Equivariant Symplectic Geometry of Cotangent Bundles

E.B. Vinberg

Vienna, Preprint ESI 996 (2001)
February 20, 2001

Supported by Federal Ministry of Science and Transport, Austria
Available via http://www.esi.ac.at
EQUIVARIANT SYMPLECTIC GEOMETRY
OF COTANGENT BUNDLES

E. B. VINBERG

Let a connected reductive complex algebraic group G act on a smooth irreducible quasiaffine algebraic variety X. In this paper, we study the cotangent bundle T^*X as a symplectic G-variety.

Following I. M. Gelfand and M. I. Graev [GG59], we define horospheres in X as orbits of maximal unipotent subgroups of G or, equivalently, as images under the action of G of orbits of a fixed maximal unipotent subgroup U.

The set of all horospheres is not a good object. We consider a big piece of it consisting of horospheres “in general position” and having a natural structure of a smooth irreducible quasiaffine algebraic G-variety of the same dimension as X. We call it the variety of horospheres of X and denote by Hor X.

The conormal bundle of any smooth subvariety of X is a Lagrangian subvariety of T^*X. The conormal bundles of horospheres of the set Hor X cover a dense subset of T^*X and any point in general position of T^*X belongs to finitely many of them. The disjoint union of these conormal bundles is naturally supplied with a structure of a smooth irreducible quasiaffine algebraic G-variety of the same dimension as T^*X. We call it the horospherical cotangent bundle of X and denote by HT^*X. There is a natural G-equivariant morphism

$$HT^*X \rightarrow \text{Hor } X$$

whose fibers are the conormal bundles of horospheres.

Under the natural projection

$$HT^*X \rightarrow T^*X$$

the symplectic structure of T^*X is lifted to an open subset of HT^*X. The intersections of the conormal bundles of horospheres with this subset constitute a Lagrangian fibration over Hor X. In this respect, the variety HT^*X is similar to the cotangent bundle $T^* \text{Hor } X$ of Hor X.

On the other hand, there is a remarkable G-equivariant birational morphism

$$f: HT^*X \rightarrow T^* \text{ Hor } X$$

(see its definition in Section 5) such that the diagram

$$\begin{array}{ccc}
HT^*X & \xrightarrow{f} & T^* \text{ Hor } X \\
\downarrow & & \downarrow \\
\text{Hor } X & &
\end{array}$$

Supported in part by CRDF grant RM1-2088.
is commutative. It is natural to wonder if \(f \) is symplectic (on the open subset of \(H^\ast X \) where the symplectic structure is defined). In general it is not true. Our main result is that, for any symmetric space \(X \), the morphism \(f \) is symplectic.

It follows that, for a symmetric space \(X \), there is a \(G \)-equivariant symplectic rational covering

\[
T^\ast \text{Hor} X \to T^\ast X.
\]

Note that in this case the variety \(\text{Hor} X \) is a homogeneous space of the form \(G/S \) where \(S \supset U \). (A precise description of \(S \) see in Section 6.)

The work was partly done during my stay at ESI. I thank the institute for hospitality.

Some notation

Algebraic groups are denoted by capital Latin letters; their tangent Lie algebras are denoted by the corresponding small Gothic letters. The connected component of an algebraic group \(G \) is denoted by \(G^0 \). The character group of \(G \) is denoted by \(\mathcal{X}(G) \); it is written additively, and any character is identified with its differential.

If a group \(G \) acts on a set \(X \), the stabilizer of a point \(x \in X \) is denoted by \(G_x \).

The set of fixed points of an element \(g \in G \) is denoted by \(X^g \); the set of fixed points of the whole group \(G \) is denoted by \(X^G \).

The homogeneous fibering over a homogeneous space \(G/H \) defined by an action \(H : Y \), is denoted by \(G \ast_H Y \). By definition, it is the quotient \((G \times Y)/H \) with respect to the action of \(H \) defined by \(h(g, y) = (gh^{-1}, hy) \). The class of \(H \)-equivalence containing \((g, y) \) is denoted by \([g, y]\). The action \(G : G \ast_H Y \) is defined by \(g'([g, y]) = [g'g, y] \). The projection \(p : G \ast_H Y \to G/H \) is defined by \(p([g, y]) = gH \).

Some more notation:

\(Z(H) \) (resp. \(N(H) \)): the centralizer (resp. the normalizer) of a subgroup \(H \) in a group;

\(Z(\mathfrak{h}) \) (resp. \(N(\mathfrak{h}) \)): the centralizer (resp. the normalizer) of a subalgebra \(\mathfrak{h} \) in a Lie algebra;

\(\mathbb{C}[X] \): the algebra of polynomial (= regular rational) functions on a quasiaffine algebraic variety \(X \);

\(\mathbb{C}(X) \): the field of rational functions on an irreducible algebraic variety \(X \);

\(V^\ast \): the dual space of a vector space \(V \);

\(\langle S \rangle \): the linear span of a subset \(S \) in a vector space.

1. Preliminaries

Let \(B \) be a Borel subgroup of \(G \) and \(U \) the unipotent radical of \(B \) (which is a maximal unipotent subgroup of \(G \)).

Denote by \(\mathcal{X}_+(B) \) the semigroup of dominant characters of \(B \) and, for any \(\lambda \in \mathcal{X}_+(B) \), denote by \(\mathbb{C}[X]_\lambda \) the isotypic component of the natural linear representation \(G : \mathbb{C}[X] \), corresponding to the irreducible linear representation with highest weight \(\lambda \). The set

\[
\Lambda = \{ \lambda \in \mathcal{X}_+(B) : \mathbb{C}[X]_\lambda \neq 0 \}
\]

is a subsemigroup of \(\mathcal{X}_+(B) \). Denote by \(\mathbb{C}[X]^{(B)} \) the set of \(B \)-semi-invariant functions in \(\mathbb{C}[X] \).
Set
\[P = \{ g \in G : g \varphi \in \langle \varphi \rangle \ \forall \varphi \in \mathbb{C}[X]^{(B)} \}, \]
\[S = \{ g \in G : g \varphi = \varphi \ \forall \varphi \in \mathbb{C}[X]^{(B)} \}. \]

Obviously, \(P \) is a parabolic subgroup of \(G \) containing \(B \). Let \(U_P \) be its unipotent radical. Then
\[U_P \subset S \subset P. \]

Moreover, any character \(\lambda \in \Lambda \) uniquely extends to a character of \(P \) (which we shall denote by the same letter) and
\[S = \{ p \in P : \lambda(p) = 1 \ \forall \lambda \in \Lambda \} \tag{1} \]

It follows that \(S \) is a normal subgroup of \(P \) and the quotient \(A = P/S \) is a torus, whose character group is generated by \(\Lambda \).

The subgroup \(\Gamma = \Gamma(X, G) \subset \mathfrak{X}(B) \) generated by \(\Lambda \) is called the rank group of \(X \) (with respect to the action of \(G \)). Its rank is called the rank of \(X \) and is denoted by \(r(X) \) or, more precisely, by \(r(X, G) \).

Proposition 1. The rank group \(\Gamma \) and the groups \(P \) and \(S \) do not change, if \(X \) is replaced with a \(G \)-invariant open subvariety.

This follows from

Lemma 1. [VK78] Let a connected solvable algebraic group \(H \) act on an irreducible algebraic variety \(X \). Then any \(H \)-semi-invariant rational function \(\varphi \) on \(X \) is a quotient of two \(H \)-semi-invariant polynomial functions.

Proof. Let \(\varphi = \psi/\chi \), where \(\psi, \chi \in \mathbb{C}[X] \). The linear span of functions \(h\psi, \ h \in H \), is finite-dimensional and, hence, contains an \(H \)-semi-invariant function \(\psi_0 = \sum \epsilon_i c_i h_i \psi \) \((c_i \in \mathbb{C}, \ h_i \in H)\). Set \(\chi_0 = \sum \epsilon_i c_i h_i \chi \). Then \(\varphi = \psi_0/\chi_0 \) and the function \(\chi_0 \) is also \(H \)-semi-invariant \(\Box \)

Let \(L \) be a Levi subgroup (i.e. a maximal reductive subgroup) of \(P \) and \(L_0 = L \cap S \). We have the Levi decompositions:
\[P = U_P \rtimes L, \quad S = U_P \rtimes L_0. \]

Moreover, \(L_0 \) contains the commutator subgroup of \(L \) and the quotient \(L/L_0 \) is naturally isomorphic to the torus \(A \).

Introduce in the Lie algebra \(\mathfrak{g} \) a \(G \)-invariant scalar product and denote by \(\mathfrak{a} \) the orthogonal subspace of \(L_0 \) in \(\mathfrak{l} \). Then \(\mathfrak{a} \) is a central subalgebra of \(\mathfrak{l} \), which is naturally identified with the tangent algebra of \(A \). Making use of the above scalar product restricted to \(\mathfrak{l} \), one can embed the group \(\mathfrak{X}(P) = \mathfrak{X}(L) \) into \(\mathfrak{l} \). Then \(\mathfrak{a} \) is the linear span of \(A \) and \(\mathfrak{l} \) coincides with the centralizer \(\mathfrak{z(\mathfrak{a})} \) of \(\mathfrak{a} \) in \(\mathfrak{g} \).

2. Local structure theorem

The following theorem is a version of the so-called local structure theorem first proved by M. Brion, D. Luna, T. Vust [BLV86]. (A similar construction was considered by F. Grosshans [Gr85].) The idea of the proof given below belongs to F. Knop [Kn94], [Kn98].

We retain the assumptions and the notation of the previous section.

Theorem 1. There is an \(L \)-invariant subvariety \(Y \subset X \) such that
1) the map
\[P \star L \ Y = U_P \times Y \to X, \quad [p, y] \mapsto py, \]

is a P-equivariant isomorphism onto an open subvariety $X_0 \subset X$;

2) the kernel of the action $L : Y$ is L_0.

Proof. 1) Any function
\[\varphi \in \mathbb{C}[X]^{(B)} \cap \mathbb{C}[X]_{\lambda} \quad (\lambda \in \Lambda) \]
defines a P-equivariant morphism
\[F : X_0 \cong \{ x \in X : \varphi(x) \neq 0 \} \to g^* \]
-taking any $x \in X_0$ to the linear function
\[\xi \mapsto \frac{\xi \cdot \varphi(x)}{\varphi(x)} \quad (\xi \in g), \]

where the dot denotes the Lie derivative. The restriction of $F(x)$ to p is equal to λ. So, if we identify g^* with g by means of a G-invariant scalar product and embed the group $X(P)$ into I as above, then
\[F(X_0) \subset \lambda + p^* = \lambda + u_P \quad (\lambda \in \mathfrak{a}). \]

Since $\mathfrak{a}(\mathfrak{a}) = I$ and $\mathfrak{a} = \langle \Lambda \rangle$, we can choose $\lambda \in \Lambda$ in such a way that $ad(\lambda)$ be non-degenerate on u_P. Then $\lambda + u_P$ is just one P-orbit. The stabilizers of its points are maximal reductive subgroups of P; in particular, $P_\lambda = L$. Set $Y = F^{-1}(\lambda)$. Then the map (2) is a P-equivariant isomorphism onto X_0.

2) The kernel of the action $L : Y$ is the intersection of the kernels of all irreducible linear representations of L occurring in $\mathbb{C}[Y]$.

Note that $B \cap L$ is a Borel subgroup of L and $B = U_P \times (B \cap L)$. The character groups of B and $B \cap L$ are naturally identified.

The restriction to Y of any B-semi-invariant polynomial function on X is a $(B \cap L)$-semi-invariant polynomial function with the same weight. Conversely, identifying X_0 with $U_P \times Y$, one can uniquely extend any $(B \cap L)$-semi-invariant polynomial function ψ on Y to a B-semi-invariant polynomial function φ on X_0 by the formula $\varphi(u, y) = \psi(y)$. It follows that
\[\Gamma(Y, L) = \Gamma(X, G) = \Gamma. \]

Since all the characters in Γ vanish on the commutator subgroup of L, we obtain that $\mathbb{C}[Y]$ decomposes into a sum of one-dimensional representations of L whose weights generate Γ. The intersection of their kernels is just L_0. \qed

Clearly, the variety Y is quasias affine, irreducible, and smooth. The action of L on it reduces to an action of the torus A.

Let $\varphi_1, \ldots, \varphi_r \in \mathbb{C}[Y]$ be A-semi-invariant functions whose weights $\lambda_1, \ldots, \lambda_r$ constitute a basis of the group $X(A) = \Gamma$. Set
\[C = \{ y \in Y : \varphi_i(y) = 1 \text{ for } i = 1, \ldots, r \}. \]

Then the map
\[A \times C \to Y, \quad (a, c) \mapsto ac, \]
is an A-equivariant isomorphism onto the open subvariety
\[Y_0 = \{ y \in Y : \varphi_i(y) \neq 0 \text{ for } i = 1, \ldots, r \} \subset Y. \]
(It is meant that \(A \) acts on \(A \times C \) by shifts of the first factor.)

Replacing \(Y \) with \(Y_0 \), we shall assume that the map (3) is an isomorphism onto the whole of \(Y \). In particular, this will imply that \(A \) acts on \(Y \) freely.

3. The variety of horospheres

Let us first study the \(U \)-orbits lying in \(X_0 \). Obviously, they are parametrized by the points of \(Y \).

Theorem 2. [Kn93], [Kn94] The stabilizer of any \(U \)-orbit lying in \(X_0 \) coincides with \(S \). Moreover, if \(gU \cdot y_1 = U \cdot y_2 \) (\(y_1, y_2 \in Y \)), then \(g \in P \).

Proof. For any \(y \in Y \),

\[
S_y = U \cdot y = U_P \cdot y.
\]

In particular, the stabilizer of \(U \cdot y \) contains \(S \). Denote it by \(\Tilde{S} \).

Let \(\Tilde{U}_P \) be the unipotent radical of \(\Tilde{S} \). Clearly, \(\Tilde{U}_P \subset U \subset S \) and, hence, \(\Tilde{U}_P \subset U_P \). We have

\[
\Tilde{S} = \Tilde{S}_y \cdot U_P, \quad \Tilde{S}_y \cap U_P = \{ e \}
\]

whence the variety \(\Tilde{S}/U_P \cong \Tilde{S}_y \) is affine. Since \(\Tilde{S}/U_P = (\Tilde{S}/U_P)/(U_P/U_P) \) and the group \(\Tilde{S}/U_P \) is reductive, it follows that \(\Tilde{U}_P = U_P \). But then \(\Tilde{S} \subset N(U_P) = P \) and, since the torus \(A = P/S \) acts on \(Y \) freely, \(\Tilde{S} = S \).

Let now \(gU \cdot y_1 = U \cdot y_2 \) (\(y_1, y_2 \in Y \)). Then the stabilizers of \(U \cdot y_1 \) and \(U \cdot y_2 \) are conjugate by means of \(g \), whence \(g \in N(S) = P \). \(\square \)

In an analogous way, one can prove that the stabilizer of any \(B \)-orbit lying in \(X_0 \) coincides with \(P \) and, moreover, if \(gB \cdot y_1 = B \cdot y_2 \) (\(y_1, y_2 \in Y \)), then \(g \in P \).

Obviously, the \(B \)-orbits lying in \(X_0 \) are parametrized by the points of \(C \). Recall that the codimension of a generic \(B \)-orbit is called the complexity of \(Y \) (with respect to the action of \(G \)) and is denoted by \(c(Y) \) or, more precisely, by \(c(X, G) \). It follows from the above that

\[
(4) \quad \dim C = c(X), \quad \dim Y = c(X) + r(X).
\]

Denote by \(\text{Hor} X \) the set of horospheres \(G \)-equivalent to \(U \)-orbits lying in \(X_0 \). Due to Theorem 2, the map

\[
(5) \quad G \ast \text{Hor} Y = G/S \times C \rightarrow \text{Hor} X, \quad [g, y] \mapsto gU \cdot y,
\]

is bijective. (It is meant here that the action \(P : Y \) is defined by the action \(L : Y \) by means of the natural homomorphism \(P \rightarrow L \cong P/U_P \).) Thereby \(\text{Hor} X \) is supplied with a structure of an algebraic variety.

Clearly, the variety \(\text{Hor} X \) is irreducible and smooth. Moreover, it is quasiaffine, as follows from

Proposition 2. The variety \(G/S \) is quasiaffine.

Proof. It follows from the definition of \(S \) that the group \(\mathfrak{X}(A) = \Gamma \) is generated by dominant weights. Let \(\lambda_1, \ldots, \lambda_r \) be some dominant weights generating \(\Gamma \). Then \(G/S \) is the orbit of the sum of highest weight vectors of irreducible representations with highest weights \(\lambda_1, \ldots, \lambda_r \) [VP72]. \(\square \)

To calculate the dimension of \(\text{Hor} X \), let us note that \(\dim G/P = \dim U_P \). Therefore,

\[
\dim \text{Hor} X = \dim G/P + \dim Y = \dim U_P + \dim Y = \dim X.
\]
Remark 1. The action G: Hor X can be considered as a contraction of the action G: X twisted by means of a Weyl involution of G [Kn60]. (A Weyl involution is an involutory automorphism acting as inversion on a maximal torus of G.)

4. The horospherical cotangent bundle

Let π be the canonical projection of T^*X to X. Consider the variety

$$HT^*X = \{(a, H) \in T^*X \times \text{Hor } X : \pi(a) \in H \text{ and } a = 0 \text{ on } T_\pi(a)H\}.$$

Denote by p and q the projections of HT^*X to T^*X and Hor X, respectively.

With respect to q, HT^*X is a fibering over Hor X, whose fibers are the conormal bundles of the corresponding horospheres.

The morphism (2) naturally extends to a P-equivariant morphism

$$U_P \times T^*Y \to T^*X,$$

whose image is the (disjoint) union of the conormal bundles of U-orbits (or, equivalently, U_P-orbits) lying in X_π. The morphism (6) gives rise to a G-equivariant map

$$G \ast_P (U_P \times T^*Y) \to HT^*X,$$

which is bijective by Theorem 2. This bijection provides HT^*X with a structure of a smooth irreducible (quasiaffine) algebraic variety. We shall call this variety the horospherical cotangent bundle of X.

The projections p and q are induced by the morphism (6) and the canonical projection of $U_P \times T^*Y$ to Y, respectively, and thereby they are morphisms of algebraic varieties.

Considering HT^*X as a fibering over Hor X, we see that

$$\dim HT^*X = \dim \text{Hor } X + \dim X = \dim T^*X.$$

Theorem 3. [Kn94] The morphism

$$p: HT^*X \to T^*X$$

is dominant.

Since $\dim HT^*X = \dim T^*X$, this means that p is a “rational covering”, that is the field $\mathbb{C}(HT^*X)$ is a finite extension of $\mathbb{C}(T^*X)$.

Proof. Let us denote by Z the image of the morphism (6). Let U^-_P be the unipotent radical of the parabolic subgroup, opposite to P and containing L. Note that

$$\text{codim}_{T^*X} Z = \dim U_P = \dim U^-_P.$$

Since Z is P-invariant and u^-_P is a complementary subspace of p in \mathfrak{g}, the assertion of theorem is equivalent to existence of a point $z \in Z$ such that

$$\{\eta \in u^-_P : \eta z \in T_z Z\} = 0$$

(and, hence, $T_z T^*X = T_z Z \oplus u^-_P z$).

Consider the moment map

$$\Phi: T^*X \to \mathfrak{g}^*, \quad a \mapsto (\xi \mapsto a(\xi \pi(a))).$$

Since the subgroup S preserves each U-orbit lying in X_π, $\Phi(Z)$ lies in the annihilator of \mathfrak{z}. If we identify \mathfrak{g}^* with \mathfrak{g} by means of a G-invariant scalar product, then

$$\Phi(Z) \subset \mathfrak{z}^\perp = \mathfrak{a} + u_P.$$
Moreover, considering the action of \(P \) on \(Z \), one can see that \(\Phi(Z) \) projects onto \(\mathfrak{a} \). Since the map \(\Phi \) is \(G \)-equivariant, the set \(\Phi(Z) \) is \(P \)-invariant. We know that
\[
\mathfrak{a}^{\text{reg}} \triangleq \{ \lambda \in \mathfrak{a} : [\lambda, u_P] = u_P \} \neq \emptyset
\]
and, for any \(\lambda \in \mathfrak{a}^{\text{reg}} \), the plane \(\lambda + u_P \) is one \(P \)-orbit. It follows that
\[
\Phi(Z) \supset \mathfrak{a}^{\text{reg}} + u_P.
\]
Let \(z \in Z \) be such that \(\Phi(z) = \lambda \in \mathfrak{a}^{\text{reg}} \). Suppose that \(\eta z \in T_z(z) \) for some \(\eta \in u_P \). Then
\[
\Phi(\eta z) = [\eta, \lambda] \in \mathfrak{a} + u_P
\]
whence \([\eta, \lambda] = 0 \) (since \([\eta, \lambda] \in u_P \)). But \(\text{ad}(\lambda) \) is non-degenerate on \(u_P \) and, hence, it is also non-degenerate on \(u_P \). It follows that \(\eta = 0 \), q.e.d.

Due to Theorem 3, the morphism \(p \) permits to lift the canonical symplectic structure of \(T^*X \) to an open subvariety \(\Omega \) of \(HT^*X \). Since the canonical bundle of any smooth subvariety of \(X \) is a Lagrangian subvariety of \(T^*X \), the intersections of fibers of \(q \) with \(\Omega \) constitute a Lagrangian fibering of \(\Omega \) over \(\text{Hor} X \). In this respect, \(HT^*X \) is similar to \(T^* \text{Hor} X \). We shall see that, indeed, in some cases \(HT^*X \) is birationally isomorphic to \(T^* \text{Hor} X \) as a symplectic \(G \)-variety.

5. Comparison of \(HT^*X \) and \(T^* \text{Hor} X \)

Let \(\rho \) be the canonical projection of \(T^* \text{Hor} X \) to \(\text{Hor} X \). In this section, we shall construct a \(G \)-equivariant birational morphism
\[
(\text{\textbf{9}}) \quad f: HT^*X \rightarrow T^* \text{Hor} X
\]
such that the diagram
\[
\begin{array}{ccc}
HT^*X & \xrightarrow{f} & T^* \text{Hor} X \\
\downarrow q & & \downarrow \rho \\
\text{Hor} X & & \text{Hor} X
\end{array}
\]
is commutative.

Due to isomorphism (3), we have the following natural identifications:
\[
(\text{\textbf{11}}) \quad G \ast_P (U_P \times T^*Y) = G \ast_P (U_P \times T^*A \times T^*C) \\
= G \ast_S (U_P \times T^*A \times T^*C) = G \ast_S (U_P \times \mathfrak{a}) \times T^*C.
\]
Here the action \(S : (U_P \times \mathfrak{a}) \) reduces to the action \(S : U_P \) defined as follows: \(U_P \) acts by left shifts, while \(L_\alpha \) acts by conjugations.

On the other hand, we have the following natural identifications:
\[
(\text{\textbf{12}}) \quad T^*(G/S \times C) = T^*(G/S) \times T^*C \\
= G \ast_S (g/S)^* \times T^*C = G \ast_S (\mathfrak{a} + u_P) \times T^*C.
\]
Here \(S \) acts on \(\mathfrak{a} + u_P \) via the adjoint representation of \(G \).

Consider the morphism
\[
\varphi_0 : U_P \times \mathfrak{a} \rightarrow \mathfrak{a} + u_P, \quad (u, \lambda) \mapsto \text{Ad}(u)\lambda.
\]
Since $[\mathfrak{u} P, \mathfrak{a}] = \mathfrak{u} P$ for a generic $\lambda \in \mathfrak{a}$, the morphism φ_0 is birational. Moreover, it is easy to see that it is S-equivariant. Hence it induces a G-equivariant birational morphism

$$
\varphi: G \times S (U_P \times \mathfrak{a}) \times T^* C \to G \times S (\mathfrak{a} + u_P) \times T^* C
$$

by the formula

$$
\varphi([g, z], \gamma) = ([g, \varphi_0(z)], \gamma) \quad (z \in U_P \times \mathfrak{a}, \gamma \in T^* C).
$$

Due to (11), (12) and isomorphisms (7), (5) this gives rise to a G-equivariant birational morphism

$$
f: H T^* X \to T^* \text{Hor} X.
$$

In the same sense, the projections q and ρ are induced by the trivial maps of $U_P \times \mathfrak{a}$ and $\mathfrak{a} + u_P$ to a one-point set (and by the canonical projection of $T^* C$ to C). Hence, the diagram (10) is commutative.

To find out, whether or not f is symplectic, let us prove the following general lemma concerning invariant symplectic structures on homogeneous fiberings.

Let (M, ω) be a (smooth irreducible) symplectic variety. Denote by $\mathcal{P}(M)$ the Lie algebra of functions on M with respect to the Poisson bracket defined by ω. For any function φ, define, as usually, its skew gradient $\text{grad} \varphi$ by

$$
\omega(\text{grad} \varphi, \eta) = \partial_\eta \varphi \quad \forall \eta \in TM.
$$

A symplectic action $G: M$ is called Poissonian, if there is a homomorphism

$$
g \to \mathcal{P}(M), \quad \xi \mapsto H_\xi,
$$

such that the velocity vector field on M corresponding to any $\xi \in g$, coincides with $\text{grad} H_\xi$. The function H_ξ is called the Hamiltonian of ξ.

Let now $M = G \times S F$, were $S \subset G$ is an algebraic subgroup and F is a (smooth irreducible) S-variety.

Lemma 2. If the action $G: M$ is Poissonian, then the symplectic structure ω on M is uniquely defined by the following data:

1) the restriction of ω to F;
2) the restriction of functions $H_\xi, \xi \in g$, to F.

(We identify F with the fiber $[e, F]$ of M.)

Proof. It suffices to reconstruct the values of ω at points of F. Note that, for any $p \in F$, the vector space $T_p M$ is generated by $T_p F$ and the velocities of the action $G: M$. If the restriction of ω to $T_p F$ is known, it suffices to determine the values $\omega(\xi p, \eta)$ for $\xi \in g$ and $\eta \in T_p M$.

Due to the formula

$$
g H_\xi = H_{\lambda \delta_0 g \xi} \quad (g \in G, \xi \in g),
$$

the restrictions of functions H_ξ to F completely define these functions. Then the values $\omega(\xi p, \eta)$ can be found by

$$
\omega(\xi p, \eta) = \partial_\eta H_\xi.
$$

\[\square\]

For any action $G: Z$, the action $G: T^* Z$ is Poissonian with

$$
H_\xi(\gamma) = \gamma(\xi \tau(\gamma)),
$$

(14)
where $\tau: T^*Z \to Z$ is the canonical projection. Obviously, a covering of any Poissonian action is also Poissonian. Hence, considering HT^*X and $T^* \text{Hor} X$ as homogeneous fiberings over G/S, we can apply Lemma 2 to determine if the morphism f is symplectic.

Let us assume for simplicity that the action $G: X$ is spherical (i.e. the Borel subgroup B has an open orbit). Then X_0 coincides with this orbit, and C reduces to one point o (whose L-orbit is Y), so we have the following commutative diagram:

$$
\begin{array}{ccc}
G \ast_S (U_P \times a) & \xrightarrow{\phi} & G \ast_S (a + u_P) \\
\downarrow s & & \downarrow s \\
G/S & \xrightarrow{\varepsilon} & G/S \\
\downarrow f & & \downarrow f \\
HT^*X & \xrightarrow{q} & T^* \text{Hor} X \\
\downarrow \rho & & \downarrow \rho \\
\text{Hor} X & & \text{Hor} X \\
\end{array}
$$

where the vertical arrows are the isomorphisms described above. Since the fibers of q and ρ are Lagrangian, we need only to compare the Hamiltonians \overline{H}_ξ and \overline{H}_ξ of the actions $G: HT^*X$ and $G: T^* \text{Hor} X$.

A generic point of $G \ast_S (U_P \times a)$ is G-equivalent to a point of the subvariety $\{e\} \times a \subset U \times a$, while a generic point of $G \ast_S (a + u_P)$ is G-equivalent to a point of the subvariety $a \subset a + u_P$. By definition, $\phi((e, \lambda)) = \lambda$ for $\lambda \in a$. It follows that the morphism f is symplectic if and only if

$$
\overline{H}_\xi(\delta(e, \lambda)) = \overline{H}_\xi(\varepsilon(\lambda))
$$

for any $\xi \in \mathfrak{g}$ and $\lambda \in a$.

According to (14),

$$
\overline{H}_\xi(\varepsilon(\lambda)) = (\lambda, \xi).
$$

On the other hand, $\delta(\{e\} \times a)$ is naturally identified with $N^*_e(U_o) \subset T^*X$ and, hence,

$$
H_\xi(\delta(e, \lambda)) = (\lambda, \dot{\xi}),
$$

where $\dot{\xi}$ is defined by

$$
\dot{\xi} = \eta \circ \xi = \hat{\xi} \circ \xi (\eta \in u_P, \xi \in a).
$$

For $\xi \in a$, we have $(\lambda, \dot{\xi}) = 0$ and $\dot{\xi} = 0$, so (16) holds. For $\xi \in a$, we have $\dot{\xi} = \xi$, so (16) holds as well. For $\xi \in u_P$, we have $(\lambda, \dot{\xi}) = 0$, so (16) holds for any $\lambda \in a$ if and only if $\xi = 0$. Thus, we obtain

Proposition 3. Let the action $G: X$ be spherical. Then the morphism f is symplectic if and only if $u_P \subset u_P$.

Remark 2. In the general case, the morphism f is symplectic if and only if $u_P \subset u_P$ for any $c \in C$.
6. The case of a symmetric space

Let \(X = G/K \) be a symmetric space, that is \(k = \mathfrak{g}^\sigma \) for some involutory automorphism \(\sigma \) of \(G \). It is known [Vu74] (and we shall see it later) that in this case the action \(G \cdot X \) is spherical, so we can apply Proposition 3.

Our main theorem is

Theorem 4. For a symmetric space \(X = G/K \), one can choose the subvariety \(Y \) so that the \(G \)-equivariant birational morphism \(f: HT^*X \to T^* \text{Hor} \ X \) defined in Section 5, is symplectic.

Proof. Let \(\mathfrak{m} \) be the orthogonal subspace of \(\mathfrak{k} \) in \(\mathfrak{g} \), and \(\mathfrak{a} \) a maximal diagonalizable subalgebra in \(\mathfrak{m} \). Let \(\mathcal{L} = \mathcal{Z}(\mathfrak{a}) \) be the centralizer of \(\mathfrak{a} \) in \(G \) and \(\mathcal{L}_0 = \mathcal{L} \cap K \). Then \(\mathcal{L} = \mathcal{L}_0 + \mathfrak{a} \). Suppose that the Borel subgroup \(B \) is chosen so that \(\mathfrak{b} \supseteq \mathfrak{a} \).

Let us first assume that \(G \) is semisimple and \(X \) is simply connected. Then it is known (see, e.g., [Hel84]) that an irreducible representation of \(G \) occurs in \(\mathbb{C}[X] \) if and only if its highest weight vector is fixed by \(\mathcal{L}_0 \). It follows that \(P = B\mathcal{L}_0 \supseteq \mathcal{L} \), so we can choose \(\mathcal{L} \) as \(L \). Then \(\mathcal{L}_0 = \mathcal{L}_0 \) and \(a = \mathfrak{a} \).

Let \(\Delta \) be the root system of \(X \) with respect to \(a \) and, for any \(\alpha \in \Delta \), let \(\mathfrak{g}_\alpha \) denote the corresponding root subspace. Then

\[
\mathfrak{p} = \mathfrak{k} + \sum_{\alpha \neq 0} \mathfrak{g}_\alpha, \quad \mathfrak{u}_P = \sum_{\alpha \neq 0} \mathfrak{g}_\alpha, \quad \mathfrak{u}_P^+ = \sum_{\alpha < 0} \mathfrak{g}_\alpha
\]

(with respect to the ordering of \(\Delta \) defined by \(B \)).

Since \(\sigma(a) = -a \) for any \(\alpha \in \Delta \), then

\[
\sigma(\mathfrak{u}_P) = \mathfrak{u}_P^+.
\]

It follows that

\[
\mathfrak{k} + \mathfrak{b} = \mathfrak{k} + \mathfrak{a} + \mathfrak{u}_P = \mathfrak{g}.
\]

Hence, the point \(\hat{\mathfrak{g}} = eK \) lies in an open orbit of \(B \). Since it is fixed by \(\mathcal{L}_0 \), we can take it for \(o \). Then (20) implies that \(\mathfrak{u}_P^+ o = \mathfrak{u}_P o \), so the morphism \(f \) is symplectic by Proposition 3.

If \(X = G \) is a torus, then \(\text{Hor} \ X = X \), \(HT^*X = T^*X = T^* \text{Hor} \ X \), and the theorem is trivial. Together with the case considered above, this proves the theorem in the case when \(X \) is a direct product of a simply connected symmetric space and a torus.

A symmetric space of the latter type can be represented in the form \(X = G/K \), where \(G \) is a direct product of a torus \(Z \) and a simply connected semisimple group \(H \), and \(K \) is a connected subgroup of \(H \) (coinciding with \(H^\sigma \)). (The involution \(\sigma \) acts on \(Z \) as inversion.)

Any symmetric space can be represented in the form

\[
X' = G/K' = X/F,
\]

where \(X = G/K \) is a symmetric space of the above type, \(K' \subset N(K) \) is a finite extension of \(K \), and \(F = K'/K \) is a finite subgroup of \(N(K)/K \) acting on \(X = G/K \) by right shifts.

The group \(F \) naturally \(G \)-equivariantly acts on \(\text{Hor} \ X = X/S \). Since the group of \(U \)-automorphisms of a \(U \)-orbit is unipotent, it does not contain non-trivial finite subgroups. Hence, the action \(F : \text{Hor} \ X \) is effective. This gives rise to a natural isomorphism \(F \cong S'/S \), where \(S' \subset N(S) \) is a finite extension of \(S \) playing the role of \(S \) for \(X' \).
All the morphisms of the diagram (15) are F-equivariant. Factorizing this diagram by F, we obtain the corresponding diagram for the space X'. It follows that the corresponding morphism f' is also symplectic. □

Remark 3. As it follows from the above proof, it is true for any symmetric space X, that an irreducible representation of G occurs in $\mathbb{C}[X]$ if and only if highest weight vector is fixed by L_0 (or, equivalently, by S).

Remark 4. For many (but not for all) symmetric spaces X, the subvariety Y satisfying the conditions of Theorem 1, is unique.

Remark 5. Theorem 5 is not extended to any spherical varieties, as the example $X = (\text{SL}_2 \times \text{SL}_2 \times \text{SL}_2)/\text{SL}_2$ shows.

References

