Quat. Aut. Reps.	Results	Trace Formulas	Discat- ∞ TF	Spectral Side	Geom. Side
000	0000	000	0000	000	000000 0

Counting Level-1, Quaternionic Automorphic Representations on G_2

Rahul Dalal

Johns Hopkins

April 15, 2022

Quat.	Aut.	Reps.	
000			

Results 0000 Frace Formula

Disc.-at-∞ T 0000 Spectral Side

Geom. Side

Note on technical details

- Anything in gray is a technical detail not relevant to this particular topic
- Anything in orange is background material I will only explain intuitively and imprecisely due to time constraints

- Background: Quaternionic Automorphic Representations on G_2
- Background: Trace Formulas
- Background: Simple Trace Formula
- The computation
 - The spectral side
 - Stabilization, the geometric side, and some simplifying tricks

Details in [Dal21], Counting Discrete, Level-1, Quaternionic Automorphic Representations on G_2 , ArXiv preprint

Quat. Aut. Reps. •00 Results 0000 Trace Formula

Disc.-at-∞ T 0000 Spectral Side

Geom. Side

Quaternionic G₂ reps

Question: Can we find nice examples of automorphic representations π that don't correspond to forms which were discovered classically?

- Exceptional groups are good place to look
- Want to find nice class of π_∞ —analogues to modular forms, not Maass forms

Simplest new example: $G = G_2$, π_∞ a quaternionic discrete series

- Quaternionic: puts a nice differential equation condition on functions, second-best to holomorphic↔simplest possible minimal K-types
- Discrete series: Relevance here: studyable with trace formula
- One quaternionic discrete series π_k for each weight $k \ge 2$.

Applications

Where do these come up?

- Fourier coefficients encode information about cubic rings [GGS02]
- Partition functions in certain quantum models of black holes [FGKP18, Chap. 15]
- More in the future?

Quat. Aut. Reps. 00●	Results 0000	Trace Formulas 000	Discat-∞ TF 0000	Spectral Side	Geom. Side 000000 0		
Main Question							

Question: How do we describe the quaternionic- G_2 automorphic representations? Example: Can we count them with some local conditions?

We can do both without too much trouble at level-1...

- level-1: π[∞] has a (necessarily 1d) subspace fixed by hyperspecial K[∞].
- ... in terms of compact form G_2^c
 - \cong G_2 at all finite places, compact at ∞ . In particular, $G_2^c(\mathbb{Z})$ defined.
 - V_λ: finite-dimensional rep of G^c₂(ℝ) with highest weight λ, matrix coefficients in L²(G^c₂(ℝ)).

Notation: β is the highest root of G_2

Theorem

Let k > 2. The number of discrete (equiv. cuspidal) level-1, quaternionic automorphic representations on G_2 of weight k is

$$\dim \left(V_{(k-2)\beta}^{G_{2}^{c}(\mathbb{Z})} \right) + \\ \begin{cases} \lfloor \frac{k}{4} \rfloor \left(\lfloor \frac{k}{12} \rfloor - 1 \right) & k \equiv 2 \pmod{12} \\ \lfloor \frac{k}{4} \rfloor \lfloor \frac{k}{12} \rfloor & k \equiv 0, 4, 6, 8, 10 \pmod{12} \\ - \left(\lfloor \frac{3k-1}{12} \rfloor - 1 \right) \left(\lfloor \frac{k+1}{12} \rfloor - 1 \right) & k \equiv 1 \pmod{12} \\ - \left(\lfloor \frac{3k-1}{12} \rfloor - 1 \right) \lfloor \frac{k+1}{12} \rfloor & k \equiv 5, 9 \pmod{12} \\ - \lfloor \frac{3k-1}{12} \rfloor \lfloor \frac{k+1}{12} \rfloor & k \equiv 3, 7, 11 \pmod{12} \end{cases}$$

Quat. Aut. Reps.

Geom. Side

A Jacquet-Langlands-style result

Theorem

Let k > 2. If k is even:

the discrete (equiv. cuspidal) level-1, weight k quaternionic representations of G₂ are the exactly the unramified representations of G₂(A) with infinite component π_k and Satake parameters coming from weight (k − 2)β algebraic modular forms on G₂^c in addition to those coming from pairs of classical cupsidal newforms in S_{3k-2}(1) × S_{k-2}(1).

If k is odd:

 such representations of G₂ are the exactly those coming from weight (k − 2)β algebraic modular forms on G₂^c except for those also coming from pairs of classical cupsidal newforms in S_{3k-3}(1) × S_{k-1}(1).

Table: Counts of discrete, quaternionic automorphic representations of level 1 on G_2 .

k	$ \mathcal{Q}_k(1) $								
3	0	13	5	23	76	33	478	43	1792
4	0	14	13	24	126	34	610	44	2112
5	0	15	8	25	121	35	637	45	2250
6	1	16	23	26	175	36	807	46	2619
7	0	17	17	27	173	37	849	47	2790
8	2	18	37	28	248	38	1037	48	3233
9	1	19	30	29	250	39	1097	49	3447
10	4	20	56	30	341	40	1332	50	3938
11	1	21	50	31	349	41	1412	51	4201
12	9	22	83	32	460	42	1686	52	4780

Quat. Aut. Reps.	Results	Trace Formulas	Discat-∞ TF	Spectral Side	Geom. Side
000	0000	•00	0000	000	000000

Method

First trick to try for studying subreps: look at traces

• Assume for a moment

$$L^2(G(F)\backslash G(\mathbb{A}_F),\chi) = \bigoplus_{\pi \text{ d.a.}} \pi$$

• Then if R is an operator on L^2

$$\operatorname{tr}_{L^2} R = \sum_{\pi \text{ d.a.}} \operatorname{tr}_{\pi} R$$

• Source of *R*? Convolution: f cmpct. support, smooth/ $G(\mathbb{A})$:

$$f(v) := R_f(v) = \int_{G(\mathbb{A})} f(g)g \cdot v \, dg$$

Quat. Aut. Reps.

Results 0000 Trace Formulas

Disc.-at-∞ T 0000 Spectral Side

Geom. Side

Test Functions Example

Want: f such that

 $tr_{L^2}(f) = \#\{G_2-quat, lv. 1, wt. k\}$

Idea: $f = \prod_{v} f_{v}$ so $\operatorname{tr}_{\pi}(f) = \prod_{v} \operatorname{tr}_{\pi_{v}}(f_{v})$ • Find f_{∞} so that

 ${\sf tr}_{\pi_\infty}({\it f}_\infty)={f 1}_{\pi_\infty}$ is the weight-k, quaternionic discrete series

• If K^∞ is a maximal compact in $G_2(\mathbb{A}^\infty)$ note that

 ${\sf tr}_{\pi^\infty}(\mathbf{1}_{{\cal K}^\infty})={\sf vol}({\cal K}^\infty)\mathbf{1}_{\pi^\infty}$ is unramified

Therefore, plug in $f = f_{\infty} \mathbf{1}_{K^{\infty}}$

Trace Formula

How do we compute $tr_{L^2}(f)$?

• Tool: Arthur-Selberg trace formula

$$\sum_{\pi \in \mathcal{AR}(G)} m_{\pi} \operatorname{tr}_{\pi}(f) \approx \sum_{\gamma \in [G(F)]} \operatorname{Vol}(G_{\gamma}(F) \setminus G_{\gamma}(\mathbb{A})) \int_{G_{\gamma}(\mathbb{A}) \setminus G(\mathbb{A})} f(g^{-1} \gamma g) \, dg$$

- Interested in spectral side $I_{\rm spec}$: averages over aut. reps.
- Try to compute geometric side $I_{
 m geom}$
 - rational conjugacy classes, volumes of adelic quotients, orbital integrals

Discrete Series

Infinite component discrete series \implies make the \approx explicit:

- Discrete series: appear discretely in $L^2(G(F_{\infty}))$.
- Classified into *L*-packets Π_{λ}
 - L-packets parameterized by dominant weights λ (Π_λ →inf. char. λ + ρ)
 - Regular when λ is.
 - Π_λ parameterized by K-dominant Weyl-translates of λ + ρ: Harish-Chandra parameter.

• Quaternionic discrete series on G_2

- $\pi_k \in \Pi_{(k-2)\beta}$
- Harish-Chandra parameter in chamber adjacent to long compact root
- Equiv: minimal K-type trivial on one SU_2 -factor

"Simple" trace formula

Theorem ([Art89])

Let G/F be a cuspidal reductive group and let Π_{λ} be a regular discrete series L-packet. Let \mathcal{A}_{λ} be the set of automorphic representations π of G with $\pi_{\infty} \in \Pi_{\lambda}$. Then for any compactly supported, smooth test function f on $G(\mathbb{A}^{\infty})$

$$\sum_{\pi \in \mathcal{A}_{\lambda}} \operatorname{tr}_{\pi^{\infty}} f = \sum_{M \text{ std. Levi}} (-1)^{[G:M]} \frac{|\Omega_{M}|}{|\Omega_{G}|} \sum_{\gamma \in [M(F)]_{ell}} a_{\gamma} \Phi_{M}^{G}(\gamma) O_{\gamma}^{M,\infty}(f_{M})$$

- "Conjugacy classes" counted with principle of inclusion-exclusion
- "Volume term"
- "Orbital integral" factored into infinite and finite places

Quat. Aut. Reps.

Results 0000 Trace Formula 000 Disc.-at-∞ TF 00€0 Spectral Side

Geom. Side

Test Function At Infinity

- Discrete Series π come with pseudocoefficients φ_{π} . For ρ a standard module, $\operatorname{tr}_{\rho}(\varphi_{\pi}) = \mathbf{1}_{\pi=\rho}$
- η_{λ} Euler-Poincaré function

$$\eta_{\lambda} = \frac{1}{|\Pi_{\text{disc}}(\lambda)|} \sum_{\pi \in \Pi_{\lambda}} \varphi_{\pi}$$

- When λ regular, for ρ any unitary representation: $\operatorname{tr}_{\rho}(\eta_{\lambda}) = |\Pi_{\operatorname{disc}}(\lambda)|^{-1} \mathbf{1}_{\rho \in \Pi_{\lambda}}$
- Simple trace formula: use Euler-Poincaré's as infinite component of test function: η_λf[∞], the above computes spectral side, geometric side harder

Quat. Aut. Reps. 000

Results

Trace Formulas

Disc.-at-∞ TF 000● Spectral Side

Geom. Side

This doesn't quite work for us

Problem 1: counts all reps with $\pi_{\infty} \in \Pi_{(k-2)\beta}$ instead of all with $\pi_{\infty} = \pi_k$

- Solution Idea: Use pseudocoefficient at ∞ instead of EP-function.
- Geometric side doesn't simplify nicely then!
- Stabilization resolves this

Problem 2: $(k-2)\beta$ not regular!

- Spectral side may not simplify nicely w/ f_∞ = η_{(k-2)β} or φ_{πk}.
- Solution: Facts from real representation theory \implies not an issue for specifically φ_{π_k} , i.e., for quaternionic representations

Problem 3: Terms on geometric side explicit but very hard

• Solution: Chenevier/Renard have tricks to simplify—level 1

What we want:

Lemma (Spectral Goal)

Let f^{∞} be a compactly supported, smooth test function $G_2(\mathbb{A}^{\infty})$. Then, for any weight k > 2, the spectral side of Arthur's invariant trace formula simplifies:

$$I_{ ext{spec}}(arphi_{\pi_k}f^\infty) = \sum_{\pi \in \mathcal{AR}_{ ext{disc}}(\mathcal{G}_2)} \mathbf{1}_{\pi_\infty = \pi_k} \operatorname{tr}_{\pi^\infty}(f^\infty).$$

Quat. Aut. Reps. 000

Results 0000 race Formulas

Disc.-at-∞ TF 0000 Spectral Side $0 \bullet 0$

Geom. Side

Step 1: Trace Formula Work

Since φ_{π_k} is cuspidal, we still have

$$J_{ ext{spec}}(arphi_{\pi_k} f^\infty) = \sum_{\pi \in \mathcal{AR}_{ ext{disc}}(\mathcal{G}_2)} \operatorname{tr}_{\pi_\infty}(arphi_{\pi_k}) \operatorname{tr}_{\pi^\infty}(f^\infty)$$

Problem reduces to

Lemma (Spectral Goal')

Let σ be an arbitrary unitary representation of $G_2(\mathbb{R})$ and weight k > 2. Then

$$\mathsf{tr}_{\sigma}(\varphi_{\pi_k}) = \mathbf{1}_{\sigma=\pi_k}.$$

Fact: Suffices to check on cohomological representations of weight $(k-2)\beta$ —classified by Vogan-Zuckerman.

Step 2: Quaternionic case-specific computations

 $k>2 \implies$ only one non-discrete series cohomological rep of weight $(k-2)\beta$: $\pi_{\rm bad}$

- The A-packet of π_{bad} is an Adams-Johnson Packet: $\{\pi_{bad}, \pi_k\}$ (computation in [Mun20]).
- Lemma in Adams-Johnson paper $\implies \pi_k$ appears in Grothendieck Group expansion of exactly one member of the A-packet

Conclusion: π_k doesn't appear in Grothendieck Group expansion of $\pi_{\text{bad}} \implies \text{tr}_{\pi_{\text{bad}}}(\varphi_{\pi_k}) = 0.$

Geometric Side: Endoscopy and Stabilization

Goal:

• Invariant terms not good enough—need stably invariant instead

How?

- G has elliptic endoscopic groups $H \in \mathcal{E}_{ell}(G)$ if G^{der} simply connected
 - (H, s, η) : $\widehat{H} = Z_{\widehat{G}}(s), \ \eta : {}^{L}\!H \hookrightarrow {}^{L}\!G$
- f on G has a transfer f^H on H
 - κ -orbital integral identity locally: $O_{\gamma_G}^{\kappa_H}(f) = SO_{\gamma_H}(f^H)$
- For S_{*} stably-invariant:

$$I^{G}_{\star}(f) = \sum_{H \in \mathcal{E}_{\mathrm{ell}}(G)} \iota(G, H) S^{H}_{\star}(f^{H})$$

How to Use

How to compute I_{geom} ?

- $I_{\text{geom}}(f_{\infty}f^{\infty})$ simplifies if f_{∞} linear combination of η_{λ} 's.
- Try: write $I_{
 m geom}(arphi_{\pi_0} f^\infty)$ in terms of $I_{
 m geom}(\eta_\lambda f^\infty)$'s

Lemma

If $\pi_0 \in \Pi_{\text{disc}}(\lambda)$, φ_{π_0} has the same stable orbital integrals as η_{λ} . Furthermore, all endoscopic transfers $(\varphi_{\pi_0})^H$'s can be taken to be linear combinations of η_{λ} 's.

• Therefore stabilization will help!

Results 2000 Trace Formula 000 Disc.-at-∞ T 0000 Spectral Side

Geom. Side

Application to G_2

Recall our test function is $f = \varphi_{\pi_{\infty}} \mathbf{1}_{K^{\infty}}$.

- Compute: For this test function, all endoscopic terms vanish except $H = SL_2 \times SL_2/\pm 1$.
- Compute: $I^H(f^H) = S^H(f^H)$ —uses finite component $\mathbf{1}_{K^{\infty}}!$

Trick: G_2^c the compact form of G_2 . Note:

$$(\eta_{\lambda}^{\mathsf{G}_2^c})^{\mathsf{G}_2} = \eta_{\lambda}^{\mathsf{G}_2},$$

so can compare corresponding endoscopic expansions:

$$I^{G_{2}}(\varphi_{\pi_{k}}\mathbf{1}_{K^{\infty}}) = I^{G_{2}^{c}}(\eta^{G_{2}^{c}}_{(k-2)\beta}\mathbf{1}_{K^{\infty}_{G_{2}^{c}}}) - \frac{1}{2}I^{H}((\eta^{G_{2}^{c}}_{(k-2)\beta})^{H}\mathbf{1}_{K^{\infty}_{H}}) - \frac{1}{2}I^{H}((\varphi_{\pi_{k}})^{H}\mathbf{1}_{K^{\infty}_{H}})$$

The G_2^c -term

How do we compute $I^{G_2^c}(\eta^{G_2^c}_{(k-2)\beta}\mathbf{1}_{K^{\infty}_{G_2^c}})$?

- Spectrally: this counts algebraic modular forms on G₂^c of weight (k - 2)β and level 1.
- $V_{(k-2)\beta}$: finite dimenisonal rep of G_2^c with that weight
- Can show: this count is

$$\mathsf{dim}\left(V_{(k-2)\beta}^{\mathsf{G}_2^c(\mathbb{Z})}\right)$$

• A computer can compute—table in appendices to [CR15]

Quat. Aut. Reps.

esults 000 race Formulas 00 Disc.-at-∞ T 0000 Spectral Side

Geom. Side 0000●0

The *H*-terms: Computing transfers

How do we compute the two I^H terms? Step 1: compute transfers.

• If ϵ_1, ϵ_2 the fundamental weights of the SL_2 factors in $SL_2 \times SL_2/\pm 1$:

$$(\varphi_{\pi_k})^H = -\eta^H_{3(k-1)\epsilon_1 + (k-1)\epsilon_2} + \eta^H_{(3k-2)\epsilon_1 + (k-2)\epsilon_2} - \eta^H_{2(k-1)\epsilon_2}$$
$$(\eta^{G_2^c}_{(k-2)\beta})^H = \eta^H_{3(k-1)\epsilon_1 + (k-1)\epsilon_2} - \eta^H_{(3k-2)\epsilon_1 + (k-2)\epsilon_2} - \eta^H_{2(k-1)\epsilon_2}$$

- Hardest part is the \pm signs, exact formula depends on a lot of choices of positive Weyl chambers, etc.

The H-terms: Modular form interpretation

How do we compute terms of the form $I^{H}(\eta_{\lambda} \mathbf{1}_{K_{H}^{\infty}})$?

- Spectrally: Counting level-1 discrete automorphic representations of a given weight on *H*
- Idea: Up to center details, $H \approx GL_2 \times GL_2$ so term \approx counts of pairs of classical modular forms.

Lemma

(vague) The idea works exactly at level 1.

• Proven through various techniques Chenevier and Taïbi developed to do computations on level-1 representations for classical groups.

Quat. Aut. Reps.	Results	Trace Formulas	Discat-∞ TF	Spectral Side	Geom. Side
000	0000	000	0000	000	•

Quat. Aut. Reps. 000

Results 0000 Frace Formulas

Disc.-at-∞ T 0000 Spectral Side

Geom. Side

Papers Mentioned

James Arthur, The L²-Lefschetz numbers of Hecke operators, Invent. Math. **97** (1989), no. 2, 257–290. MR 1001841

Gaëtan Chenevier and David Renard, *Level one algebraic cusp forms of classical groups of small rank*, Mem. Amer. Math. Soc. **237** (2015), no. 1121, v+122. MR 3399888

Rahul Dalal, Counting discrete, level-1, quaternionic automorphic representations on g2, 2021.

Philipp Fleig, Henrik P. A. Gustafsson, Axel Kleinschmidt, and Daniel Persson, *Eisenstein series and automorphic representations*, Cambridge Studies in Advanced Mathematics, vol. 176, Cambridge University Press, Cambridge, 2018, With applications in string theory. MR 3793195

-

Wee Teck Gan, Benedict Gross, and Gordan Savin, *Fourier coefficients of modular forms on G*₂, Duke Math. J. **115** (2002), no. 1, 105–169. MR 1932327

Sam Mundy, Multiplicity of eisenstein series in cohomology and applications to gsp4 and g2, 2020.

Contact info: dalal@jhu.edu