 1=12,
\end{gathered}
$$

and each $\operatorname{st}\left(\alpha_{k}\right) \in \operatorname{Ind}(\mathfrak{S}, /)$. The permutation α is also 32-locally free:

$$
45321 \neq \operatorname{st}(453) / \operatorname{st}(21)=231 / 21=23154,
$$

with each $\operatorname{st}\left(\alpha_{k}\right) \in \operatorname{Ind}(\mathfrak{S}, /)$. However, α is not 1112-locally free: if $\mathrm{q}=\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3} \mathrm{q}_{4}=1112$, then

$$
\operatorname{st}\left(\alpha_{\mathfrak{q}_{1}} \alpha_{\mathbf{q}_{2}}\right)=\operatorname{st}(45)=12=\operatorname{st}(4) / \operatorname{st}(5) .
$$

The permutation α is neither 212-locally free: if $q=q_{1} q_{2} q_{3}=212$, then $\operatorname{st}\left(\alpha_{q_{1}}\right)=\operatorname{st}(45)=12$ is not indecomposable.

Primitive space of $\mathfrak{S S y m}$, part II

Theorem (C. Benedetti, D. Artenstein, A. Gonzalez, R. Gonzalez, J. Gutierrez, M. Ronco, D. Tamayo, Y. Vargas)

Let $(\mathfrak{S}$ Sym, •) a 2-associative Hopf algebra structure on \mathfrak{S} Sym. Let e \bullet the idempotent associated to $(\mathfrak{S S y m}, \bullet)$. If $\alpha \in \operatorname{Ind}\left(\mathfrak{S}_{n}, \bullet\right)$, the primitive element $\mathrm{e}_{\mathbf{\bullet}}\left(\mathrm{F}_{\alpha}\right)$ is given by the following cancellation-free and grouping-free formula:

$$
e_{\bullet}\left(F_{\alpha}\right)=\sum_{\substack{q=q_{1} \cdots q_{q} \vdash n \\ \alpha \in L F_{q}(\mathcal{S}, \bullet}}(-1)^{r} F_{s t\left(\alpha_{q_{1}}\right) \bullet \cdots \bullet s t\left(\alpha_{q_{r}}\right)} .
$$

Relation between $\boldsymbol{e} \backslash\left(F_{\alpha}\right)$ and M_{α}

Every M_{α} is a primitive element if $\alpha \in \operatorname{Ind}(\mathfrak{S}, \backslash)$. Thus, $e_{\backslash}\left(M_{\alpha}\right)=M_{\alpha}$ and

$$
\begin{aligned}
M_{\alpha} & =e_{\backslash}\left(\mathscr{M}_{\alpha}\right) \\
& =\sum_{\alpha \leq \ell \beta} \mu(\alpha, \beta) e_{\backslash}\left(F_{\beta}\right) .
\end{aligned}
$$

As e $\backslash\left(F_{\beta}\right)=0$ if β is \backslash-decomposable, the sum above is given by
\backslash-irreducibles permutations β greater than α. This condition induces a subposet of the left weak Bruhat order. By Mobius inversion, we obtain the following result.

Relation between $e_{\backslash}\left(F_{\alpha}\right)$ and M_{α}

Every M_{α} is a primitive element if $\alpha \in \operatorname{Ind}(\mathfrak{S}, \backslash)$. Thus, $e_{\backslash}\left(M_{\alpha}\right)=M_{\alpha}$ and

$$
\begin{aligned}
M_{\alpha} & =e_{\backslash}\left(\mathscr{M}_{\alpha}\right) \\
& =\sum_{\alpha \leq \ell \beta} \mu(\alpha, \beta) e_{\backslash}\left(F_{\beta}\right) .
\end{aligned}
$$

As $e_{\backslash}\left(\mathrm{F}_{\beta}\right)=0$ if β is \backslash-decomposable, the sum above is given by \backslash-irreducibles permutations β greater than α. This condition induces a subposet of the left weak Bruhat order. By Mobius inversion, we obtain the following result.

Relation between $e_{\backslash}\left(F_{\alpha}\right)$ and M_{α}

Proposition

Let $\alpha \in \operatorname{Ind}(\mathfrak{S}, \backslash)$. The primitive elements $e_{\backslash}\left(F_{\alpha}\right)$ and M_{α} are related by

$$
e_{\backslash}\left(F_{\alpha}\right)=\sum_{\substack{\alpha \leq \ell \\ \beta \in \operatorname{lnd}(\mathcal{S}, \backslash)}} M_{\beta}
$$

In particular, if α is a maximum \-indecomposable element for the left weak Bruhat order, then $\mathrm{e}_{\backslash}\left(\mathrm{F}_{\alpha}\right)=M_{\alpha}$ and

$$
\mu(\alpha, \beta)= \begin{cases}(-1)^{r} & \text { if } \alpha \in \operatorname{LF}_{\mathrm{q}}(\mathfrak{S}, \backslash) \text { and } \beta=\operatorname{st}\left(\alpha_{\mathrm{q}_{1}}\right) \backslash \cdots \backslash \operatorname{st}\left(\alpha_{\mathrm{q}_{\mathrm{r}}}\right) \\ 0 & \text { for some composition } \mathrm{q}=\mathrm{q}_{1} \mathrm{q}_{2} \cdots \mathrm{q}_{\mathrm{r}}\end{cases}
$$

Thanks!

