

Algebraic structure of the Hopf algebra of double posets

Yannic VARGAS

Instituto Venezolano de Investigaciones Científicas Universidad Central de Venezuela

Higher Structures Emerging from Renormalisation, 2020

The non-commutative Connes-Kreimer Hopf algebra NCK

The Hopf algebra NCK (Foissy, 2002) is freely generated by the set of all finite rooted planar trees.

Monomials of rooted planar trees \longleftrightarrow Ordered forest

The algebra NCK is graded by the total number of nodes in a forest.

$$\forall . \forall \forall$$

The non-commutative Connes-Kreimer Hopf algebra NCK

The coalgebra structure of NCK is given by *admissible cuts*:

There is a map ϕ from ordered trees to binary trees which induces an isomorphism between NCK and the Hopf algebra of Loday-Ronco LR.

The non-commutative Connes-Kreimer Hopf algebra NCK

The coalgebra structure of NCK is given by *admissible cuts*:

There is a map φ from ordered trees to binary trees which induces an isomorphism between NCK and the Hopf algebra of Loday-Ronco LR.

Let / and \setminus the following operations on binary trees:

We construct ϕ recursively:

•
$$\varphi(\emptyset) := |;$$

•
$$\varphi(B_+(f)) := \varphi(f)/Y;$$

• if $f = (t_1, t_2, \dots, t_n)$, then $\phi(f) = \phi(t_1) \setminus \phi(t_2) \setminus \dots \setminus \phi(t_n)$.

Permutation = binary tree with decreasing labelling

Let \mathfrak{S}_n the symmetric group on $[n] := \{1, 2, \dots, n\}$. For $\sigma \in \mathfrak{S}_n$, we use the linear notation:

 $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n).$

Permutation = binary tree with decreasing labelling

Operations on trees

Split an ordered tree $u \in \mathfrak{S}_n$ from one of his leaves produces an ordered forest $(\mathfrak{u}_0.\mathfrak{u}_1.\ldots,\mathfrak{u}_k)$, with labels in [n]. We denotes this process by

$$\mathfrak{u} \stackrel{\scriptscriptstyle \gamma}{\mapsto} (\mathfrak{u}_0, \mathfrak{u}_1, \dots, \mathfrak{u}_k).$$

For example:

Split ordered tree w to get an ordered forest, $w \xrightarrow{\gamma} (w_0, \dots, w_p)$, $3 \xrightarrow{2 \# 7} 5 \xrightarrow{1 \# 6 \# 4} \xrightarrow{\gamma} \left(\xrightarrow{3 \xrightarrow{2}}, \parallel, \xrightarrow{7 \xrightarrow{5 \xrightarrow{1}}}, \xrightarrow{6}, \xrightarrow{4} \right)$,

Operations on trees

Graft an ordered forest $(u_0.u_1...,u_k)$, with labels in [n], onto a tree $\nu \in \mathfrak{S}_k$ gives a tree

$$(\mathfrak{u}_0.\mathfrak{u}_1.\ldots,\mathfrak{u}_k)/\nu\in\mathfrak{S}_{\mathfrak{n}+k}.$$

For instance, the graft of the preceding ordered forest onto the tree

produces

Is the Hopf algebra defined on $\bigoplus_{n \ge 0} \mathbb{K}[\mathfrak{S}_n]$, with basis $\{F_w : w \in \mathfrak{S}\}$, where the product is the **shifted shuffle**, and the coproduct is the **destandardized deconcatenation**.

For $u \in \mathfrak{S}_n$ and $v \in \mathfrak{S}_p$, we have:

$$F_{\mathbf{u}} \cdot F_{\mathbf{v}} = \sum_{\mathbf{u} \stackrel{\gamma}{\longmapsto} (\mathbf{u}_{0}, \mathbf{u}_{1}, \dots, \mathbf{u}_{p})} F_{(\mathbf{u}_{0}, \mathbf{u}_{1}, \dots, \mathbf{u}_{p})/\mathbf{v}},$$
$$\Delta(F_{\mathbf{u}}) = \sum_{\mathbf{u} \stackrel{\gamma}{\longmapsto} (\mathbf{u}_{0}, \mathbf{u}_{1})} F_{\mathsf{st}(\mathbf{u}_{0})} \otimes F_{\mathsf{st}(\mathbf{u}_{1})}.$$

If $u \in \mathfrak{S}_n$ and $v \in \mathfrak{S}_p$, then $F_u \cdot F_v := \sum_{\substack{w \in \mathfrak{S}_{n+p} \\ st(w \cap \{1,...,n\}) = u \\ st(w \cap \{n+1,...,n+p\}) = v}} F_w,$

where $w \cap I$ is the word obtained by erasing the letters in w which are not in I and st is the standardization operator. For instance,

 $F_{12} \cdot F_{21} = F_{1243} + F_{1423} + F_{1432} + F_{4123} + F_{4132} + F_{4312}$

The set of permutations in the product $F_u \cdot F_v$ is called the **set of** shuffles of u and v.

If $u \in \mathfrak{S}_n$ and $v \in \mathfrak{S}_p$, then $F_u \cdot F_v := \sum_{w \in \mathfrak{S}_{n+p}}$

where $w \cap I$ is the word obtained by erasing the letters in w which are not in I and st is the standardization operator. For instance,

 $\mathsf{F}_{12} \cdot \mathsf{F}_{21} = \mathsf{F}_{1243} + \mathsf{F}_{1423} + \mathsf{F}_{1432} + \mathsf{F}_{4123} + \mathsf{F}_{4132} + \mathsf{F}_{4312}.$

The set of permutations in the product $F_u \cdot F_v$ is called the **set of** shuffles of u and v.

If $\mathfrak{u} \in \mathfrak{S}_n$ and $\mathfrak{v} \in \mathfrak{S}_p$, then Σ

$$F_{u} \cdot F_{v} := \sum_{\substack{w \in \mathfrak{S}_{n+p} \\ st(w \cap \{1,...,n\}) = u \\ st(w \cap \{n+1,...,n+p\}) = v}} F_{w},$$

where $w \cap I$ is the word obtained by erasing the letters in w which are not in I and st is the standardization operator. For instance,

 $F_{12} \cdot F_{21} = F_{1243} + F_{1423} + F_{1432} + F_{4123} + F_{4132} + F_{4312}.$

The set of permutations in the product $F_u \cdot F_v$ is called the set of shuffles of u and v.

If $w \in \mathfrak{S}_n$, then

$$\Delta(\mathsf{F}_{w}) := \sum_{k=0}^{n} \mathsf{F}_{\mathsf{st}(w_{1}\cdots w_{k})} \otimes \mathsf{F}_{\mathsf{st}(w_{k+1}\cdots w_{n})}.$$

We have:

 $\Delta(\mathsf{F}_{312}) = \mathsf{F}_{\lambda} \otimes \mathsf{F}_{312} + \mathsf{F}_{1} \otimes \mathsf{F}_{12} + \mathsf{F}_{21} \otimes \mathsf{F}_{1} + \mathsf{F}_{312} \otimes \mathsf{F}_{\lambda}.$

If $w \in \mathfrak{S}_n$, then

$$\Delta(\mathsf{F}_{w}) := \sum_{k=0}^{n} \mathsf{F}_{\mathsf{st}(w_{1}\cdots w_{k})} \otimes \mathsf{F}_{\mathsf{st}(w_{k+1}\cdots w_{n})}.$$

We have:

 $\Delta(F_{312})=F_\lambda\otimes F_{312}+F_1\otimes F_{12}+F_{21}\otimes F_1+F_{312}\otimes F_\lambda.$

The graded dual \mathfrak{S} Sym^{*}

For every permutation u, let G_u the dual basis of the basis element F_u . The Hopf-algebraic structure of the graded dual of \mathfrak{S} Sym is described as follows.

 \blacksquare Product rule: if $u\in\mathfrak{S}_n$ and $\nu\in\mathfrak{S}_p,$ then

$$G_{u}G_{v} := \sum_{\substack{w \in \mathfrak{S}_{n+p} \\ \operatorname{st}(w_{1}w_{2}\cdots w_{n}) = u \\ \operatorname{st}(w_{n+1}w_{n+2}\cdots w_{n+p}) = v}} G_{w}.$$

For instance,

 $G_{12}G_{21} = G_{1243} + G_{1342} + G_{1432} + G_{2341} + G_{2431} + G_{3421}$

The graded dual \mathfrak{S} Sym^{*}

For every permutation u, let G_u the dual basis of the basis element F_u . The Hopf-algebraic structure of the graded dual of \mathfrak{S} Sym is described as follows.

 \blacksquare Product rule: if $u\in\mathfrak{S}_n$ and $\nu\in\mathfrak{S}_p,$ then

$$G_{\mathfrak{u}}G_{\mathfrak{v}} := \sum_{\substack{\mathfrak{w} \in \mathfrak{S}_{\mathfrak{n}+\mathfrak{p}} \\ \mathfrak{st}(w_1w_2\cdots w_n) = \mathfrak{u} \\ \mathfrak{st}(w_{\mathfrak{n}+1}w_{\mathfrak{n}+2}\cdots w_{\mathfrak{n}+\mathfrak{p}}) = \mathfrak{v}}} G_{\mathfrak{w}}.$$

For instance,

$$G_{12}G_{21} = G_{1243} + G_{1342} + G_{1432} + G_{2341} + G_{2431} + G_{3421}.$$

The graded dual Sym*

 \blacksquare Coproduct rule: if $u\in \mathfrak{S}_n,$ then

$$\Delta(G_{\mathfrak{u}}) := \sum_{k=0}^{n} G_{st(\mathfrak{u}_{[k]})} \otimes G_{st(\mathfrak{u}^{[k]})}.$$

We have:

 $\Delta(\mathsf{G}_{312})=\mathsf{G}_{\lambda}\otimes\mathsf{G}_{312}+\mathsf{G}_{1}\otimes\mathsf{G}_{21}+\mathsf{G}_{12}\otimes\mathsf{G}_{1}+\mathsf{G}_{312}\otimes\mathsf{G}_{\lambda}.$

The graded dual Sym*

 \blacksquare Coproduct rule: if $u\in\mathfrak{S}_n,$ then

$$\Delta(\mathsf{G}_{\mathfrak{u}}) := \sum_{k=0}^{n} \mathsf{G}_{\mathsf{st}(\mathfrak{u}_{[k]})} \otimes \mathsf{G}_{\mathsf{st}(\mathfrak{u}^{[k]})}.$$

We have:

 $\Delta(G_{312})=G_\lambda\otimes G_{312}+G_1\otimes G_{21}+G_{12}\otimes G_1+G_{312}\otimes G_\lambda.$

Relevance of $\operatorname{\mathfrak{S}Sym}$ in renormalization

- As a Combinatorial Hopf Algebra (CHA), (almost) every CHA can be realized as a quotient or a sub-Hopf algebra of Sym.
- \mathfrak{S} Sym is a sub-algebra of the convolution algebra of $(End(\mathbb{K}\langle A), \sqcup)$:

$$\mathfrak{u}\,\widetilde{\scriptstyle{\,\sqcup\,}}\,\mathfrak{v}:={\scriptstyle{\,\sqcup\,}}\,\circ(\mathfrak{u}\otimes\mathfrak{v})\circ\delta$$

 D. Yang used Sym to reinterpret the integration of Lipschitz one-forms along geometric rough paths developed by Lyons as an integration of time-varying exact one-forms along group-valued paths.

A unital infinitesimal bialgebra (B, \bullet, Δ) is a vector space B equipped with a unital associative product \bullet and a counital coassociative coproduct Δ , such that they satisfies the following compatibility rule:

$$\Delta(\mathbf{x} \bullet \mathbf{y}) = (\mathbf{x} \otimes \mathbf{1}) \bullet \Delta(\mathbf{y}) + \Delta(\mathbf{x}) \bullet (\mathbf{1} \otimes \mathbf{y}) - \mathbf{x} \otimes \mathbf{y}.$$

This relation is called the **unital infinitesimal relation**.

We introduce two operations, / and \, on the set of permutations \mathfrak{S} . Given $\mathfrak{u} \in \mathfrak{S}_n$ and $\nu \in \mathfrak{S}_p$, let

$$u/v := u_1 \cdots u_n (v_1 + n) \cdots (v_p + n),$$
$$u \setminus v := (u_1 + p) \cdots (u_n + p) v_1 \cdots v_p.$$

In Malvenuto's talk, $/ = \Box$ and $\setminus = \triangle$.

It is not difficult to show that $(\mathfrak{S}, /)$ and $(\mathfrak{S}, \backslash)$ are monoids, with same unit element λ .

We introduce two operations, / and \, on the set of permutations \mathfrak{S} . Given $\mathfrak{u} \in \mathfrak{S}_n$ and $\nu \in \mathfrak{S}_p$, let

$$\begin{split} u/\nu &\coloneqq u_1 \cdots u_n (\nu_1 + n) \cdots (\nu_p + n), \\ u \backslash \nu &\coloneqq (u_1 + p) \cdots (u_n + p) \nu_1 \cdots \nu_p. \end{split}$$
 In Malvenuto's talk, $/ = \Box$ and $\backslash = \bigtriangleup$.

It is not difficult to show that $(\mathfrak{S}, /)$ and $(\mathfrak{S}, \backslash)$ are monoids, with same unit element λ .

We introduce two operations, / and \, on the set of permutations \mathfrak{S} . Given $u \in \mathfrak{S}_n$ and $v \in \mathfrak{S}_p$, let

$$\begin{split} u/\nu &\coloneqq u_1 \cdots u_n (\nu_1 + n) \cdots (\nu_p + n), \\ u \backslash \nu &\coloneqq (u_1 + p) \cdots (u_n + p) \nu_1 \cdots \nu_p. \end{split}$$
 In Malvenuto's talk, / = \Box and $\backslash = \triangle$.

It is not difficult to show that $(\mathfrak{S}, /)$ and $(\mathfrak{S}, \backslash)$ are monoids, with same unit element λ .

If $\alpha=\alpha_1\alpha_2\cdots\alpha_n\in\mathfrak{S}_n$, we define the permutation $\mathsf{rev}(\alpha)$ as

 $\operatorname{rev}(\alpha) := \alpha_n \cdots \alpha_2 \alpha_1.$

Both operations / and \backslash are related as follows:

 $\alpha \backslash \beta = \mathsf{rev}(\mathsf{rev}(\alpha)/\mathsf{rev}(\beta))$

As the operation rev is an involution, it defines a monoid map rev : $(\mathfrak{S}, \backslash) \to (\mathfrak{S}, /)$. The inverse map on permutations acts as an endomorphism on $(\mathfrak{S}, /)$ and as an anti-endomorphism on $(\mathfrak{S}, \backslash)$:

Lemma

Let
$$\alpha, \beta \in \mathfrak{S}$$
. We have:
(a) $(\alpha/\beta)^{-1} = \alpha^{-1}/\beta^{-1}$;
(b) $(\alpha \setminus \beta)^{-1} = \beta^{-1} \setminus \alpha^{-1}$.

$\operatorname{\mathfrak{S}Sym}$ as a unital infinitesimal bialgebra

Theorem

- The Hopf algebra Sym, together with the product /, is a 2-associative Hopf algebra.
- The Hopf algebra Sym^{*}, together with the product /, is a 2-associative Hopf algebra, isomorphic to (Sym, /).
- **I** The Hopf algebras Sym and Sym^{*}, together with the product ∖, are anti-isomorphic 2-associatives Hopf algebras.

Second basis for Sym

Let P a partially ordered set (poset).

Given $x, y \in P$, con x < y, the Mobius function of P is the map $\mu : P \times P \rightarrow P$ defined as:

$$\mu(x, x) = 1;$$
$$\sum_{x \le z \le y} \mu(x, z) = 0.$$

Second basis for \mathfrak{S} Sym: using the Permutohedron

Weak Bruhat order on \mathfrak{S}_n

Covering relation:

 $u \lessdot (i i + 1)u,$

if the letter i appears before i + 1 inside u.

Product rule via weak Bruhat order

Left weak Bruhat order: \leq_{ℓ} .

Right weak Bruhat order: \leq_r :

$$\mathfrak{u} \leq_{\mathrm{r}} \mathfrak{v} \Longleftrightarrow \mathfrak{u}^{-1} \leq_{\ell} \mathfrak{v}^{-1}.$$

Product rule via weak Bruhat order

Left weak Bruhat order: \leq_{ℓ} .

Right weak Bruhat order: \leq_r :

$$\mathfrak{u} \leq_{\mathrm{r}} \mathfrak{v} \Longleftrightarrow \mathfrak{u}^{-1} \leq_{\ell} \mathfrak{v}^{-1}.$$

Theorem (Loday-Ronco) Let $u \in \mathfrak{S}_n$, $v \in \mathfrak{S}_p$. We have $G_u G_v = \sum_{u/v \leq_{\ell} w \leq_{\ell} u \setminus v} G_w$ and $F_u F_v = \sum_{u/v \leq_r w \leq_r v \setminus u} F_w$.

Product rule via weak Bruhat order

Let $\mathfrak{u} = 12, \nu = 21 \in \mathfrak{S}_2$. Then $\mathfrak{u}/\nu = 1243, \mathfrak{u}/\nu = 3421$ and $v \setminus u = 4312$. We have:

> $G_{12}G_{21} = G_{1243} + G_{1342} + G_{1432} + G_{2341} + G_{2431} + G_{3421}$ $F_{12}F_{21} = F_{1243} + F_{1423} + F_{1432} + F_{4123} + F_{4132} + F_{4312}$

25 / 44

Second basis for \mathfrak{S} Sym: using the Permutohedron

(Left) weak Bruhat order on \mathfrak{S}_n

Covering relation:

u < (i i + 1)u,

if the letter i appears before i + 1 inside u. **New basis** (Aguiar-Sottile):

 $M_{\mathfrak{u}} := \sum_{\mathfrak{u} \leq \nu} \mu(\mathfrak{u}, \nu) F_{\nu}.$

 $\mathsf{M}_{3412} = \mathsf{F}_{3412} - \mathsf{F}_{4312} - \mathsf{F}_{3421} + \mathsf{F}_{4321}.$

Second basis for \mathfrak{S} Sym: using the Permutohedron

(Left) weak Bruhat order on \mathfrak{S}_n

Covering relation:

u < (i i + 1)u,

if the letter i appears before i + 1inside u. New basis (Aguiar-Sottile):

$$M_{\mathfrak{u}} := \sum_{\mathfrak{u} \leq \mathfrak{v}} \mu(\mathfrak{u}, \mathfrak{v}) F_{\mathfrak{v}}.$$

 $M_{3412} = F_{3412} - F_{4312} - F_{3421} + F_{4321}.$

Product and coproduct of monomials

A formula for the product of the M-bases is not obvious:

$$\begin{split} \mathsf{M}_{312}\,\mathsf{M}_1 &= (\mathsf{F}_{312} - \mathsf{F}_{321})\,\mathsf{F}_1 \\ &= (\mathsf{F}_{3124} + \mathsf{F}_{3142} + \mathsf{F}_{3412} + \mathsf{F}_{4312}) \\ &- (\mathsf{F}_{3214} + \mathsf{F}_{3241} + \mathsf{F}_{3421} + \mathsf{F}_{4321}) \\ &= \mathsf{M}_{3124} + \mathsf{M}_{3142} + \mathsf{M}_{3412} + + 2\mathsf{M}_{4312} \\ &\quad 2\mathsf{M}_{4132} + \mathsf{M}_{4123} + \mathsf{M}_{4231}. \end{split}$$

The coproduct is easier.

Prune *w* along its rightmost branch with all nodes above the cut smaller than all those below to get $w = u \setminus v$:

We say that w is **indecomposable** if only trivial prunings are possible.

Every $w \in \mathfrak{S}$ is uniquely pruned into indecomposables.

Theorem (Aguiar-Sottile)
$$\Delta(M_w) = \sum_{w = u \setminus v} M_u \otimes M_v.$$

A basis for Prim(Sym) is then

```
\{\mathcal{M}_{w} : w \text{ indecomposable }\}
```

In particular, Sym is cofree.

$$\Delta(M_w) = \sum_{w \, = \, u \, \backslash v} M_u \otimes M_v.$$

A basis for $Prim(\mathfrak{S}Sym)$ is then

```
\{M_w : w \text{ indecomposable }\}.
```

In particular, Sym is cofree.

$$\Delta(M_w) = \sum_{w \, = \, u \, \setminus v} M_u \otimes M_v.$$

A basis for $Prim(\mathfrak{S}Sym)$ is then

```
\{M_w : w \text{ indecomposable }\}.
```

In particular, Sym is cofree.

Other bases for $\operatorname{\mathfrak{S}Sym}$ and $\operatorname{\mathfrak{S}Sym}^\star$

Sym-bases

•
$$F_u$$

• $M_u := \sum_{u \le_\ell v} \mu_\ell(u, v) F_v$
• $E_u := \sum_{u \le_r v} F_v$

Sym^{*}-bases €

•
$$G_u$$
 $(G_u = F_u^*)$
• $H_u := \sum_{\nu \le_\ell u} G_u$ $(H_u = M_u^*)$
• $N_u := \sum_{u \le_r \nu} \mu_r(u, \nu) G_\nu$

Self-duality of $\operatorname{\mathfrak{S}Sym}$

Theorem (Malvenuto, Reutenauer)

The map $F_u \mapsto G_{u^{-1}}$ is an isomorphism of Hopf algebras between $\mathfrak{S}Sym$ and $\mathfrak{S}Sym^*$.

Theorem (V.)

The map $E_u \mapsto H_{rev(u)}$ is an isomorphism of Hopf algebras between $\mathfrak{S}Sym$ and $\mathfrak{S}Sym^*$.

In particular, Sym is self-dual.

Self-duality of $\operatorname{\mathfrak{S}Sym}$

Theorem (Malvenuto, Reutenauer)

The map $F_u \mapsto G_{u^{-1}}$ is an isomorphism of Hopf algebras between $\mathfrak{S}Sym$ and $\mathfrak{S}Sym^*$.

Theorem (V.)

The map $E_u\mapsto H_{\textit{rev}(u)}$ is an isomorphism of Hopf algebras between $\mathfrak{S}\textit{Sym}$ and $\mathfrak{S}\textit{Sym}^\star.$

In particular, Sym is self-dual.

Self-duality of $\operatorname{\mathfrak{S}Sym}$

Theorem (Malvenuto, Reutenauer)

The map $F_u \mapsto G_{u^{-1}}$ is an isomorphism of Hopf algebras between $\mathfrak{S}Sym$ and $\mathfrak{S}Sym^*$.

Theorem (V.)

The map $E_u \mapsto H_{rev(u)}$ is an isomorphism of Hopf algebras between $\mathfrak{S}Sym$ and $\mathfrak{S}Sym^*$.

In particular, Sym is self-dual.

If V is a vector space, the tensor module $\bigoplus_{k\geq 0} V^{\otimes k}$ is endowed with a natural structure of unital infinitesimal bialgebra, , denoted by Inf(V), considering the concatenation \odot and the deconcatenation Δ_{\odot} :

$$(\mathfrak{u}_1\cdots\mathfrak{u}_r)\odot(\mathfrak{v}_1\cdots\mathfrak{v}_s):=\mathfrak{u}_1\cdots\mathfrak{u}_r\mathfrak{v}_1\cdots\mathfrak{v}_s,$$

$$\Delta_{\odot}(\mathfrak{u}_{1}\mathfrak{u}_{2}\cdots\mathfrak{u}_{k})=\sum_{\mathfrak{i}=0}^{k}(\mathfrak{u}_{1}\mathfrak{u}_{2}\cdots\mathfrak{u}_{\mathfrak{i}})\otimes(\mathfrak{u}_{\mathfrak{i}+1}\mathfrak{u}_{\mathfrak{i}+2}\cdots\mathfrak{u}_{k})$$

This is an important example of unital infinitesimal bialgebra.

Theorem (Loday, Ronco)

Any connected unital infinitesimal bialgebra B is isomorphic to Inf(*Prim*(B)).

If V is a vector space, the tensor module $\bigoplus_{k\geq 0} V^{\otimes k}$ is endowed with a natural structure of unital infinitesimal bialgebra, , denoted by Inf(V), considering the concatenation \odot and the deconcatenation Δ_{\odot} :

$$(\mathfrak{u}_1\cdots\mathfrak{u}_r)\odot(\mathfrak{v}_1\cdots\mathfrak{v}_s):=\mathfrak{u}_1\cdots\mathfrak{u}_r\mathfrak{v}_1\cdots\mathfrak{v}_s,$$

$$\Delta_{\odot}(\mathfrak{u}_{1}\mathfrak{u}_{2}\cdots\mathfrak{u}_{k})=\sum_{\mathfrak{i}=0}^{k}(\mathfrak{u}_{1}\mathfrak{u}_{2}\cdots\mathfrak{u}_{\mathfrak{i}})\otimes(\mathfrak{u}_{\mathfrak{i}+1}\mathfrak{u}_{\mathfrak{i}+2}\cdots\mathfrak{u}_{k})$$

This is an important example of unital infinitesimal bialgebra.

Theorem (Loday, Ronco)

Any connected unital infinitesimal bialgebra B is isomorphic to lnf(Prim(B)).

The isomorphism is constructed using the following linear operator: if \bullet and Δ are the product and the coproduct of the unital infinitesimal bialgebra B, let

$$e := \sum_{n \ge 0} (-1)^n (\mathsf{id}_{\mathsf{B}} - \iota \epsilon)^{*(n)} \in \mathsf{End}(\mathsf{B}),$$

where * is the convolution product constructed from the product \bullet and the coproduct Δ of B. In other words, e(c) = 0 if $c \in \mathbb{K}$ and

$$e|_{\mathsf{B}_+} = \mathsf{id}_{\mathsf{B}} - \bullet \circ \Delta_+ + \bullet^2 \circ \Delta_+^2 - \bullet^3 \circ \Delta_+^3 + \cdots$$

From here, an isomorphism between B_+ and $Inf(Prim(B))_+$ is given by

$$\mathbf{x}\mapsto \sum_{\mathbf{n}\geq 1}e^{\otimes\mathbf{n}}\Delta^{(\mathbf{n}-1)}_+(\mathbf{x}).$$

The next proposition allows to construct a basis for the primitive space of a unital infinitesimal bialgebra (B, \bullet, Δ) from special elements of the monoid (B, \bullet) . If (M, \bullet) is a monoid, with unit element 1_M , we say that $x \in M$ is \bullet -indecomposable if $x \neq 1_M$ and $x = y \bullet z$ implies $y = 1_M$ or $z = 1_M$; otherwise, we say that x is \bullet -decomposable. We let $Dec(M, \bullet)$ and $Ind(M, \bullet)$ the set of decomposables and indecomposables elements of the monoid (M, \bullet) , respectively.

From here, an isomorphism between B_+ and $Inf(Prim(B))_+$ is given by

$$\mathbf{x}\mapsto \sum_{\mathbf{n}\geq 1}e^{\otimes \mathbf{n}}\Delta^{(\mathbf{n}-1)}_+(\mathbf{x}).$$

The next proposition allows to construct a basis for the primitive space of a unital infinitesimal bialgebra (B, \bullet, Δ) from special elements of the monoid (B, \bullet) . If (M, \bullet) is a monoid, with unit element 1_M , we say that $x \in M$ is \bullet -indecomposable if $x \neq 1_M$ and $x = y \bullet z$ implies $y = 1_M$ or $z = 1_M$; otherwise, we say that x is \bullet -decomposable. We let $Dec(M, \bullet)$ and $Ind(M, \bullet)$ the set of decomposables and indecomposables elements of the monoid (M, \bullet) , respectively.

Proposition

The operator e satisfies the following properties:

- Im(e) = Prim(B);
- 2 $Ker(e) = \mathbb{K} Dec(\mathsf{B}, \bullet);$
- **3** e is an idempotent.

Corollary

Let (B, \bullet, Δ) a unital infinitesimal bialgebra. The set

```
\{e(x) : x \in \mathit{Ind}(B, \bullet)\}
```

is a basis of Prim(B).

Let $e_{/}$ (resp. e_{\backslash}) the operator associated to the 2-associative Hopf algebra (\mathfrak{S} Sym, /) (resp. (\mathfrak{S} Sym, \backslash) (see (37)). The sets

 $\{e_{/}(F_{\alpha}) : \alpha \in \mathsf{Ind}(\mathfrak{S},/)\}\ \text{and}\ \{e_{\setminus}(F_{\alpha}) : \alpha \in \mathsf{Ind}(\mathfrak{S},\setminus)\}$

are bases of $Prim(\mathfrak{S}Sym)$.

By definition of $e_{/}$ (resp. e_{\backslash}), the element $e_{/}(F_{\alpha})$, for $\alpha \in Ind(\mathfrak{S}, /)$ (resp. the element $e_{\backslash}(F_{\alpha})$, for $\alpha \in Ind(\mathfrak{S}, \backslash)$), is an alternating sum with possibly many cancellations.

Let $e_{/}$ (resp. e_{\backslash}) the operator associated to the 2-associative Hopf algebra (\mathfrak{S} Sym, /) (resp. (\mathfrak{S} Sym, \backslash) (see (37)). The sets

 $\{e_{/}(F_{\alpha}) : \alpha \in \mathsf{Ind}(\mathfrak{S},/)\}\ \text{and}\ \{e_{\setminus}(F_{\alpha}) : \alpha \in \mathsf{Ind}(\mathfrak{S},\setminus)\}$

are bases of $Prim(\mathfrak{S}Sym)$.

By definition of $e_{/}$ (resp. e_{\backslash}), the element $e_{/}(F_{\alpha})$, for $\alpha \in Ind(\mathfrak{S}, /)$ (resp. the element $e_{\backslash}(F_{\alpha})$, for $\alpha \in Ind(\mathfrak{S}, \backslash)$), is an alternating sum with possibly many cancellations.

$$e := \sum_{n \ge 0} (-1)^n (\mathsf{id}_{\mathsf{B}} - \iota \varepsilon)^{*(n)}$$

$$\begin{split} e_{/}(\mathsf{F}_{3421}) &= \mathsf{F}_{3421} - \mathsf{F}_{1/321} - \mathsf{F}_{12/21} - \mathsf{F}_{231/1} + \mathsf{F}_{1/1/21} \\ &\quad + \mathsf{F}_{1/21/1} + \mathsf{F}_{12/1/1} - \mathsf{F}_{1/1/1/1} \\ &= \mathsf{F}_{3421} - \mathsf{F}_{1432} - \mathsf{F}_{1243} - \mathsf{F}_{2314} + \mathsf{F}_{1243} + \mathsf{F}_{1324} + \mathsf{F}_{1234} - \mathsf{F}_{1234} \\ &= \mathsf{F}_{3421} - \mathsf{F}_{1432} - \mathsf{F}_{2314} + \mathsf{F}_{1324} \end{split}$$

$$\begin{split} e_{\backslash}(\mathsf{F}_{1432}) &= \mathsf{F}_{1432} - \mathsf{F}_{1\backslash 321} - \mathsf{F}_{12\backslash 21} - \mathsf{F}_{132\backslash 1} + \mathsf{F}_{1\backslash 1\backslash 21} \\ &\quad + \mathsf{F}_{1\backslash 21\backslash 1} + \mathsf{F}_{12\backslash 1\backslash 1} + \mathsf{F}_{1\backslash 1\backslash 1\backslash 1} \\ &= \mathsf{F}_{1432} - \mathsf{F}_{4321} - \mathsf{F}_{3421} - \mathsf{F}_{2431} + \mathsf{F}_{4321} + \mathsf{F}_{4321} + \mathsf{F}_{3421} - \mathsf{F}_{4321} \\ &= \mathsf{F}_{1432} - \mathsf{F}_{2431}. \end{split}$$

If $n \in \mathbb{N}$, let $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n \in \mathfrak{S}_n$ and $q = q_1 q_2 \cdots q_r \vdash n$. For $1 \leq k \leq r$, we denotes by α_{q_k} the following subword of α formed by the consecutives letters

$$\alpha_{q_k} := \alpha_{q_1+q_2+\dots+q_{k-1}+1} \alpha_{q_1+q_2+\dots+q_{k-1}+2} \cdots \alpha_{q_1+q_2+\dots+q_{k-1}+q_k}.$$

For example, if $q = q_1q_2q_3 = 313 \vdash 7$ and $\alpha = 2756143 \in \mathfrak{S}_7$, then:

$$\alpha_{q_1} = 275$$
 , $\alpha_{q_2} = 6$, $\alpha_{q_3} = 143$.

Let $\alpha \in \mathfrak{S}_n$ and \bullet an associative and unitary product on \mathfrak{S} . Let $q = q_1 q_2 \cdots q_r \vdash n$ a composition. We say that α is a q-locally free of relative order, or q-locally free (relating to \bullet) if, for every $1 \le k \le r$, we have

1 st $(\alpha_{q_k}) \in Ind(\mathfrak{S}, \bullet);$

2 st
$$(\alpha_{q_k}\alpha_{q_{k+1}}) \neq st(\alpha_{q_k}) \bullet st(\alpha_{q_{k+1}}).$$

We put $LF_q(\mathfrak{S}, \bullet)$ the set of q-locally free permutations, considering the monoid structure (\mathfrak{S}, \bullet) .

Primitive space of \mathfrak{S} Sym, part II

Let consider, for example, the fixed monoid $(\mathfrak{S},/)$ and the permutation $\alpha=45321.$ Then, α is 1211-locally free, as:

$$\begin{array}{l} 231 = \mathsf{st}(453) \neq \mathsf{st}(4)/\mathsf{st}(53) = 1/21 = 132,\\ 321 = \mathsf{st}(532) \neq \mathsf{st}(53)/\mathsf{st}(2) = 21/1 = 213,\\ 21 = \mathsf{st}(21) \neq \mathsf{st}(2)/\mathsf{st}(1) = 1/1 = 12, \end{array}$$

and each $\mathsf{st}(\alpha_k)\in\mathsf{Ind}(\mathfrak{S},/).$ The permutation α is also 32-locally free:

$$45321 \neq \mathsf{st}(453)/\mathsf{st}(21) = 231/21 = 23154,$$

with each st(α_k) \in Ind(\mathfrak{S} , /). However, α is not 1112-locally free: if $q = q_1q_2q_3q_4 = 1112$, then

$$\mathsf{st}(\alpha_{q_1}\alpha_{q_2})=\mathsf{st}(45)=12=\mathsf{st}(4)/\mathsf{st}(5).$$

The permutation α is neither 212-locally free: if $q = q_1q_2q_3 = 212$, then $st(\alpha_{q_1}) = st(45) = 12$ is not indecomposable.

Theorem (C. Benedetti, D. Artenstein, A. Gonzalez, R. Gonzalez, J. Gutierrez, M. Ronco, D. Tamayo, Y. Vargas)

Let $(\mathfrak{S}Sym, \bullet)$ a 2-associative Hopf algebra structure on $\mathfrak{S}Sym$. Let e_{\bullet} the idempotent associated to $(\mathfrak{S}Sym, \bullet)$. If $\alpha \in Ind(\mathfrak{S}_n, \bullet)$, the primitive element $e_{\bullet}(F_{\alpha})$ is given by the following cancellation-free and grouping-free formula:

$$e_{\bullet}(\mathsf{F}_{\alpha}) = \sum_{\substack{q=q_{1}\cdots q_{r}\vdash n\\ \alpha\in \mathsf{LF}_{q}(\mathfrak{S}, \bullet)}} (-1)^{r} \mathsf{F}_{st(\alpha_{q_{1}})\bullet\cdots\bullet st(\alpha_{q_{r}})}.$$

Relation between $e_{ackslash}(\mathsf{F}_{lpha})$ and M_{lpha}

Every M_{α} is a primitive element if $\alpha \in Ind(\mathfrak{S}, \backslash)$. Thus, $e_{\backslash}(M_{\alpha}) = M_{\alpha}$ and

$$M_{\alpha} = e_{\backslash} (\mathscr{M}_{\alpha})$$

= $\sum_{\alpha \leq_{\ell} \beta} \mu(\alpha, \beta) e_{\backslash}(F_{\beta}).$

As $e_{\backslash}(F_{\beta}) = 0$ if β is \backslash -decomposable, the sum above is given by \backslash -irreducibles permutations β greater than α . This condition induces a subposet of the left weak Bruhat order. By Mobius inversion, we obtain the following result.

Relation between $e_{ackslash}(\mathsf{F}_{lpha})$ and M_{lpha}

Every M_{α} is a primitive element if $\alpha \in Ind(\mathfrak{S}, \backslash)$. Thus, $e_{\backslash}(M_{\alpha}) = M_{\alpha}$ and

$$\begin{aligned} \mathsf{M}_{\alpha} &= e_{\backslash} \left(\mathscr{M}_{\alpha} \right) \\ &= \sum_{\alpha \leq \ell \beta} \mu(\alpha, \beta) \, e_{\backslash}(\mathsf{F}_{\beta}). \end{aligned}$$

As $e_{\backslash}(F_{\beta})=0$ if β is \backslash -decomposable, the sum above is given by \backslash -irreducibles permutations β greater than α . This condition induces a subposet of the left weak Bruhat order. By Mobius inversion, we obtain the following result.

Relation between $e_{\backslash}(\mathsf{F}_{\alpha})$ and M_{α}

Proposition

Let $\alpha \in Ind(\mathfrak{S}, \backslash)$. The primitive elements $e_{\backslash}(F_{\alpha})$ and M_{α} are related by

$$e_{\backslash}(\mathsf{F}_{\alpha}) = \sum_{\substack{\alpha \leq \ell \ \beta \\ \beta \in \mathit{Ind}(\mathfrak{S}, \backslash)}} M_{\beta}.$$

In particular, if α is a maximum \setminus -indecomposable element for the left weak Bruhat order, then $e_{\setminus}(F_{\alpha}) = M_{\alpha}$ and

$$\mu(\alpha,\beta) = \begin{cases} (-1)^r & \text{if } \alpha \in LF_q(\mathfrak{S},\backslash) \text{ and } \beta = st(\alpha_{q_1})\backslash \cdots \backslash st(\alpha_{q_r}), \\ & \text{for some composition } q = q_1q_2\cdots q_r; \\ 0 & \text{else.} \end{cases}$$

Thanks!

