On Joint Recurrence

Klaus Schmidt

Supported by Federal Ministry of Science and Research, Austria
Available via http://www esi.ac.at
ON JOINT RECURRENCE

KLAUS SCHMIDT

Abstract. Let T be a measure-preserving and ergodic automorphism of a probability space (X, \mathcal{S}, μ). By modifying an argument in [3] we obtain a sufficient condition for recurrence of the d-dimensional stationary random walk defined by a Borel map $f : X \rightarrow \mathbb{R}^d$, $d \geq 1$, in terms of the asymptotic distributions of the maps $(f + fT + \cdots + fT^{n-1})/n^{1/d}$, $n \geq 1$. If $d = 2$, and if $f : X \rightarrow \mathbb{R}^2$ satisfies the central limit theorem with respect to T (i.e., if the sequence $(f + fT + \cdots + fT^{n-1})/\sqrt{n}$ converges in distribution to a Gaussian law on \mathbb{R}^2), then our condition implies that the two-dimensional random walk defined by f is recurrent.

1. Recurrence of d-dimensional stationary random walks

Let T be a measure preserving and ergodic automorphism of a standard probability space (X, \mathcal{S}, μ), $d \geq 1$, and let $f = (f_1, \ldots, f_d) : X \rightarrow \mathbb{R}^d$ be a Borel map. For every $n \in \mathbb{Z}$ and $x \in X$ we set

$$f(n, x) = \begin{cases} \sum_{k=0}^{n-1} f(T^kx) & \text{if } n \geq 1, \\ 0 & \text{if } n = 0, \\ -f(-n, T^nx) & \text{if } n < 0. \end{cases} \quad (1.1)$$

The resulting map $f : \mathbb{Z} \times X \rightarrow \mathbb{Z}^d$ satisfies that

$$f(m, T^nx) + f(n, x) = f(m + n, x) \quad (1.2)$$

for every $m, n \in \mathbb{Z}$ and μ-a.e. $x \in X$. If $\| \cdot \|$ denotes the maximum norm on \mathbb{R}^d then the map $f : X \rightarrow \mathbb{R}^d$ is recurrent (or the individual components f_1, \ldots, f_d of f are jointly recurrent) if

$$\liminf_{n \rightarrow \infty} \| f(n, x) \| = 0 \quad (1.3)$$

for μ-a.e. $x \in X$. If f is not recurrent it is called transient (for terminology and background we refer to [3]).
Proposition 1.1 ([3]). Let $f: X \mapsto \mathbb{R}^d$ be a Borel map. The following conditions are equivalent.

1. f is recurrent;
2. $\mu(\{x \in X : \lim \inf_{|n| \to \infty} \|f(n, x)\| < \infty\}) > 0$;
3. For every $B \in \mathcal{S}$ with $\mu(B) > 0$ and every $\varepsilon > 0$,
 \[\mu(B \cap T^{-m}B \cap \{x \in X : \|f(m, x)\| < \varepsilon\}) > 0 \]
 for some nonzero $m \in \mathbb{Z}$.

For every $k \geq 1$ we define probability measures $\sigma_k^{(d)}$ and $\tau_k^{(d)}$ on \mathbb{R}^d by setting

\[
\sigma_k^{(d)}(A) = \mu(\{x \in X : f(k, x)/k^{1/d} \in A\}),
\]

\[
\tau_k^{(d)}(A) = \frac{1}{k} \sum_{i=1}^{k} \sigma_i^{(d)}(A) \tag{1.4}
\]

for every Borel set $A \subset \mathbb{R}^d$, where 1_A is the indicator function of A. In [2] and [3] it was shown that the recurrence of f can be deduced from certain properties of these probability measures. For example, if $d = 1$ and

\[
\lim_{k \to \infty} \sigma_k^{(1)} = \delta_0
\]

in the vague topology, where

\[
\delta_0(A) = \begin{cases} 1 & \text{if } 0 \in A, \\ 0 & \text{otherwise}, \end{cases}
\]

then f is recurrent by [2] or [3]. In [3] it was also shown that a map $f: X \mapsto \mathbb{R}$ is recurrent whenever

\[
\liminf_{\eta \to 0} \liminf_{k \to \infty} \sigma_k^{(1)}([-\eta, \eta])/2\eta > 0.
\]

The purpose of this paper is to prove the following extension of this result to higher dimensions.

Theorem 1.2. Let T be a measure preserving and ergodic automorphism of a probability space (X, \mathcal{S}, μ), $d \geq 1$, $f: X \mapsto \mathbb{R}^d$ a Borel map, and define the probability measures $\tau_k^{(d)}$, $k \geq 1$, on \mathbb{R}^d by (1.4). We denote by λ the Lebesgue measure on \mathbb{R}^d and set, for every $\eta > 0$, $B(\eta) = \{v \in \mathbb{R}^d : \|v\| < \eta\}$. If f is transient then

\[
\sup_{\eta > 0} \limsup_{k \to \infty} \tau_k^{(d)}(B(\eta))/\lambda(B(\eta)) < \infty \tag{1.5}
\]

and

\[
\lim_{\eta \to 0} \liminf_{k \to \infty} \tau_k^{(d)}(B(\eta))/\lambda(B(\eta)) = 0. \tag{1.6}
\]

The interesting cases are, of course, $d = 1$ and $d = 2$. The case $d = 1$ was discussed in [3]; in order to explain the significance of Theorem 1.2 for $d = 2$ we say that a Borel map $\phi: X \mapsto \mathbb{R}^d$ satisfies the central limit theorem with respect to T if the distributions of the functions $f(n, \cdot)/\sqrt{n}$, $n \geq 1$, converge to a (possibly degenerate) Gaussian probability measure on \mathbb{R}^d as $n \to \infty$ (for the existence of such functions see [1]).
Corollary 1.3. Let T be a measure preserving and ergodic automorphism of a probability space (X, \mathcal{S}, μ), and let $f: X \rightarrow \mathbb{R}^2$ be a Borel map satisfying the central limit theorem with respect to T. Then f is recurrent.

Proof of Corollary 1.3. If $\lim_{n \rightarrow \infty} f(n, x)/\sqrt{n}$ is μ-a.e. to a constant, then this constant has to be zero by (1.2). This shows that, if f satisfies the central limit theorem with respect to T, then there exists a positive constant c such that $\liminf_{k \rightarrow \infty} \tau_k^{(d)}(B(\eta)) > c\eta^2$ for all sufficiently large k and all sufficiently small $\eta > 0$. According to (1.6) this means that f is recurrent. \square

Note that Theorem 1.2 and Corollary 1.3 make no assumptions concerning the integrability of f.

2. The proof of Theorem 1.2

The proof of Theorem 1.2 differs from that of Theorem 3.6 in [3] only by avoiding the use of the total order of \mathbb{R} (which is, of course, not available if $d > 1$).

Let T be a measure preserving and ergodic automorphism of a standard probability space (X, \mathcal{S}, μ), $d \geq 1$, and let $f: X \rightarrow \mathbb{R}^d$ be a transient Borel map. For the definition of the probability measures $\sigma^{(d)}_k$, $\tau^{(d)}_k$ on \mathbb{R}^d we refer to (1.4).

Proposition 1.1 implies that there exist a Borel set $C \subset X$ with $\mu(C) > 0$ and an $\varepsilon > 0$ with

$$\mu(C \cap T^{-k}C \cap \{x \in X : \|f(k, x)\| < \varepsilon\}) = 0$$

whenever $0 \neq k \in \mathbb{Z}$. By decreasing C, if necessary, we may assume that $\mu(C) = 1/L$ for some $L \geq 1$.

Lemma 2.1. For every $\eta > 0$ and $N \geq 1$,

$$\limsup_{k \rightarrow \infty} \tau_k^{(d)}(B(\eta)) \leq 2^d L \varepsilon^{-d} \lambda(B(\eta)), \quad \limsup_{k \rightarrow \infty} \sum_{n=0}^N 2^n \tau_n^{(d)}(B(2^{-n/d}\eta)) \leq 2^{d+1} d L \varepsilon^{-d} \lambda(B(\eta)).$$

Proof. We modify T on a null-set, if necessary, and assume without loss in generality that $T^n x \neq x$ for every $x \in X$ and $0 \neq n \in \mathbb{Z}$ and hence that (1.2) holds for every $m, n \in \mathbb{Z}$ and $x \in X$. Denote by

$$R_T = \{(T^n x, x) : x \in X, n \in \mathbb{Z}\} \subset X \times X$$

the orbit equivalence relation of T and define a Borel map $f: R_T \rightarrow \mathbb{R}^d$ by setting

$$f(T^n x, x) = f(n, x)$$

for every $(T^n x, x) \in R_T$. Then (1.2) implies that

$$f(x, x') + f(x', x'') = f(x, x'')$$

whenever $(x, x'), (x, x'') \in R_T$.

We denote by $[T]$ the full group of T, i.e. the group of all measure preserving automorphisms V of (X, \mathcal{S}, μ) with $V x \in \{T^n x : n \in \mathbb{Z}\}$ for every $x \in X$. Since T is ergodic we can find an element $S \in [T]$ and a T-invariant μ-null set $N \subset \mathcal{S}$ with the following properties:
(i) if \(C' = C \setminus N \) then the sets \(S^k C' \) are disjoint for \(k = 0, \ldots, L - 1 \) and
and \(S^L C' = C' \).

(b) \(N = X \setminus \bigcup_{k=0}^{L-1} C'_k \),

(c) for every \(x \in C' \) the sets \(\{ j \geq 1 : S^j x \in C' \} \) and \(\{ j \geq 1 : S^{-j} x \in C' \} \)
are infinite and \(SL_x = T^{m_{C'}(x)} \) with
\[m_{C'}(x) = \min \{ j \geq 1 : T^j x \in C' \}. \]

Note that the restriction of \(S^L \) to \(C' \) is the automorphism of \(C' \) induced by \(T \), and that \(\{ S^n x : n \in \mathbb{Z} \} = \{ T^n x : n \in \mathbb{Z} \} \) for every \(x \in X \setminus N \).

Define a Borel map \(b: X \to \mathbb{R}^d \) by setting, for every \(x \in C' \), \(b(S^k x) = \mathbf{f}(S^k x, S^k x) \) for \(k = 1, \ldots, L \), and by putting \(b(x) = 0 \) for \(x \in N \). Then the map \(g(x) = \mathbf{f}(S x, x) - b(S x) + b(x) \) satisfies that
\[g(x) = \begin{cases}
\mathbf{f}(S^L x, x) = f(m_{C'}(x), x) & \text{if } x \in C', \\
0 & \text{otherwise.}
\end{cases} \]

Furthermore, if \(f'(x) = f(x) - b(T x) + b(x) \), and if \(f'(n, \cdot): X \to \mathbb{R}^d \) and \(\mathbf{f}': R_T \to \mathbb{R}^d \) are defined by (1.1) and (2.3) with \(f' \) replacing \(f \), then
\[f'(n, x) = f(n, x) - b(T^n x) + b(x), \]
\[\mathbf{f}'(x, x') = \mathbf{f}(x, x') - b(x) + b(x') \tag{2.5} \]
for every \(x \in X \setminus N, n \in \mathbb{Z} \) and \(x' \in \{ T^k x : k \in \mathbb{Z} \} = \{ S^k x : k \in \mathbb{Z} \} \).

We denote by \(\sigma_k', \tau_k' \) the probability measures defined by (1.4) with \(f' \) replacing \(f \) and obtain as in Lemma 3.4 in [3] that
\[\lim_{|k| \to \infty} \inf \left(\sigma_k'(B(\eta + \eta')) - \sigma_k'(B(\eta)) \right) \geq 0, \]
\[\lim_{|k| \to \infty} \inf \left(\tau_k'(B(\eta + \eta')) - \sigma_k'(B(\eta)) \right) \geq 0 \tag{2.6} \]
for all \(\eta, \eta' > 0 \). In particular, the inequalities (2.2) will be satisfied if
\[\limsup_{k \to \infty} \tau_k'(B(\eta)) \leq L 2^d \eta^d \varepsilon^{-d}, \]
\[\limsup_{k \to \infty} \sum_{n=0}^{N} 2^n \tau_{2^n k}(B(2^{-n/d} \eta)) \leq d L^d 2^{d+1} \eta^d \varepsilon^{-d} \tag{2.7} \]
for every \(\eta > 0 \) and \(N \geq 1 \).

The equations (2.1) and (2.5) yield that
\[C' \cap T^{-k} C' \cap \{ x \in X : \| f'(k, x) \| < \varepsilon \} \]
\[= C' \cap V^{-1} C' \cap \{ x \in X : V x \neq x \} \text{ and } \| \mathbf{f}'(V x, x) \| < \varepsilon \} = \emptyset \]
whenever \(k \neq 0 \) and \(V \in [T] \). We set \(Y = X \times \mathbb{R}^d, \nu = \mu \times \lambda \), denote by \(S: Y \to Y \) the skew product transformation
\[S(x, t) = (S x, t + \mathbf{f}'(S x, x)) = (S x, t + g(x)), \]
and obtain that the set
\[D = C' \times B(\varepsilon/2) \]
is wandering under \(S \), i.e. that \(S^n D \cap D = \emptyset \) whenever \(0 \neq m \in \mathbb{Z} \). For every \(x \in X \setminus N \) we denote by \(V_x \subset \mathbb{R}^d \) the discrete set
\[\{ f'(k, x) : k \in \mathbb{Z} \} = \{ \mathbf{f}'(S^k x, x) : k \in \mathbb{Z} \} \]
and observe that
\[|\{k \in \mathbb{Z} : f'(k, x) = v\}| = |\{k \in \mathbb{Z} : f'(S^k x, x) = v\}| = L \]
for every \(v \in V_x \) and \(x \in X \setminus N \), and that
\[\|v - v'\| \geq \varepsilon \]
whenever \(v, v' \in V_x \) and \(v \neq v' \). Hence
\[|\{0 < l \leq k : 0 < \|f'(l, x)\| \leq l^{1/d}/\eta\}| \]
\[\leq \{|0 < l \leq k : 0 < \|f'(l, x)\| \leq k^{1/d}/\eta\}| \]
\[< (k^{1/d} + \varepsilon/\eta)^d \nu(X \times B(\eta))/\nu(D) \]
\[= (k^{1/d} + \varepsilon/\eta)^d L 2^d \eta^d \varepsilon^{-d}, \]

since \(S^{j+1} D \subset X \times B(k^{1/d} \eta + \varepsilon) \) whenever \(x \in S \mathcal{J} C^d \) and \(\|f'(l, x)\| \leq k^{1/d} \eta \) for some \(j \in \{0, \ldots, L - 1\} \) and \(l \in \{1, \ldots, k\} \), and since the sets \(S^m D, m \in \mathbb{Z} \), are all disjoint. By integrating we obtain that
\[\tau'_k(B(\eta)) = \frac{1}{k} \sum_{l=1}^{k} \tau'_l(B(\eta)) = \frac{1}{k} \sum_{l=1}^{k} \mu(\{x \in X : \|f'(l, x)\| \leq l^{1/d}/\eta\}) \]
\[\leq \frac{L}{k} + \frac{1}{k} \int \{|0 < l \leq k : 0 < \|f'(l, x)\| \leq l^{1/d}/\eta\}| d\mu(x) \]
\[< \frac{L}{k} + \frac{(k^{1/d} + \varepsilon/\eta)^d}{k} \cdot L 2^d \eta^d \varepsilon^{-d}, \]
and by letting \(k \to \infty \) we have proved the first inequality in (2.7).

Similarly one sees that
\[\sum_{n \geq 0} |\{0 < l \leq 2^n k : 0 < \|f'(l, x)\| \leq l^{1/d} 2^{-n/d}/\eta\}| \]
\[= L \cdot \sum_{0 \neq v \in V_x} |\{n \geq 0 : v = f'(l, x) \text{ for some } l \}
\text{ with } 0 < l \leq 2^n k \leq k \eta^d/\|v\|^d\} \]
\[\leq L \cdot \sum_{0 \neq v \in V_x} (|\{n \geq 0 : 1 \leq 2^n k \leq k \eta^d/\|v\|^d\}| + 1) \]
\[\leq L \cdot \sum_{j \geq 1} \sum_{v \in V_x \cap (B((j+1)\eta) \setminus B(j \eta))} (|\{n \geq 0 : 1 \leq 2^n k \leq k \eta^d/j^d \varepsilon^d\}| + 1) \]
\[\leq L^d 2^{d-1} d \cdot \sum_{j=1}^{k^{1/d} \eta/j \varepsilon} j^{d-1} \left(\frac{\log \eta^d/j^d \varepsilon^d}{\log 2} + 1 \right) \]
\[< L^d 2^{d-1} d \cdot 4k \eta^d \varepsilon^d. \]

Hence
\[\sum_{n=0}^{N} 2^n \tau'_{2^n k}(B(2^{-n/d} \eta)) = \sum_{n=0}^{N} \left(\frac{L}{k} + 2^n \tau'_{2^n k}(B(2^{-n/d} \eta) \setminus \{0\}) \right) \]
\[\leq \frac{(N+1)L}{k} + L^d d 2^{d+1} \eta^d \varepsilon^d, \]
and by letting \(k \to \infty \) we obtain the second inequality in (2.7). Since (2.7) is equivalent to (2.2) we have proved the lemma. \(\square \)
Proof of Theorem 1.2. Suppose that $f: X \rightarrow \mathbb{R}^d$ is transient. Lemma 2.1 yields a constant $c > 0$ such that

$$\limsup_{k \to \infty} \sum_{n=0}^{N} 2^n \tau^{(d)}_{2^{2n}k}(B(2^{-n/d} \eta)) \leq c \lambda(B(\eta))$$

for every $\eta > 0$ and $N \geq 1$. It follows that there exists, for every $\eta > 0$ and $N \geq 1$, an integer $n \in \{0, \ldots, N\}$ with

$$\liminf_{k \to \infty} \tau^{(d)}_{2^{2n}k}(B(2^{-n/d} \eta)) \leq \frac{c}{N+1} \cdot \lambda(B(2^{-n/d} \eta)).$$

We conclude that

$$\liminf_{\eta \to 0} \liminf_{k \to \infty} \tau^{(d)}_{2^{2n}k}(B(2^{-n/d} \eta)) \leq \frac{c}{N+1} \cdot \lambda(B(2^{-n/d} \eta))$$

for some $n \in \{0, \ldots, N\}$, and hence that

$$\liminf_{\eta \to 0} \liminf_{k \to \infty} \tau^{(d)}_{k}(B(\eta)) \leq \frac{c}{N+1} \cdot \lambda(B(\eta)).$$

As $N \geq 1$ was arbitrary this proves (1.6). The inequality (1.5) is an immediate consequence of the first inequality in (2.2). \qed

References

Mathematics Institute, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria,
and
Erwin Schrödinger Institute for Mathematical Physics, Boltzmannsgasse 9, A-1090 Vienna, Austria
E-mail address: klaus.schmidt@univie.ac.at