UM-Bridge: Bridging the Gap Between UQ and Model Software

Anne Reinarz, Robert Scheichl, Andrew Davis, Matthew Parno, Vivian Cheng-Seelinger, Linus Seelinger

Institute for Applied Mathematics, Heidelberg University

Gap in current research: Advanced UQ methods not often coupled with advanced models.

Even when conceptually easy, software side is challenging...

This talk:

- HPC scale UQ on tsunami model
- MIT UQ Library (MUQ): Modular, general-purpose UQ framework
- UM-Bridge: Abstract interface between UQ and model codes \rightarrow UQ benchmarks, UQ in the cloud

Gap in current research: Advanced UQ methods not often coupled with advanced models.

Even when conceptually easy, software side is challenging...

This talk:

- HPC scale UQ on tsunami model
- MIT UQ Library (MUQ): Modular, general-purpose UQ framework
- UM-Bridge: Abstract interface between UQ and model codes \rightarrow UQ benchmarks, UQ in the cloud

Anne Reinarz Durham University

Robert Scheichl Heidelberg University

Andrew Davis New York University

Matthew Parno Dartmouth College

Vivian Cheng-Seelinger Independent

Linus Seelinger Heidelberg University

HPC Application: Multilevel MCMC on Tsunami Model

Multilevel MCMC Overview

Telescoping sum of QOI like MLMC:

$$\mathbb{E}_{\nu^{L}}[Q_{L}] = \underbrace{\mathbb{E}_{\nu^{0}}[Q_{0}]}_{\text{Coarse approx.}} + \sum_{l=1}^{L} \underbrace{\left(\mathbb{E}_{\nu^{l}}[Q_{l}] - \mathbb{E}_{\nu^{l-1}}[Q_{l-1}]\right)}_{\text{Corrections}}.$$

How to sample?

High acceptance rates due to samples from coarser levels Coarser models cheap, low variance in finer corrections!

Multilevel MCMC Overview

Telescoping sum of QOI like MLMC:

$$\mathbb{E}_{\nu^{L}}[Q_{L}] = \underbrace{\mathbb{E}_{\nu^{0}}[Q_{0}]}_{\text{Coarse approx.}} + \sum_{l=1}^{L} \underbrace{(\mathbb{E}_{\nu^{l}}[Q_{l}] - \mathbb{E}_{\nu^{l-1}}[Q_{l-1}])}_{\text{Corrections}}.$$

How to sample?

High acceptance rates due to samples from coarser levels Coarser models cheap, low variance in finer corrections!

Model hierarchy

Across levels, we adapt

- mesh size
- bathymetry smoothness (specific to hyperbolic solvers!)

Results

			$\mathbb{V}[Q]$] or	$\mathbb{E}[Q_0]+$		
lvl /	<i>t</i> /[s]	ρ_I	$\mathbb{V}[Q_l -$	$Q_{l-1}]$	$\sum_{k=1}^{\prime}\mathbb{E}$	$\left[Q_k-Q_{k-1}\right]$	
0	7.38	25	1984.09	1337.42	3.61	27.96	
1	97.3	5	1592.17	1523.18	-12.29	23.39	
2	438.1	0	340.56	938.53	-5.46	0.12	

Run on 3456 cores (72 nodes of 48 cores)

Behind the stages: MIT UQ Library (MUQ)

MUQ - MIT Uncertainty Quantification Library

- Modular UQ Library, C++ and Python¹
- Model-agnostic interfaces
- Numerous UQ algorithms readily available
- www.mituq.bitbucket.io

¹Matthew Parno, Andrew Davis, and Linus Seelinger. "MUQ: The MIT Uncertainty Quantification Library". In: *Journal of Open Source Software* 6.68 (2021), p. 3076. DOI: 10.21105/joss.03076. URL: https://doi.org/10.21105/joss.03076.

Models in MUQ

Figure 1: Model graph example for simple Bayesian problem

Well-structured, modular construction of advanced models. Can couple to external software. Easy to switch models / methods! For ML / MI: Define set of models.

- Proposals: MH, pCN, MALA, DILI, ...
- Kernels: MH, MC, ML/MI, ...
- Chains: Sequential, parallel, ...

Figure 2: Modular MCMC architecture

Want a different method? Just switch out one component!

Parallel ML / MI MC / MCMC Processor Layout

Figure 3: Parallel layout (each box is a processor / MPI rank)

Tested on 2048 parallel chains, more is possible

Too complicated? All this happens behind the scenes!

Weak scaling

Figure 4: Weak scalability and parallel efficiency of the Poisson model problem. At 64 cores 10⁴, 10³ and 10² samples are computed on levels 0, 1 and 2 respectively. The number of samples is modifed linearly with the number of processors.

Reality strikes...

UQ and Model in Math

Model in UQ: (Often) Just a function $F : \mathbb{R}^n \to \mathbb{R}^m$ with

- Model evaluation $F(\theta)$,
- Jacobian action $J(\theta)v$,
- Hessian action $H(\theta)v$.
- \rightarrow Simple, model-agnostic interface!

Model **software** and UQ **software**: Not so easy!

Conflicts in buildsystems, dependencies, languages, parallelization; need experts from both sides, ...

Model in UQ: (Often) Just a function $F : \mathbb{R}^n \to \mathbb{R}^m$ with

- Model evaluation $F(\theta)$,
- Jacobian action $J(\theta)v$,
- Hessian action $H(\theta)v$.
- \rightarrow Simple, model-agnostic interface!

Model software and UQ software: Not so easy!

Conflicts in buildsystems, dependencies, languages, parallelization; need experts from both sides, ...

UM-Bridge: Model abstraction in software

UM-Bridge: Model Abstraction in Software

Established approach in large-scale web services

Requires: Minimal extension of software on each side

Achieves:

- Coupling across languages / frameworks
- Separation of concerns between UQ and model experts
- Containers: Portable, reproducible models

UM-Bridge: Bridging Languages and Frameworks

Requires only HTTP and JSON support ightarrow almost every language

Full integration for C++, Python, MUQ

Python client interface

Connect to model

import umbridge

```
model = umbridge.HTTPModel("http://localhost:4242")
```

Display input / output dimensions

```
print(model.get_input_sizes())
print(model.get_output_sizes())
```

Evaluate model

```
print(model([[0.0, 10.0]]))
```

Optionally, pass configuration options

```
print(model([[0.0, 10.0]], {"level": 0}))
```

Define model

```
class TestModel(umbridge.Model):
    def get_input_sizes(self): # Number and dimensions of input vectors
        return [1]
    def get_output_sizes(self): # Number and dimensions of output vectors
        return [1]
    def __call__(self, parameters, config={}):
        output = parameters[0][0] * 2 # Do something with the input
        return [[output]]
```

Serve model via HTTP

```
testmodel = TestModel()
```

```
umbridge.serve_model(testmodel, 4242)
```

UM-Bridge: Containerization - Portable Models

- Run tsunami model as easy as docker run -p 4242:4242 linusseelinger/model-exahype-tsunami
- Evaluate model in python: model = umbridge.HTTPModel('localhost:4242') model([[0.1,0.4]])

Software Defined UQ Benchmarks

- Previous ESI workshop '20: Great interest, but technical side lacking
- Now: Easy to use, software defined, reproducible benchmarks possible

 \rightarrow Proposal: Community defined benchmark suite

Current state

UO Benchmarks

Navigation

Quickstart Guide Analytic-Gaussian-Mixture Benchmark ExaHyPE-Tsunami Benchmark Inferring material properties of a cantilevered beam Analytic-Banana Analytic-Donut Benchmark Analytic-Funnel ExaHyPE-Tsunami Model

Euler-Bernoulli Beam

Ouick search

Lose Documentation? Write the Docs Portland is a 3-day virtual docs event. May 22.24

ExaHyPE-Tsunami Model

Overview

In this benchmark we model the propagation of the 2011 Tohoku tsunami by solving the shallow water equations. For the numerical solution of the PDE, we apply an ADER-DG method implemented in the ExaMvPE framework. The aim is to obtain the parameters describing the initial displacements from the data of two available buows located near the Japanese coast

Authors

Anne Reinarz

Run

docker run -it -p 4243:4243 linusseelinger/model-exahype-tsunami

Properties

dapping	Dimensions	Description
nputSizes	[2]	x and y coordinates of a proposed tsunami origin
utputSizes	[1]	Arrival time and maximum water height at two buoy points

Feature	Supported	
Evaluate	True	
Gradient	False	
ApplyJacobian	False	
ApplyHessian	False	

Config	Type	Default	Description
level	int	0	chooses the model level to run (see below for fur-

- Several models, Bayesian posteriors, analytic densities
- Automated testing and building
- Partially-automated documentation

UQ in the Cloud

Overview: Cloud Infrastructure

Servers for rent, (very) different levels of abstraction possible

Kubernetes: "Container orchestration" - fully reproducible HPC setups

Pre-built reference setup, simply plug in your own model container No modification to model needed!

Pre-built reference setup

Shared filesystem between nodes via NFS

Support for OpenMPI, Intel MPI, possibly MPICH in the future

Minor restrictions on model container

Conclusions

Conclusions / Outlook

- $\bullet~$ UM-Bridge: UQ / model abstraction in software
- Can build UQ benchmark suite now
 - $\rightarrow \text{Community project!}$

Resources / Contact:

- MUQ Website: www.mituq.bitbucket.io
- UM-Bridge: www.github.com/UM-Bridge/umbridge
- Initial benchmarks: www.github.com/UM-Bridge/benchmarks

Publications:

- MUQ: The MIT Uncertainty Quantification Library
 M. Parno, A. Davis, L. Seelinger, Journal of Open Source Software, 2021
- High Performance Uncertainty Quantification with Parallelized Multilevel Markov Chain Monte Carlo

L. Seelinger, A. Reinarz, L. Rannabauer, M. Bader, P. Bastian, R. Scheichl, The International Conference for High Performance Computing, Networking, Storage, and Analysis 2021