Some Results on the Structure of Quantum Family Algebras

A.A. Kirillov

Vienna, Preprint ESI 964 (2000)

November 27, 2000

Supported by Federal Ministry of Science and Transport, Austria
Available via http://www.esi.ac.at
SOME RESULTS ON THE STRUCTURE
OF QUANTUM FAMILY ALGEBRAS

A. A. Kirillov

Department of Mathematics, The University of Pennsylvania, Philadelphia, PA 19104-6395. Institute for Problems of Information Transmission of Russian Academy of Sciences, B.Karetnyi 19, Moscow 101 477, GSP-4, Russia

November 2000

Abstract. We continue the study of family algebras introduced by the author. In this paper we describe completely the structure of quantum family algebras for two cases of representations with a simple spectrum.

1. Generalities about family algebras

1.1. Basic definitions.

A new class of associative algebras related to simple complex Lie algebras (or root systems) was introduced and studied in [K]. They were named classical and quantum family algebras.

The aim of the this paper is to expose some results about the structure of quantum family algebras. In particular, we give a partial answer to the last of several open questions formulated in [K]:

In general, it would be very interesting to find out which quantum family algebras are commutative and which classical algebras are spanned over $I(\mathfrak{g})$ by powers of M or analogous elements related to other generators of $I(\mathfrak{g})$.

We assume that the reader is acquainted with the general background of the theory of semi-simple Lie algebras (see e.g. [OV]).

Let \mathfrak{g} be a simple complex Lie algebra with the canonical decomposition

$$\mathfrak{g} = n_- \oplus \mathfrak{h} \oplus n_+.$$

We denote by P (respectively by Q) the weight (resp. root) lattice in \mathfrak{h}^* and by P_+ (resp. Q_+) the semigroup generated by fundamental weights $\omega_1, \omega_2, \ldots, \omega_l$ (resp. by simple roots $\alpha_1, \alpha_2, \ldots, \alpha_l$).

1991 Mathematics Subject Classification. 17 B3.
Key words and phrases. semi-simple Lie algebras, enveloping algebras.

The author deeply thanks the Erwin Schrödinger International Institute for Mathematical Physics (ESI) where this work was started and Max Planck Institute for Mathematics (MPI) where it was accomplished.

Typeset by A4S-TEX
For every $\lambda \in P_+$ let (π_λ, V_λ) be an irreducible representation of \mathfrak{g} with highest weight λ. We denote by $d(\lambda)$ the dimension of V_λ.

Let λ^* denote the highest weight of the dual (or contragredient) representation which acts in V_λ^* by $\pi_{\lambda^*}(X) = -(\pi_\lambda(X))^*$. It is clear that $d(\lambda) = d(\lambda^*)$.

The space $\text{End} V_\lambda \simeq V_\lambda \otimes V_\lambda^*$ is isomorphic to the matrix space $\text{Mat}_{d(\lambda)}(\mathbb{C})$ and has a \mathfrak{g}-module structure defined by

$$X \cdot A = [\pi_\lambda(X), A].$$

Recall that the symmetric algebra $S(\mathfrak{g})$ and the enveloping algebra $U(\mathfrak{g})$ also have (isomorphic) \mathfrak{g}-module structures.

Let G be a connected and simply connected Lie group with $\text{Lie}(G) = \mathfrak{g}$. The action of \mathfrak{g} on $\text{End} V_\lambda$, $S(\mathfrak{g})$ and $U(\mathfrak{g})$ gives rise to the corresponding action of G by automorphisms of these algebras.

We define two kinds of family algebras: the classical family algebra $C_\lambda(\mathfrak{g})$ and the quantum family algebra $Q_\lambda(\mathfrak{g})$ as

$$(1) \quad C_\lambda(\mathfrak{g}) := (\text{End} V_\lambda \otimes S(\mathfrak{g}))^G, \quad Q_\lambda(\mathfrak{g}) := (\text{End} V_\lambda \otimes U(\mathfrak{g}))^G.$$

It turns out that several important questions in the theory of semi-simple Lie algebras and their representations can be formulated, studied and sometimes solved in terms of these family algebras.

1.2. Family algebras related to a representation with a simple spectrum.

The following result was obtained in [K].

Theorem 1. Assume that π_λ has a simple spectrum (i.e. all weights have multiplicity 1). Then the algebra $C_\lambda(\mathfrak{g})$ is commutative.

For the convenience of the reader we give here the proof.

Let us consider an element $A \in C_\lambda(\mathfrak{g})$ as a polynomial map $A : \mathfrak{g}^* \to \text{End} V_\lambda$ which is equivariant with respect to the action of G. It is enough to check the commutativity of $A(F)$ and $B(F)$ for generic $F \in \mathfrak{g}^*$. Since generic element of $\mathfrak{g}^* \cong \mathfrak{h}$ is conjugate to an element of the Cartan subalgebra, we can assume that $F \in \mathfrak{h}$. We identify $\text{End} V_\lambda$ with $\text{Mat}_{d(\lambda)}(\mathbb{C})$ using the weight basis in V_λ. The simplicity of the spectrum of π_λ implies that values of $A(F)$ and $B(F)$ commute with some diagonal matrices with distinct eigenvalues. Therefore they themselves are diagonal matrices, hence commute.

\[\square \]

Recall now that the special element M was introduced in [K] both in quantum and classical family algebra. Namely

$$(2) \quad M := \pi_\lambda(X_i) \otimes X^i$$

where $\{X^i\}$ and $\{X_i\}$ are dual bases in \mathfrak{g} with respect to some Ad-invariant bilinear form.

This element belongs to $C_\lambda(\mathfrak{g})$ (resp. to $Q_\lambda(\mathfrak{g})$) if we interpret X^i as an element of $S(\mathfrak{g})$ (resp. of $U(\mathfrak{g})$).
The most investigated examples of representations with a simple spectrum are the symmetric powers \((\pi_{k\omega_1}, V_{k\omega_1}) \) of the standard representation of \(\mathfrak{sl}(N) \) or \(\mathfrak{gl}(N) \).
(Of course, the dual representations have the same property).

We consider here two simplest examples:
1) the standard representation of \(\mathfrak{sl}(N) \) or \(\mathfrak{gl}(N) \).

2) the \(N \)-dimensional irreducible representation of \(\mathfrak{sl}(2) \).

In all these examples the classical family algebra is generated over the subalgebra of scalar matrices by the element \(M \). Thus, it is an algebraic extension of the polynomial algebra \(\mathbb{C}[\mathfrak{g}]^G \) defined by the Hamilton – Cayley identity:

\[
M^N = \sum_{k=1}^{N} c_k \cdot M^{N-k}
\]

where \(c_k = (-1)^{k-1} \text{tr} \wedge^k M \) are \(G \)-invariant polynomials on \(\mathfrak{g} \).

The quantum family algebra is a deformation of the classical one, since \(U(\mathfrak{g}) \) is a deformation of \(S(\mathfrak{g}) \).

It follows that the quantum family algebra \(\mathcal{Q}_\lambda(\mathfrak{g}) \) is an algebraic extension of the center \(Z(\mathfrak{g}) \) of \(U(\mathfrak{g}) \) defined by the quantum analogue of the Hamilton – Cayley identity. This analogue has the same form (3) but with different coefficients \(c_k \). Below we shall describe explicitly these coefficients for the two series of examples mentioned above.

2. \textbf{QUANTUM FAMILY ALGEBRA AND LAPLACE-CASIMIR OPERATORS FOR }\textit{GL}(\textit{N}).

2.1. Problem setting.

Let \(\mathcal{A} \) be the quantum family algebra for the Lie algebra \(\mathfrak{g} = \mathfrak{gl}(N, \mathbb{C}) \) and the irreducible representation \(\pi_{\omega^*_1} \), dual to the standard one. Recall that \(\mathcal{A} \) consists of \(N \times N \) matrices \(A \) with entries from \(U(\mathfrak{gl}(N, \mathbb{C})) \) satisfying the relation

\[
(gA g^{-1})_{i,j} = \text{Ad}_g A_{i,j} \quad \text{for any } g \in GL(N, \mathbb{C}).
\]

Let \(M \) denote the element of \(\mathcal{A} \) given by

\[
M = -\sum_{i,j} E_{i,j} \otimes \pi_{\omega^*_1}(E_{i,j}) = \begin{pmatrix} E_{11} & E_{12} & \ldots & E_{1N} \\
E_{21} & E_{22} & \ldots & E_{2N} \\
\ldots & \ldots & \ldots & \ldots \\
E_{N1} & E_{N2} & \ldots & E_{NN} \end{pmatrix}
\]

Let \((\pi_\lambda, V_\lambda) \) be a finite dimensional irreducible representation of \(\mathfrak{g} \) with the highest weight \(\lambda \) and highest weight vector \(v_\lambda \). We denote by \((\pi_\lambda^*, V_\lambda^*) \) the dual representation and by \(v_\lambda^* \) the lowest weight vector in \(V_\lambda^* = \bar{V}_\lambda^* \) normalized by the condition

\[
\langle v_\lambda^*, v_\lambda \rangle = 1.
\]

The well known Harish-Chandra map from \(U(\mathfrak{g}) \) to \(U(\mathfrak{h}) \simeq S(\mathfrak{h}) \simeq \mathbb{C}[\lambda_1, \ldots, \lambda_N] \) can be defined as

\[
\beta(A) = \langle v_\lambda^*, \pi_\lambda(A)v_\lambda \rangle.
\]

For technical reason it is convenient to introduce the order in \(\mathbb{R}^N \) which is opposite to the standard alphabetical order. Then dominant weights \(\lambda \) will satisfy \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N \). The advantage is that the recurrent formula below will not contain \(N \) explicitly.
It is known that the image of the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$ under β consists of all polynomials which are invariant under the **twisted action** of the Weyl group W. In our case $W \simeq S(N)$ and the action is

\[(8) \quad s \cdot \lambda = s(\lambda + \tilde{\rho}) - \tilde{\rho}, \quad \text{where} \quad \tilde{\rho} = (0, 1, \ldots, N - 2, N - 1).\]

In other words,

\[(8') \quad (s \cdot \lambda)_i = \lambda_{s^{-1}(i)} + i - s^{-1}(i).\]

Remark 1. Note that our vector $\tilde{\rho}$ differs from the commonly used half sum of positive roots $\rho = (\frac{1-N}{2}, \frac{3-N}{2}, \ldots, \frac{N-1}{2})$ by the vector $\frac{N-1}{2} \cdot (1, 1, \ldots, 1)$ which is W-invariant. Of course, the difference disappears when we pass to a simple subalgebra $\mathfrak{s}(N, \mathbb{C}) \subset \mathfrak{g}(n, \mathbb{C})$.

★

It is easy to derive from (4) that the elements $T_k = \text{tr} (M^k)$ belong to $Z(\mathfrak{g})$. We are interested in the explicit formula for the polynomials $\Delta_k(\lambda) = \beta(T_k)$ which are symmetric functions in the variables $\mu_i = \lambda_i + \tilde{\rho}_i = \lambda_i + i - 1$.

Actually, this expression can not be very simple. E.g., in [PP] it is expressed as a sum of all matrix elements of the N-th power of a certain $N \times N$ matrix. Similar results were obtained by [O], [S], and others. The approach via family algebras allows to give a transparent interpretation of the formula.

Remark 2. According to well-known Arnold’s Law no formula bears the name of its discoverer (including the Arnold’s Law itself). During my study of quantum family algebras I found several relatively manageable expressions for Δ_k. Some of them I later found in the literature but not all.

Since my computations were finished on 24 August of 2000, the 26-th birthday of my best friend Pavel Ilyin, I suggest to call the result **Ilyin’s formula**.

★

Theorem 2. The polynomials $\Delta_k(\lambda) = \beta(T_k)$ are given by the following Ilyin formula:

\[(\text{Ilyin}) \quad \Delta_k(\mu) = \sum_{s \geq 0} (-1)^s \sum_{1 \leq i_1 < \cdots < i_{s+1} \leq N} h_{k-s}(\mu_{i_1}, \ldots, \mu_{i_{s+1}}).\]

Here h_k denotes the standard full symmetric function of degree k: the sum of all different monomials of that degree.
In particular, we have:

\[\Delta_0(\lambda) = N; \quad \Delta_1(\lambda) = \sum_i \mu_i - \binom{N}{2} = \sum_i \lambda_i; \]

\[\Delta_2(\lambda) = \sum_i \mu_i^2 - \sum_{i<j} (\mu_i + \mu_j) + \binom{N}{3} = \sum_{i=1}^{N} (\lambda_i + \rho_i)^2 - \sum_{i=1}^{N} \rho_i^2; \]

\[\Delta_3(\lambda) = \sum_i \mu_i^3 - \sum_{i<j} (\mu_i^2 + \mu_i \mu_j + \mu_j^2) + \sum_{i<j<k} (\mu_i + \mu_j + \mu_k) - \binom{N}{4} = \]

\[\sum_{i=1}^{N} \left[\mu_i^3 - \left(N - \frac{3}{2} \right) \mu_i^2 + \frac{(N-1)(N-2)}{2} \mu_i \right] - \frac{1}{2} \left(\sum_{i=1}^{N} \mu_i \right)^2 - \binom{N}{4} = \]

\[\sum_i (\lambda_i + \rho_i)^3 - \frac{N}{2} \left(\sum_i (\lambda_i + \rho_i)^2 - \sum_i \rho_i^2 \right) - \frac{N^2 - 1}{4} \sum_i \lambda_i - \frac{1}{2} \left(\sum_i \lambda_i \right)^2. \]

Sometimes it is useful to rewrite this formula using another basis in the space of symmetric polynomials, that of monomial symmetric functions:

\[m_{\delta}(\mu) = \text{sum of all different monomials of the form } \mu_{i_1}^{\delta_1} \mu_{i_2}^{\delta_2} \cdots \mu_{i_k}^{\delta_k}. \]

It looks as

\[\Delta_k(\mu) = \sum_{0 \leq |\delta| \leq k} (-1)^{k-|\delta|} \binom{N - l(\delta)}{k - |\delta| - l(\delta) + 1} m_{\delta}(\mu). \]

Further, one can introduce the generating function

\[\Delta(t; \mu) := \sum_{k=0}^{\infty} t^k \cdot \Delta_k(\mu). \]

In terms of this function the Ilyin formula takes the form

\[\Delta(t; \mu) = t^{-1} - t^{-1} \prod_{i=1}^{N} \left(1 - \frac{t}{1 - t \mu_i} \right) \]

as one easily derives using the identity

\[\sum_{k=0}^{\infty} t^k \mu_k(\{\mu_i, i \in I\}) = \prod_{i \in I} (1 - t \mu_i)^{-1}. \]

(See details in the proof below).

The last form allows to represent the sequence \(\Delta_k(\mu) \) as a sum of geometric progressions with ratio \(\mu_i, 1 \leq i \leq N \). Namely,

\[\Delta_k(\mu) = \sum_{i=1}^{N} a_{i}^{(N)} \cdot \mu_i^k \quad \text{where} \quad a_{i}^{(N)} = \prod_{i \neq j, 1 \leq j \leq N} \left(1 + \frac{1}{\mu_j - \mu_i} \right). \]

This form of the result was actually known (see [O]).
2.2. The connection between different variants of the result.

To derive the equality (12) from Ilyin formula we introduce the rational function

\[F(z) = - \prod_{j=1}^{N} \left(1 - \frac{1}{z - \mu_j} \right), \]

where \(\mu_1, \ldots, \mu_N \) are complex parameters.

It is evident that \(\lim_{z \to \infty} F(z) = -1 \) and the direct computation shows that

\[\text{Res}_{z=\mu_i} F = \prod_{j \neq i} \left(1 + \frac{1}{\mu_j - \mu_i} \right) = a_i^{(N)}. \]

Therefore

\[F(z) = -1 + \sum_{i=1}^{N} \frac{a_i^{(N)}}{z - \mu_i}. \]

We introduce one more parameter \(t \) and consider the integral

\[I = \frac{1}{2\pi i} \oint_{|z|=R} \frac{F(z)}{1 - tz} \, dz \]

where \(R \) is supposed to be greater than \(\max |\mu_i| \) but less than \(t^{-1} \).

We can compute the integral (14) via the residues formula. Since our function \(F \) has inside the disc \(|z| \leq R \) only simple poles at \(\mu_1, \ldots, \mu_N \), we get the result

\[I = \sum_{i=1}^{N} \frac{a_i^{(N)}}{1 - t\mu_i} = \sum_{k \geq 0} t^k \sum_{i=1}^{N} a_i^{(N)} \mu_i^k. \]

But we can also use the fact that outside the disc \(F \) has a simple pole at \(t^{-1} \)
and a non-zero residue at \(\infty \). Then we come to the expression

\[I = -\text{Res}_{z=\infty} F - \text{Res}_{z=t^{-1}} F = t^{-1} \prod_{j=1}^{N} \left(1 - \frac{t}{1 - t\mu_i} \right). \]

This expression can be rewritten in the form

\[t^{-1} \left(1 - \sum_{I \subseteq [1, \ldots, N]} \prod_{i \in I} \frac{-t}{1 - t\mu_i} \right) = \sum_{s \geq 0} (-t)^s \cdot \sum_{|I| = s} h_{k-s}(\{\mu_i, i \in I\}). \]

Comparing the two expressions for the integral, we obtain the identity

\[\sum_{i=1}^{N} a_i^{(N)} \mu_i^k = \sum_{s \geq 0} (-t)^s \cdot \sum_{|I| = s+1} h_{k-s}(\{\mu_i, i \in I\}). \]

Thus, we proved that the Ilyin formula is equivalent to (12).
2.3. Recurrence relation.

We shall use the notation similar to those introduced in [MNO]; the matrix elements of \(M^k \) are denoted by \(E_{i,j}^{(k)} \), \(k \geq 0 \).

The elements \(E_{i,j}^{(k)} \in U(\mathfrak{g}) \) have zero weight. Therefore they commute with elements of \(U(\mathfrak{h}) \) and for any representation \((\pi_\lambda, V_\lambda)\) the operator \(\pi_\lambda(E_{i,j}^{(k)}) \) preserves the weight decomposition of \(V_\lambda \). In particular, there is a constant \(c_{i,j}^{(k)}(\lambda) \) such that

\[
\pi_\lambda(E_{i,j}^{(k)})v_\lambda = c_{i,j}^{(k)}(\lambda)v_\lambda.
\]

We shall use the equality

\[
E_{i,i}^{(k+1)} = \sum_s E_{i,s}^{(k)}E_{s,i}
\]

to derive a recurrence relation for the quantities \(c_{i,j}^{(k)} \). For this end we note that \(E_{i,j}v_\lambda = 0 \) if \(i > j \). So, when we apply both sides of (16) to \(v_\lambda \), it is enough to take the summation in the right hand side only for \(s \leq i \).

Moreover, for \(s = i \) we get \(E_{i,i}^{(k)}E_{i,i}v_\lambda = c_{i,j}^{(k)}(\lambda) \cdot \lambda_i \cdot v_\lambda \) and for \(s < i \) we have \(E_{i,s}^{(k)}v_\lambda = 0 \), hence \(E_{i,s}^{(k)}E_{s,i}v_\lambda = [E_{i,s}^{(k)}, E_{s,i}]v_\lambda = (E_{i,i}^{(k)} - E_{s,s}^{(k)})v_\lambda \). It gives the desired recurrence relation

\[
c_{i}^{(k+1)}(\lambda) = (\lambda_i - 1 + i) \cdot c_{i}^{(k)}(\lambda) - \sum_{1 \leq s < i} c_{s}^{(k)}(\lambda)
\]

or

\[
c_{i}^{(k+1)}(\mu) = \mu_i \cdot c_{i}^{(k)}(\mu) - \sum_{1 \leq s < i} c_{s}^{(k)}(\mu).
\]

Note, that the quantity \(c_{i}^{(k)}(\mu) \) depends only on \(\mu_1, \ldots, \mu_i \) as well as the sum \(s_{i}^{(k)} = \sum_{i=1}^{n} c_{i}^{(k)} \).

We shall prove the Ilyin formula by induction on \(k \) and \(N \). We rewrite it in terms of quantities \(s_{i}^{(k)} \) using (12):

\[
s_{N}^{(k)} = \sum_{j=1}^{N} a_{i}^{(N)} \mu_i^k.
\]

For \(k = 0 \) it reduces (see (9)) to \(\sum_{i=1}^{N} a_{i}^{(N)} = N \). It follows from (13) and the relation \(\lim_{z \to \infty} z(F(z) + 1) = N \).

Assume that it is true for \(k \leq n \) and all \(N \) and also for \(k = n + 1 \) and the number of variables \(< N \). Our goal is to check it for \(k = n + 1 \) and \(N \) variables. We shall use the relation

\[
c_{i}^{(k)}(\mu) = s_{i}^{(k)}(\mu_1, \mu_2, \ldots, \mu_i) - s_{i-1}^{(k)}(\mu_1, \mu_2, \ldots, \mu_{i-1})
\]

to rewrite (17) as

\[
s_{i}^{(k+1)}(\mu_1, \mu_2, \ldots, \mu_i) - s_{i-1}^{(k+1)}(\mu_1, \mu_2, \ldots, \mu_{i-1}) =
\mu_i \cdot s_{i}^{(k)}(\mu_1, \mu_2, \ldots, \mu_i) - (\mu_i + 1) \cdot s_{i-1}^{(k)}(\mu_1, \mu_2, \ldots, \mu_{i-1}).
\]
Then for \(s_N^{(n+1)} \) we obtain the expression

\[
s_N^{(n+1)} = s_N^{(n+1)} + \mu_N \cdot s_N^{(n)} - (\mu_N + 1) \cdot s_{N-1}^{(n)}.
\]

Since (18) is supposed to be true for all members of right hand side, we get

\[
s_N^{(n+1)} = \sum_{j=1}^{N} b_j^{(N)} \mu_j^{n+1}
\]

where

\[
b_j^{(N)} = \begin{cases}
(1 - \frac{\mu_{j+1}}{\mu_j})a_j^{(N-1)} + \frac{\mu_N}{\mu_j}a_j^{(N)} & \text{for } i < N \\
a_N^{(N)} & \text{for } i = N.
\end{cases}
\]

Using the relation \(a_j^{(N)} = a_j^{(N-1)} \left(1 + \frac{1}{\mu_j-\mu_N} \right) \), we see that in both cases we have \(b_j^{(N)} = a_j^{(N)} \).

\(\square \)

2.4. Discussion.

First of all we want to observe that the formula (12) looks as the trace of the \(k \)-th power of an operator with eigenvalues \(\mu_i \) and multiplicities \(a_i^{(N)} \), \(1 \leq i \leq N \).

The sum of these multiplicities is equal to \(N \), the size of the matrix, but the multiplicities themselves are not integers!

Second, the matrix \(M \) satisfies the quantum analogue of the Cayley-Hamilton identity:

\[
M^N = \sum_{k=1}^{N} c_k M^{N-k}
\]

where \(c_k \) are some elements of \(Z(g) \).

For a general matrix \(A \) with entries from a non-commutative algebra \(A \) there is no reason to have something like this. There is however a case when the powers of \(A \) are linearly dependent over the center \(Z \) of \(A \). It happens, when \(A \) is similar to a matrix with elements from \(Z \). We show, that it is exactly the case when we consider the element \(M \) in our quantum family algebra.

Recall that a generic matrix over a commutative field can be reduced to the so-called second normal form:

\[
A = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1 \\
a_n & a_{n-1} & a_{n-2} & \cdots & a_1
\end{pmatrix}.
\]

Indeed, if \(A \) possesses a cyclic vector \(v \), i.e. such that vectors \(v_k = A^{k-1}v \) are linearly independent for \(1 \leq k \leq n \), then \(A \) takes the form (20) in the basis \(v_1, \ldots, v_n \).
It turns out, that over the skew-field $D(\mathfrak{g})$ generated by $U(\mathfrak{g})$ the matrix M can be reduced to the second normal form. For $N = 2$ it looks as follows:

$$M = \begin{pmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ E_{21} & E_{22} \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ a_2 & a_1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ E_{21} & E_{22} \end{pmatrix},$$

where

$$a_1 = E_{11} + 1 + E_{22} = \text{tr} M + 1,$$

$$a_2 = E_{21} E_{12} - (E_{11} + 1)E_{22} = \frac{\text{tr} M^2 - (\text{tr} M)^2 - \text{tr} M}{2}.$$

It implies the recurrence relation

$$M^n = (\text{tr} M + 1)M^{n-1} + \frac{(\text{tr} M)^2 + \text{tr} M - \text{tr} (M^2)}{2} M^{n-2},$$

which is the quantum analogue of the Hamilton–Cayley identity.

Note also the following expression which is valid for any analytic function f:

$$f(M) = \frac{f(\mu_1) - f(\mu_2)}{\mu_1 - \mu_2} \cdot M + \frac{\mu_1 f(\mu_2) - \mu_2 f(\mu_1)}{\mu_1 - \mu_2} \cdot 1$$

where $\mu_{1,2}$ are roots of the quadratic polynomial $\mu^2 - a_1 \mu - a_2$.

3. Quantum Family Algebra for Irreducible Representations of $\mathfrak{sl}(2)$

The results and conjectures discussed in this section are based on the direct computations made by N. Rojkovskaya. It is a challenge to find a conceptual explanation of these results and extend them to the case $\mathfrak{g} = \mathfrak{sl}(N)$ or $\mathfrak{gl}(N)$.

3.1. Problem setting.

Let $\mathfrak{g} = \mathfrak{sl}(2)$ and E, F, H be a standard basis in \mathfrak{g}. We prefer to replace it by the new basis $\tilde{E} = \hbar \cdot E$, $\tilde{F} = \hbar \cdot F$, $\tilde{H} = \hbar \cdot H$ so that the commutation relations take the form

$$[\tilde{H}, \tilde{E}] = 2\hbar \tilde{E}, \quad [\tilde{H}, \tilde{F}] = -2\hbar \tilde{F}, \quad [\tilde{E}, \tilde{F}] = \hbar \tilde{H}$$

and give the explicit deformation of the abelian Lie algebra.

Let (π_n, V_n) be a $(n + 1)$-dimensional irreducible representation of \mathfrak{g}, the n-th symmetric power of the standard 2-dimensional representation π_1.

In an appropriate basis in V_n the operators of the representation look like

$$\pi_n(aE + bH + cF) =$$

$$= \hbar \begin{pmatrix} b_2^n & a\sqrt{1 \cdot n} & 0 & \cdots & 0 & 0 \\ c\sqrt{n \cdot 1} & b_2(\frac{n}{2} - 1) & a\sqrt{2 \cdot (n - 1)} & \cdots & 0 & 0 \\ 0 & \sqrt{n - 1 \cdot 2} & b_2(\frac{n}{2} - 2) & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & b(1 - \frac{\alpha}{n}) & a\sqrt{1 \cdot n} \\ 0 & 0 & 0 & \cdots & c\sqrt{1 \cdot n} & -b_2^n \end{pmatrix}. $$

The problem is to find the explicit formulae for the quantum eigenvalues and quantum multiplicities of the element

$$M = \frac{1}{\hbar} \left(E \cdot \pi_n(F) + F \cdot \pi_n(E) + \frac{1}{2} H \cdot \pi_n(H) \right).$$
2.2. Results and conjectures.

The main statement is the following conjectural formula based on the direct computation of the second normal form of the matrix M for small values of N. We write it in the form of

Proposition. Let $\Delta = H^2 + 2EF + 2FE$ be the standard generator of $Z(\mathfrak{g})$. Then

a) Quantum eigenvalues of M are

\begin{equation}
\mu_k^{(n)} = \left[k^2 - \left(k + \frac{1}{2} \right) n \right] \hbar + \left(\frac{n}{2} - k \right) \sqrt{\Delta + \hbar^2}, \quad 0 \leq k \leq n.
\end{equation}

b) The corresponding multiplicities are

\begin{equation}
d_k^{(n)} = 1 + \frac{(n-2k)\hbar}{\sqrt{\Delta + \hbar^2}}, \quad 0 \leq k \leq n.
\end{equation}

c) The trace of M^p is given by

\begin{equation}
\text{tr } M^p = \sum_{k=0}^{n} d_k^{(n)} \cdot \left(\mu_k^{(n)} \right)^p, \quad p \geq 0.
\end{equation}

I have no doubts that this Proposition is correct. It is quite possible that it could be proved by the method of [PWZ]. But in present time it is only confirmed by direct computations made for $N \leq 5$.

References

Department of Mathematics, The University of Pennsylvania, Philadelphia, PA 19104-6395 E-mail address: kirillov@math.upenn.edu