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Note on technical details

• Anything in gray is a technical detail not relevant to this
particular topic

• Anything in orange is background material I will only explain
intuitively and imprecisely due to time constraints
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Outline

• Background: Quaternionic Automorphic Representations on
G2

• Background: Trace Formulas

• Background: Simple Trace Formula

• The computation
• The spectral side
• Stabilization, the geometric side, and some simplifying tricks

Details in [Dal21], Counting Discrete, Level-1, Quaternionic
Automorphic Representations on G2, ArXiv preprint
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Quaternionic G2 reps

Question: Can we find nice examples of automorphic
representations π that don’t correspond to forms which were
discovered classically?

• Exceptional groups are good place to look

• Want to find nice class of π∞—analogues to modular forms,
not Maass forms

Simplest new example: G = G2, π∞ a quaternionic discrete series

• Quaternionic: puts a nice differential equation condition on
functions, second-best to holomorphic↔simplest possible
minimal K -types

• Discrete series: Relevance here: studyable with trace formula

• One quaternionic discrete series πk for each weight k ≥ 2.
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Applications

Where do these come up?

• Fourier coefficients encode information about cubic rings
[GGS02]

• Partition functions in certain quantum models of black holes
[FGKP18, Chap. 15]

• More in the future?



Quat. Aut. Reps. Results Trace Formulas Disc.-at-∞ TF Spectral Side Geom. Side

Main Question

Question: How do we describe the quaternionic-G2 automorphic
representations?
Example: Can we count them with some local conditions?



Quat. Aut. Reps. Results Trace Formulas Disc.-at-∞ TF Spectral Side Geom. Side

Answers

We can do both without too much trouble at level-1...

• level-1: π∞ has a (necessarily 1d) subspace fixed by
hyperspecial K∞.

...in terms of compact form G c
2

• ∼= G2 at all finite places, compact at ∞. In particular, G c
2 (Z)

defined.

• Vλ: finite-dimensional rep of G c
2 (R) with highest weight λ,

matrix coefficients in L2(G c
2 (R)).

Notation: β is the highest root of G2
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Formula

Theorem
Let k > 2. The number of discrete (equiv. cuspidal) level-1,
quaternionic automorphic representations on G2 of weight k is

dim
(
V(k−2)β

G c
2 (Z)
)

+

bk4 c
(
b k

12c − 1
)

k ≡ 2 (mod 12)

bk4 cb
k
12c k ≡ 0, 4, 6, 8, 10 (mod 12)

−
(
b3k−1

12 c − 1
) (
bk+1

12 c − 1
)

k ≡ 1 (mod 12)

−
(
b3k−1

12 c − 1
)
bk+1

12 c k ≡ 5, 9 (mod 12)

−b3k−1
12 cb

k+1
12 c k ≡ 3, 7, 11 (mod 12)
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A Jacquet-Langlands-style result

Theorem
Let k > 2. If k is even:

• the discrete (equiv. cuspidal) level-1, weight k quaternionic
representations of G2 are the exactly the unramified
representations of G2(A) with infinite component πk and
Satake parameters coming from weight (k − 2)β algebraic
modular forms on G c

2 in addition to those coming from pairs
of classical cupsidal newforms in S3k−2(1)× Sk−2(1).

If k is odd:

• such representations of G2 are the exactly those coming from
weight (k − 2)β algebraic modular forms on G c

2 except for
those also coming from pairs of classical cupsidal newforms in
S3k−3(1)× Sk−1(1).
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Table

Table: Counts of discrete, quaternionic automorphic representations of
level 1 on G2.

k |Qk(1)| k |Qk(1)| k |Qk(1)| k |Qk(1)| k |Qk(1)|

3 0 13 5 23 76 33 478 43 1792
4 0 14 13 24 126 34 610 44 2112
5 0 15 8 25 121 35 637 45 2250
6 1 16 23 26 175 36 807 46 2619
7 0 17 17 27 173 37 849 47 2790
8 2 18 37 28 248 38 1037 48 3233
9 1 19 30 29 250 39 1097 49 3447

10 4 20 56 30 341 40 1332 50 3938
11 1 21 50 31 349 41 1412 51 4201
12 9 22 83 32 460 42 1686 52 4780

.
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Method
First trick to try for studying subreps: look at traces

• Assume for a moment

L2(G (F )\G (AF ), χ) =
⊕
π d.a.

π

• Then if R is an operator on L2

trL2 R =
∑
π d.a.

trπ R

• Source of R? Convolution: f cmpct. support, smooth/G (A):

f (v) := Rf (v) =

∫
G(A)

f (g)g · v dg
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Test Functions Example

Want: f such that

trL2(f ) = #{G2-quat, lv. 1, wt. k}

Idea: f =
∏

v fv so trπ(f ) =
∏

v trπv (fv )

• Find f∞ so that

trπ∞(f∞) = 1π∞ is the weight-k, quaternionic discrete series

• If K∞ is a maximal compact in G2(A∞) note that

trπ∞(1K∞) = vol(K∞)1π∞ is unramified

Therefore, plug in f = f∞1K∞
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Trace Formula

How do we compute trL2(f )?

• Tool: Arthur-Selberg trace formula∑
π∈AR(G)

mπ trπ(f ) ≈

∑
γ∈[G(F )]

Vol(Gγ(F )\Gγ(A))

∫
Gγ(A)\G(A)

f (g−1γg) dg

• Interested in spectral side Ispec: averages over aut. reps.

• Try to compute geometric side Igeom
• rational conjugacy classes, volumes of adelic quotients, orbital

integrals
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Discrete Series

Infinite component discrete series =⇒ make the ≈ explicit:

• Discrete series: appear discretely in L2(G (F∞)).

• Classified into L-packets Πλ

• L-packets parameterized by dominant weights λ (Πλ 7→inf.
char. λ+ ρ)

• Regular when λ is.
• Πλ parameterized by K -dominant Weyl-translates of λ+ ρ:

Harish-Chandra parameter.

• Quaternionic discrete series on G2

• πk ∈ Π(k−2)β

• Harish-Chandra parameter in chamber adjacent to long
compact root

• Equiv: minimal K -type trivial on one SU2-factor
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“Simple” trace formula

Theorem ([Art89])

Let G/F be a cuspidal reductive group and let Πλ be a regular
discrete series L-packet. Let Aλ be the set of automorphic
representations π of G with π∞ ∈ Πλ. Then for any compactly
supported, smooth test function f on G (A∞)∑
π∈Aλ

trπ∞ f =
∑

M std. Levi

(−1)[G :M] |ΩM |
|ΩG |

∑
γ∈[M(F )]ell

aγΦG
M(γ)OM,∞

γ (fM)

• “Conjugacy classes” counted with principle of
inclusion-exclusion

• “Volume term”

• “Orbital integral” factored into infinite and finite places
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Test Function At Infinity

• Discrete Series π come with pseudocoefficients ϕπ. For ρ a
standard module, trρ(ϕπ) = 1π=ρ

• ηλ Euler-Poincaré function

ηλ =
1

|Πdisc(λ)|
∑
π∈Πλ

ϕπ

• When λ regular, for ρ any unitary representation:
trρ(ηλ) = |Πdisc(λ)|−11ρ∈Πλ

• Simple trace formula: use Euler-Poincaré’s as infinite
component of test function: ηλf

∞, the above computes
spectral side, geometric side harder
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This doesn’t quite work for us

Problem 1: counts all reps with π∞ ∈ Π(k−2)β instead of all with
π∞ = πk

• Solution Idea: Use pseudocoefficient at ∞ instead of
EP-function.

• Geometric side doesn’t simplify nicely then!

• Stabilization resolves this

Problem 2: (k − 2)β not regular!

• Spectral side may not simplify nicely w/ f∞ = η(k−2)β or ϕπk .

• Solution: Facts from real representation theory =⇒ not an
issue for specifically ϕπk , i.e., for quaternionic representations

Problem 3: Terms on geometric side explicit but very hard

• Solution: Chenevier/Renard have tricks to simplify—level 1
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Goal

What we want:

Lemma (Spectral Goal)

Let f∞ be a compactly supported, smooth test function G2(A∞).
Then, for any weight k > 2, the spectral side of Arthur’s invariant
trace formula simplifies:

Ispec(ϕπk f
∞) =

∑
π∈ARdisc(G2)

1π∞=πk trπ∞(f∞).
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Step 1: Trace Formula Work

Since ϕπk is cuspidal, we still have

Ispec(ϕπk f
∞) =

∑
π∈ARdisc(G2)

trπ∞(ϕπk ) trπ∞(f∞)

Problem reduces to

Lemma (Spectral Goal’)

Let σ be an arbitrary unitary representation of G2(R) and weight
k > 2. Then

trσ(ϕπk ) = 1σ=πk .

Fact: Suffices to check on cohomological representations of weight
(k − 2)β—classified by Vogan-Zuckerman.
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Step 2: Quaternionic case-specific computations

k > 2 =⇒ only one non-discrete series cohomological rep of
weight (k − 2)β: πbad

• The A-packet of πbad is an Adams-Johnson Packet:
{πbad, πk} (computation in [Mun20]).

• Lemma in Adams-Johnson paper =⇒ πk appears in
Grothendieck Group expansion of exactly one member of the
A-packet

Conclusion: πk doesn’t appear in Grothendieck Group expansion of
πbad =⇒ trπbad

(ϕπk ) = 0.
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Geometric Side: Endoscopy and Stabilization

Goal:

• Invariant terms not good enough—need stably invariant
instead

How?

• G has elliptic endoscopic groups H ∈ Eell(G ) if Gder simply
connected

• (H, s, η): Ĥ = ZĜ (s), η : LH ↪→ LG

• f on G has a transfer f H on H
• κ-orbital integral identity locally: OκH

γG
(f ) = SOγH

(f H)

• For S? stably-invariant:

IG? (f ) =
∑

H∈Eell(G)

ι(G ,H)SH
? (f H)
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How to Use

How to compute Igeom?

• Igeom(f∞f∞) simplifies if f∞ linear combination of ηλ’s.

• Try: write Igeom(ϕπ0f
∞) in terms of Igeom(ηλf

∞)’s

Lemma
If π0 ∈ Πdisc(λ), ϕπ0 has the same stable orbital integrals as ηλ.
Furthermore, all endoscopic transfers (ϕπ0)H ’s can be taken to be
linear combinations of ηλ’s.

• Therefore stabilization will help!
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Application to G2

Recall our test function is f = ϕπ∞1K∞ .

• Compute: For this test function, all endoscopic terms vanish
except H = SL2 × SL2/± 1.

• Compute: IH(f H) = SH(f H)—uses finite component 1K∞!

Trick: G c
2 the compact form of G2. Note:

(η
G c

2
λ )G2 = ηG2

λ ,

so can compare corresponding endoscopic expansions:

IG2(ϕπk1K∞) = IG
c
2 (η

G c
2

(k−2)β1K∞
Gc

2

)− 1

2
IH((η

G c
2

(k−2)β)H1K∞
H

)

−1

2
IH((ϕπk )H1K∞

H
)
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The G c
2 -term

How do we compute IG
c
2 (η

G c
2

(k−2)β1K∞
Gc

2

)?

• Spectrally: this counts algebraic modular forms on G c
2 of

weight (k − 2)β and level 1.

• V(k−2)β: finite dimenisonal rep of G c
2 with that weight

• Can show: this count is

dim
(
V(k−2)β

G c
2 (Z)
)

• A computer can compute—table in appendices to [CR15]
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The H-terms: Computing transfers

How do we compute the two IH terms?
Step 1: compute transfers.

• If ε1, ε2 the fundamental weights of the SL2 factors in
SL2 × SL2/± 1:

(ϕπk )H = −ηH3(k−1)ε1+(k−1)ε2
+ ηH(3k−2)ε1+(k−2)ε2

− ηH2(k−1)ε2

(η
G c

2

(k−2)β)H = ηH3(k−1)ε1+(k−1)ε2
− ηH(3k−2)ε1+(k−2)ε2

− ηH2(k−1)ε2

• Hardest part is the ± signs, exact formula depends on a lot of
choices of positive Weyl chambers, etc.
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The H-terms: Modular form interpretation

How do we compute terms of the form IH(ηλ1K∞
H

)?

• Spectrally: Counting level-1 discrete automorphic
representations of a given weight on H

• Idea: Up to center details, H ≈ GL2 ×GL2 so term ≈ counts
of pairs of classical modular forms.

Lemma
(vague) The idea works exactly at level 1.

• Proven through various techniques Chenevier and Täıbi
developed to do computations on level-1 representations for
classical groups.



Quat. Aut. Reps. Results Trace Formulas Disc.-at-∞ TF Spectral Side Geom. Side



Quat. Aut. Reps. Results Trace Formulas Disc.-at-∞ TF Spectral Side Geom. Side

Papers Mentioned

James Arthur, The L2-Lefschetz numbers of Hecke operators, Invent. Math. 97 (1989), no. 2, 257–290. MR

1001841
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