Flag Manifolds and Representation Theory

Joseph A. Wolf

Supported by Federal Ministry of Science and Research, Austria
Available via http://www.esi.ac.at
FLAG MANIFOLDS AND REPRESENTATION THEORY

JOSEPH A. WOLF

CONTENTS

 §1. Parabolic Subalgebras and Complex Flags.
 §2. Intersections of Parabolics.
 §3. Real Group Actions.
 §4. Open Orbits.
 §5. Example: Hermitian Symmetric Spaces.
 §6. The Closed Orbit.

 §7. Principal Series and the Closed Orbit.

Part 3. Tempered Series and the Plancherel Formula.
 §8. The Discrete Series.
 §9. The Tempered Series.
 §10. Indication of the Plancherel Formula.

 §12. Partially Measurable Orbits and Tempered Series.

Part 5. The Linear Cycle Space.
 §13. Exhaustion Functions on Measurable Open Orbits.
 §14. The Exhaustion Function on a General Open Orbit.
 §15. The Stein Property.

This article is an expanded version of lectures at the “Fifth Workshop on Representation Theory of Lie Groups and its Applications,” Córdoba, Argentina, August 1995. The topics were complex flag manifolds, real group orbits, and linear cycle spaces, with applications to the geometric construction of representations of semisimple Lie groups. These topics come up in many aspects of complex differential geometry and harmonic analysis.

Research partially supported by N.S.F. Grant DMS 93 21285.

Typeset by AMS-TeX

In this Part we indicate the basic facts for real group orbits on complex flag manifolds.

§1. Parabolic Subalgebras and Complex Flags.

Fix a complex semisimple Lie algebra \(g \) and a Cartan subalgebra \(\mathfrak{h} \subset g \). Let \(\Sigma = \Sigma(g, \mathfrak{h}) \) denote the corresponding root system, and fix a positive subsystem \(\Sigma^+ = \Sigma^+(g, \mathfrak{h}) \). The corresponding Borel subalgebra

\[
\mathfrak{b} = \mathfrak{h} + \sum_{\alpha \in \Sigma^+} \mathfrak{g}_{-\alpha} \subset \mathfrak{g}
\]

has its nilradical\(^1\) \(\mathfrak{b}^{-n} = \sum \mathfrak{g}_{-\alpha} \) and a Levi complement \(\mathfrak{h} \).

In general a subalgebra \(\mathfrak{a} \subset \mathfrak{g} \) is called a Borel subalgebra if it is \(\text{Int}(\mathfrak{g}) \)-conjugate to a subalgebra of the form \(\mathfrak{b} \), in other words if there exist choices of \(\mathfrak{h} \) and \(\Sigma^+ \) such that \(\mathfrak{a} \) is given by (1.1).

Let \(G \) denote the (unique) connected simply connected Lie group with Lie algebra \(g \). The Cartan subgroup of \(G \) corresponding to \(\mathfrak{h} \) is \(H = Z_G(\mathfrak{h}) \). It has Lie algebra \(\mathfrak{h} \), and it is connected because \(G \) is connected, complex and semisimple. The Borel subgroup \(B \subset G \) corresponding to a Borel subalgebra \(\mathfrak{b} \subset \mathfrak{g} \) is defined to be the \(G \)-normalizer of \(\mathfrak{b} \), that is,

\[
B = \{ g \in G \mid \text{Ad}(g)\mathfrak{b} = \mathfrak{b} \}.
\]

Here are the basic facts on these Borel subgroups.

1.3. Lemma. \(B \) has Lie algebra \(\mathfrak{b} \), \(B \) is a closed connected subgroup of \(G \), and \(B \) is its own normalizer in \(G \).

Proof. \(B \) is closed in \(G \) by the definition (1.2). It follows that the normalizer \(E = N_G(B) \) is closed in \(G \), so \(E \) is a Lie subgroup. Let \(\mathfrak{e} \) denote the Lie algebra of \(E \). Then \(\mathfrak{b} \subset \mathfrak{e} \) and \(\{\mathfrak{e}, \mathfrak{b}\} \subset \mathfrak{b} \). Any subalgebra of \(\mathfrak{g} \) that properly contains \(\mathfrak{b} \) must be of the form \(\mathfrak{b} + \sum_{\alpha \in S} \mathfrak{g}_{\alpha} \) with \(S \subset \Sigma^+ \), because \(\mathfrak{h} \subset \mathfrak{b} \). Thus it would contain a 3-dimensional simple subalgebra and could not normalize \(\mathfrak{b} \).

Now \(\mathfrak{e} = \mathfrak{b} \), in particular \(E \) normalizes \(\mathfrak{b} \), so \(E = B \). This shows both that \(B \) is its own normalizer and that \(B \) has Lie algebra \(\mathfrak{b} \). Finally, \(B \) is connected because the Weyl group \(W(\mathfrak{g}, \mathfrak{h}) \) is simply transitive on the set of all positive subsystems of \(\Sigma(\mathfrak{g}, \mathfrak{h}) \). \(\square \)

The other basic facts are not quite as obvious.

\(^1\) Here we describe the nilradical as a sum of negative root spaces, rather than positive, so that, in applications, positive functionals on \(\mathfrak{h} \) will correspond to positive bundles (instead of negative bundles), and holomorphic discrete series representations will be highest weight (instead of lowest weight) representations.
1.4. Lemma. Let $G_u \subset G$ be a compact real form. Then G_u is transitive on $X = G/B$, and X has a G_u-invariant Kaehler metric. In particular X has the structure of compact Kaehler manifold.

Proof. It suffices to consider a G_u constructed by means of a Weyl basis of \mathfrak{g} using \mathfrak{h} and Σ^\pm. That yields a real form $\mathfrak{g}_u \subset \mathfrak{g}$ on which the Killing form is negative definite. Then the G-normalizer of \mathfrak{g}_u coincides with the real analytic subgroup of G for \mathfrak{g}_u; that is G_u. By construction $\mathfrak{h}_u = \mathfrak{g}_u \cap \mathfrak{h}$ is the real form of \mathfrak{h} on which the roots take pure imaginary values, and $\mathfrak{g} \cap \mathfrak{b} = \mathfrak{h}_u$. Now a dimension count shows that the G_u-orbit of the identity coset $x_0 = 1B \in G/B = X$ is open in X. It is also closed in X because G_u is compact. That proves the transitivity, and thus proves that X is compact.

Let $\lambda \in \mathfrak{h}^*$ such that $\langle \lambda, \alpha \rangle > 0$ for every $\alpha \in \Sigma^+$. Extend λ to a linear functional on \mathfrak{g} by $\lambda(\mathfrak{g}_u) = 0$ for every $\gamma \in \Sigma$, and view it as a 1-cochain for Lie algebra cohomology of $(\mathfrak{g}, \mathfrak{h})$. Then $d\lambda$ is a 2-cocycle on $G_u/H_u = X$, and as a 2-form it combines with the complex structure to define a Kaehler metric. Thus, for every λ in the positive Weyl chamber of $(\mathfrak{g}, \mathfrak{h}, \Sigma^+)$, we have a G_u-invariant Kaehler metric on X. \hfill \Box

1.5. Lemma. There is a finite dimensional irreducible representation π of G with the property: let $[v]$ be the image of a lowest weight vector in the projective space $\mathbb{P}(V_\pi)$ corresponding to the representation space of π. Then the action of G on V_π induces a holomorphic action of G on $\mathbb{P}(V_\pi)$, and B is the G-stabilizer of $[v]$. In particular $X = G/B$ is a complete projective variety.

Proof. For example, let $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} \alpha$ as usual and let π be the irreducible representation of highest weight ρ. The lowest weight is $-\rho$ and the assertions are immediate. \hfill \Box

1.6. Lemma. B is a maximal solvable subgroup of G.

Proof. The argument of Lemma 1.3 shows that \mathfrak{b} is a maximal solvable subalgebra of \mathfrak{g}. If $E \subset G$ is a solvable subgroup, and $B \subset E$ then the closure of E in G has those same properties, so we may assume E closed in G. But then E has Lie algebra that is not solvable, so E is not solvable. We conclude that B is maximal solvable. \hfill \Box

A theorem of Borel says that any solvable subgroup of G has a fixed point on the complete projective variety X, this is conjugate to a subgroup of B. This gives another proof of Lemma 1.6, in fact shows that the Borel subgroups are exactly the maximal solvable subgroups of G. That’s how Borel originally defined them. The Borel subalgebras and subgroups given by (1.1) and (1.2) are the standard Borels.

A subalgebra $\mathfrak{p} \subset \mathfrak{g}$ is called parabolic if it contains a Borel subalgebra. For example, let Ψ be the simple root system corresponding to Σ^+ and let Φ be an arbitrary subset of Ψ. Every root $\alpha \in \Sigma$ has unique expression

$$
\alpha = \sum_{\psi \in \Psi} n_\psi(\alpha)\psi
$$

(1.7)
where the $n_{\psi}(\alpha)$ are integers, all ≥ 0 if $\alpha \in \Sigma^+$ and all ≤ 0 if $\alpha \in \Sigma^- = -\Sigma^+$. Set
\begin{equation}
(1.8) \quad \Phi^r = \{ \alpha \in \Sigma \mid n_{\psi}(\alpha) = 0 \text{ whenever } \psi \notin \Phi \}
\end{equation}
and
\begin{equation}
(1.9) \quad \Phi^n = \{ \alpha \in \Sigma^+ \mid \alpha \notin \Phi^r \} = \{ \alpha \in \Sigma \mid n_{\psi}(\alpha) > 0 \text{ for some } \psi \notin \Phi \}.
\end{equation}
Now define
\begin{equation}
(1.10) \quad p_\Phi = p^r + p^{-n} \text{ with } p^r = h + \sum_{\alpha \in \Phi^r} g_\alpha \text{ and } p^{-n} = \sum_{\alpha \in \Phi^n} g_{-\alpha}.
\end{equation}
Then p_Φ is a subalgebra of \mathfrak{g} that contains the Borel subalgebra (1.1), so it is a parabolic subalgebra of \mathfrak{g}.

1.11. Proposition. Let $p \subset \mathfrak{g}$ be a subalgebra that contains the Borel subalgebra $b = h + \sum_{\alpha \in \Sigma^+} \mathfrak{g}_{-\alpha}$ of \mathfrak{g}. Then there is a set Φ of simple roots such that $p = p_\Phi$.

Proof. Define $\Phi = \{ \psi \in \Psi \mid \mathfrak{g}_\psi \subset p \}$. Then $p_\Phi \subset p$, and we must prove $p \subset p_\Phi$. Both contain b, so this comes down to showing that $\alpha \in \Sigma^+$, $g_\alpha \subset p$ implies $n_{\psi}(\alpha) = 0$ whenever $\psi \in \Psi \setminus \Phi$. We will prove this by induction on the level $\ell(\alpha) = n_{\psi}(\alpha)$.

If $\ell(\alpha) = 1$ then α is simple, so $g_\alpha \subset p$ implies $\alpha \in \Phi$. Then $\psi \notin \Phi$ implies $\psi \neq \alpha$ so $n_{\psi}(\alpha) = 0$.

Now let $\ell(\alpha) = \ell_0 > 1$ and suppose that $n_{\psi}(\gamma) = 0$ for all $\psi' \in \Psi \setminus \Phi$, whenever $\gamma \in \Sigma^+$ and $\mathfrak{g}_\gamma \subset p$ with $\ell(\gamma) < \ell_0$. Suppose first that we can (and do) choose $\psi \in \Phi$ such that $\gamma = \alpha - \psi$ is a root. Then
\[
\mathfrak{g}_\gamma = [\mathfrak{g}_\alpha, \mathfrak{g}_{-\psi}] \subset [p, b^{-n}] \subset [p, p] \subset p.
\]
If $\psi' \in \Psi \setminus \Phi$, then $n_{\psi'}(\alpha) = n_{\psi'}(\gamma)$, which is zero by the induction hypothesis. Suppose second that we cannot (and do not) choose ψ from among the elements of Φ. Then
\[
\mathfrak{g}_\psi = [\mathfrak{g}_\alpha, \mathfrak{g}_{-\gamma}] \subset [p, b^{-n}] \subset [p, p] \subset p,
\]
so $\psi \in \Phi$, a contradiction. We have proved $n_{\psi}(\gamma) = 0$ for all $\psi' \in \Psi \setminus \Phi$. Proposition 1.11 is proved.

The **parabolic subgroup** $P \subset G$ corresponding to a parabolic subalgebra $p \subset \mathfrak{g}$ is defined to be the G–normalizer of p, that is,
\begin{equation}
(1.12) \quad P = \{ g \in G \mid \text{Ad}(g)p = p \}.
\end{equation}
The basic facts on parabolic subgroups are most easily derived from the corresponding results for Borel subgroups. However, the two notions were developed separately, and from different viewpoints, in the 1950’s.
1.13. Lemma. The parabolic subgroup $P \subset G$ defined by (1.12) has Lie algebra \mathfrak{p}. That group P is a closed connected subgroup of G, and P is its own normalizer in G. In particular, a Lie subgroup of G is parabolic if and only if it contains a Borel subgroup.

Proof. The argument of Lemma 1.3 shows that P has Lie algebra \mathfrak{p}, is closed and connected, and is equal to its own G–normalizer. Let $S \subset G$ be a Lie subgroup that contains a Borel subgroup B. Then its Lie algebra \mathfrak{s} contains \mathfrak{b}, hence is parabolic. As S is pinched between the analytic subgroup of G for \mathfrak{s} and the G–normalizer of \mathfrak{s}, which coincide because parabolic subgroups are closed and connected, now S is the parabolic subgroup of G for \mathfrak{s}. □

Let $B \subset P \subset G$ consist of a Borel subgroup contained in a parabolic subgroup. Then we have complex homogeneous quotient spaces $X = G/B$ and $Z = G/P$ and a G–equivariant holomorphic projection $X \twoheadrightarrow Z$ given by $gB \mapsto gP$. In particular, transitivity of G_u on X gives transitivity of G_u on Z in

1.14. Lemma. Let $G_u \subset G$ be a compact real form. Then G_u is transitive on $Z = G/P$, and Z has a G_u–invariant Kaehler metric. In particular Z has the structure of compact Kaehler manifold.

The argument of Lemma 1.4 is easily modified to prove the Kaehler statement in Lemma 1.14. Just take λ in the dual space of the center of \mathfrak{p}^\ast such that $\langle \lambda, \alpha \rangle > 0$ for all $\alpha \in \Phi^\ast$.

1.15. Lemma. Fix a standard parabolic subgroup $P = P_\Phi$ in G. Then there is a finite dimensional irreducible representation π of G with the property: let $[v]$ be the image of a lowest weight vector in the projective space $\mathbb{P}(V_\pi)$ corresponding to the representation space of π. Then the action of G on V_π induces a holomorphic action of G on $\mathbb{P}(V_\pi)$, and P is the G–stabilizer of $[v]$. In particular $Z = G/P$ is a complete projective variety.

Proof. We use the argument of Lemma 1.5, with a different choice of highest weight. Recall $\rho = \frac{1}{2} \sum_{\alpha} \alpha$ and set $\rho_\Phi = \frac{1}{2} \sum_{\Phi \cap \Sigma^+} \alpha$. If $\psi \in \Psi$ now $\frac{2(\rho_\Phi, \psi)}{(\psi, \psi)}$ is 1 if $\psi \in \Phi$, is 0 if $\psi \notin \Phi$. Now let π be the irreducible representation of G with lowest weight $-(\rho - \rho_\Phi)$, in other words highest weight $w(\rho - \rho_\Phi)$ where w is the element of the Weyl group that sends Σ^+ to its negative. Then the assertions are immediate. □

At this point we summarize, as follows.

1.16. Proposition. Let P be a complex Lie subgroup of G. Then the following conditions are equivalent. (1) G/P is a compact complex manifold. (2) G/P is a complete projective variety. (3) If G_u denotes a compact real form of G then G/P is a G_u–homogeneous compact Kaehler manifold. (4) G/P is the projective space orbit of an extremal weight vector in an irreducible finite dimensional representation of G. (5) G/P is a G–equivariant quotient manifold of G/B, for some Borel subgroup $B \subset G$. (6) P is a parabolic subgroup of G.

We will simply refer to these spaces $Z = G/P$ as complex flag manifolds.
References for §1.

§2. Intersections of Parabolics.

In order to examine the orbit structure of a complex flag manifold $Z = G/P$ under the action of a real form G_0 of G, we need to know that the intersection of any two parabolic subgroups of G contains a Cartan subgroup.

The Bruhat Lemma for the complex flag manifold $X = G/B$ is as follows. We may assume B given by (1.1) and (1.2). Consider the Weyl group $W = W(g, b) = N_G(H)/H$. Given $w \in W$ choose a representative $s_w \in N_G(H)$. Let $x_0 = 1B \in G/B = X$. The crudest form of the Bruhat decomposition is sufficient for our needs. Here is the statement; I won’t give a proof.

2.1. Lemma. X is the disjoint union of the B–orbits $B(s_w x_0), w \in W$.

In fact this decomposes X as a union of cells. To see that, one first notes that the isotropy subgroup of B at $s_w x_0$ is the analytic subgroup B_w of G with Lie algebra $b_w = \mathfrak{h} + \sum_{\beta \in \Sigma^+(\Sigma^+)} \mathfrak{g}_{-\beta}$. One then checks that this decomposes $B = N_w (B \cap B_w)$ where N_w is the unipotent analytic subgroup of G with Lie algebra

$$n_w = \sum_{\alpha \in \Sigma^+ \cap \Sigma^-} \mathfrak{g}_{-\alpha}.$$

Thus the map $\xi \mapsto \exp(\xi) s_w x_0$ gives a diffeomorphism of the real vector space n_w onto the orbit $B(s_w x_0)$.

2.2. Lemma. If P_1 and P_2 are parabolic subgroups of G then $P_1 \cap P_2$ contains a Cartan subgroup of G.

Proof. Let b and b' be Borel subalgebras of \mathfrak{g}. We will show that $b \cap b'$ contains a Cartan subalgebra of \mathfrak{g}. For this, we may assume that b is our standard Borel $\mathfrak{h} + \sum_{\alpha \in \Sigma^+} \mathfrak{g}_{-\alpha}$. Let B and B' be the corresponding Borel subgroups of G. Then B' is the G–stabilizer of a point $x' \in X = G/B$. Following the Bruhat Lemma 2.1 we may take $x' = b s_w x_0$ for some $b \in B$ and $w \in W$. Without loss of generality we conjugate by b^{-1}. Now we may assume $x' = s_w x_0$. Then $B' = \text{Ad}(s_w) B$ so $b' = \text{ad}(s_w) b$, which contains \mathfrak{g}.
If \(h \in H \) then \(h \) normalizes both \(b \) and \(b' \), so \(h \in B \cap B' \). Thus the intersection of two Borel subgroups contains a Cartan subgroup. The Lemma follows.

2.3. Corollary. Let \(\tau \) denote complex conjugation of \(\mathfrak{g} \) over a real form \(\mathfrak{g}_0 \). Let \(\mathfrak{p} \) be a parabolic subalgebra of \(\mathfrak{g} \). Then \(\mathfrak{p} \cap \mathfrak{p} \) contains a \(\tau \)-stable Cartan subalgebra of \(\mathfrak{g} \).

Proof. Set \(\mathfrak{q} = \mathfrak{p} \cap \mathfrak{p} \). It is a \(\tau \)-stable complex subalgebra of \(\mathfrak{g} \), so \(\mathfrak{g}_0 = \mathfrak{g}_0 \cap \mathfrak{q} \) is a real form of \(\mathfrak{q} \) and \(\tau \) induces the complex conjugation of \(\mathfrak{q} \) over \(\mathfrak{g}_0 \). Choose a Cartan subalgebra \(\mathfrak{j}_0 \) of \(\mathfrak{q}_0 \). Its complexification \(\mathfrak{j} \) is a Cartan subalgebra of \(\mathfrak{g} \). Lemma 2.2 says that \(\mathfrak{q} \) contains Cartan subalgebras of \(\mathfrak{g} \). Thus \(\mathfrak{j} \) is a \(\tau \)-stable Cartan subalgebra of \(\mathfrak{g} \). \(\square \)

References for §2.

§3. Real Group Actions.

Let \(G_0 \) be a real form of \(G \). In other words, \(G_0 \) is a Lie subgroup of \(G \) whose Lie algebra \(\mathfrak{g}_0 \) is a real form of \(\mathfrak{g} \). Although \(G \) is connected, \(G_0 \) does not have to be connected. We write \(\tau \) both for the complex conjugation of \(\mathfrak{g} \) over \(\mathfrak{g}_0 \) and for the corresponding conjugation of \(G \) over \(G_0 \).

Fix a parabolic subgroup \(P \subset G \) and let \(Z \) denote the corresponding complex flag manifold. Since \(P \) is its own normalizer in \(G \), we may view \(Z \) as the space of all \(G \)-conjugates of \(\mathfrak{p} \) by the correspondence \(gP \rightarrow \text{Ad}(g)\mathfrak{p} \). We will write \(\mathfrak{p}_z \) for the parabolic subalgebra of \(\mathfrak{g} \) corresponding to \(z \in Z \), and will write \(P_z \) for the corresponding parabolic subgroup of \(G \).

Here is the principal trick for dealing with \(G_0 \)-orbits on \(Z \). We will use it constantly. Consider the orbit \(G_0(z) \). The isotropy subgroup of \(G_0 \) at \(z \) is \(G_0 \cap P_z \). That isotropy subgroup has Lie algebra \(\mathfrak{g}_0 \cap \mathfrak{p}_z \), which is a real form of \(\mathfrak{p}_z \cap \mathfrak{p}_z \). Lemma 2.3 says that \(\mathfrak{p}_z \cap \mathfrak{p}_z \) contains a \(\tau \)-stable Cartan subalgebra \(\mathfrak{h} \) of \(\mathfrak{g} \). Now \(\mathfrak{p}_z \) contains a Borel subalgebra of \(\mathfrak{g} \) that contains \(\mathfrak{h} \). Express that Borel as \(\mathfrak{b} = \mathfrak{h} + \sum_{\alpha \in \Sigma^+} \mathfrak{g}_\alpha \), for an appropriate choice of positive root system \(\Sigma^+ = \Sigma^+(\mathfrak{g}, \mathfrak{h}) \). We have proved

3.1. Theorem. Let \(G_0 \) be a real form of the complex semisimple Lie group \(G \), let \(\tau \) denote complex conjugation of \(\mathfrak{g} \) over \(\mathfrak{g}_0 \), and consider an orbit \(G_0(z) \) on a complex flag manifold \(Z = G/P \). Then there exist a \(\tau \)-stable Cartan subalgebra \(\mathfrak{h} \subset \mathfrak{p}_z \) of \(\mathfrak{g} \), a positive root system \(\Sigma^+ = \Sigma^+(\mathfrak{g}, \mathfrak{h}) \), and a set \(\Phi \) of simple roots, such that \(\mathfrak{p}_z = \mathfrak{p}_h \) and \(P_z = P_h \).
3.2. Corollary. In the notation of Theorem 3.1, \(p_z \cap \tau p_z \) is the semidirect sum of its nilpotent radical

\[
(p^{-n}_\Phi \cap \tau p^{-n}_\Phi) + (p^r_\Phi \cap \tau p^r_\Phi) + (p^{-n}_\Phi \cap \tau p^r_\Phi)
\]

with the Levi complement

\[
p^r_\Phi \cap \tau p^r_\Phi = \mathfrak{h} + \sum_{\Phi \cap \tau \Phi^r} \mathfrak{g}_\Phi.
\]

In particular, \(\dim K \cap p_z = \dim C p^r_\Phi + |\Phi^n \cap \tau \Phi^n| \).

Proof. The subspace \((p^{-n}_\Phi \cap \tau p^{-n}_\Phi) + (p^r_\Phi \cap \tau p^r_\Phi) + (p^{-n}_\Phi \cap \tau p^r_\Phi)\) of \(p_\Phi \cap \tau p_\Phi \) is the sum of all root spaces \(\mathfrak{g}_\Phi \subset p_\Phi \cap \tau p_\Phi \) such that \(\Phi^- \subset \tau p \). So it is the nilradical of \(p_\Phi \cap \tau p_\Phi \). The subspace \(p^r_\Phi \cap \tau p^r_\Phi = \mathfrak{h} + \sum_{\Phi \cap \tau \Phi^r} \mathfrak{g}_\Phi \) is a reductive subalgebra that is a vector space complement, so it is a Levi complement. Now compute

\[
\dim K \cap p_z = \dim C p_\Phi \cap \tau p_\Phi = \dim C \mathfrak{h} + |(\Phi^+ \cap \Phi^n) \cap \tau(\Phi^+ \cap \Phi^n)|
\]

\[
= (\dim C \mathfrak{h} + |\Phi^r \cap \tau \Phi^r| + |\Phi^n \cap \tau \Phi^n| + |\Phi^r \cap \tau \Phi^n| + |\Phi^n \cap \tau \Phi^n|)
\]

\[
= \dim C p^r_\Phi + |\Phi^n \cap \tau \Phi^n|
\]

as asserted. \(\square \)

3.3. Corollary. In the notation of Theorem 3.1, \(\text{codim}_K(G_0(z) \subset Z) = |\Phi^n \cap \tau \Phi^n| \). In particular, \(G_0(z) \) is open in \(Z \) if and only if \(\Phi^n \cap \tau \Phi^n \) is empty.

Proof. In view of Corollary 3.2, the codimension in question is given by

\[
\text{codim}_K(G_0(z) \subset Z) = \dim K Z - \dim K G_0(z)
\]

\[
= 2|\Phi^n| - [\dim K G_0 - \dim K (G_0 \cap P_z)]
\]

\[
= 2|\Phi^n| - [(\dim C \mathfrak{h} + |\Phi^r| + 2|\Phi^n|) - (\dim C \mathfrak{h} + |\Phi^r| + |\Phi^n \cap \tau \Phi^n|)]
\]

\[
= |\Phi^n \cap \tau \Phi^n|
\]

as asserted. \(\square \)

3.4. Corollary. The number of \(G_0 \)-orbits on \(Z \) is finite. The maximal-dimensional orbits are open and the minimal-dimensional orbits are closed.

Proof. The number of \(G_0 \)-conjugacy classes of Cartan subalgebras \(\mathfrak{h}_0 \subset \mathfrak{g}_0 \) is finite. So the number of \(G_0 \)-conjugacy classes of \(\tau \)-stable Cartan subalgebras \(\mathfrak{h} \subset \mathfrak{g} \) is finite. Given such an \(\mathfrak{h} \), the number of positive root systems \(\Sigma^+ \) is finite. Given \((\mathfrak{h}, \Sigma^+) \), the number of sets \(\Phi \) of simple roots is finite. Thus the number of possibilities for \(P_\Phi \) is finite up to \(G_0 \)-conjugacy. This proves that the number of \(G_0 \)-orbits on \(Z \) is finite. It also gives a (very) rough upper bound on the number. The other statements follow because the closure of an orbit is a union of orbits. \(\square \)
References for §3.

§4. Open Orbits.

Fix a Cartan involution θ of \mathfrak{g}_0 and G_0. In other words θ is an automorphism of square 1 and, using $G_0 \subset G$ so that \mathfrak{g}_0 is semisimple and G_0 has finite center, the fixed point set $K_0 = G_0^\theta$ is a maximal compact subgroup of G_0. Thus $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{z}_0$ where \mathfrak{k}_0 is the Lie algebra of K_0 and is the $(+1)$-eigenspace of θ on \mathfrak{g}_0, and \mathfrak{z}_0 is the (-1)-eigenspace. The Killing form of \mathfrak{g}_0 is negative definite on \mathfrak{k}_0 and is positive definite on \mathfrak{z}_0, and $\mathfrak{k}_0 + \mathfrak{z}_0$ under the Killing form.

Every Cartan subalgebra of \mathfrak{g}_0 is $\textrm{Ad}(G_0)$-conjugate to a θ-stable Cartan subalgebra. A θ-stable Cartan subalgebra $\mathfrak{h}_0 \subset \mathfrak{g}_0$ is called fundamental if it maximizes $\dim (\mathfrak{h}_0 \cap \mathfrak{k}_0)$, compact if it is contained in \mathfrak{k}_0, which is a more stringent condition. More generally, a Cartan subalgebra of \mathfrak{g}_0 is called fundamental if it is conjugate to a θ-stable fundamental Cartan subalgebra.

4.1. Lemma. The following conditions are equivalent for a θ-stable Cartan subalgebra $\mathfrak{h}_0 \subset \mathfrak{g}_0$.

(i) \mathfrak{h}_0 is a fundamental Cartan subalgebra of \mathfrak{g}_0.
(ii) $\mathfrak{h}_0 \cap \mathfrak{k}_0$ contains a regular element of \mathfrak{g}_0, and
(iii) there is a positive root system $\Sigma^+ = \Sigma^+(\mathfrak{g}, \mathfrak{h})$, $\mathfrak{h} = \mathfrak{h}_0 \otimes \mathbb{C}$, such that $\tau \Sigma^+ = \Sigma^-$.

A θ-stable Cartan subalgebra $\mathfrak{h}_0 \subset \mathfrak{g}_0$ is compact if and only if $\tau \Sigma^+ = \Sigma^-$ for every positive root system $\Sigma^+(\mathfrak{g}, \mathfrak{h})$.

4.2. Theorem. Let $Z = G/P$ be a complex flag manifold, G semisimple and simply connected, and let G_0 be a real form of G. The orbit $G_0(z)$ is open in Z if and only if $\mathfrak{p}_z = \mathfrak{p}_0$ where

(i) $\mathfrak{p}_0 \cap \mathfrak{g}_0$ contains a fundamental Cartan subalgebra $\mathfrak{h}_0 \subset \mathfrak{g}_0$ and
(ii) Φ is a set of simple roots for a positive root system $\Sigma^+(\mathfrak{g}, \mathfrak{h})$, $\mathfrak{h} = \mathfrak{h}_0 \otimes \mathbb{C}$, such that $\tau \Sigma^+ = \Sigma^-$.

Fix $\mathfrak{h}_0 = \theta \mathfrak{h}_0$, $\Sigma^+(\mathfrak{g}, \mathfrak{h})$ and Φ as above. Let $W(\mathfrak{g}, \mathfrak{h})^{\mathfrak{h}_0}$ and $W(\mathfrak{p}_\Phi, \mathfrak{h})^{\mathfrak{h}_0}$ denote the respective subgroups of Weyl groups that stabilize \mathfrak{h}_0. Then the open G_0-orbits on Z are parameterized by the double coset space $W(\mathfrak{t}, \mathfrak{h} \cap \mathfrak{p}) \backslash W(\mathfrak{g}, \mathfrak{h})^{\mathfrak{h}_0} / W(\mathfrak{p}_z, \mathfrak{h})^{\mathfrak{h}_0}$.

4.3. Corollary. Suppose that G_0 has a compact Cartan subgroup, i.e. that \mathfrak{k}_0 contains a Cartan subalgebra of \mathfrak{g}_0. Then an orbit $G_0(z)$ is open in Z if and only if $\mathfrak{g}_0 \cap \mathfrak{p}_z$ contains a compact Cartan subalgebra \mathfrak{h}_0 of \mathfrak{g}_0, and then,
in the notation of Theorem 4.2, the open G_0-orbits on Z are parameterized by $W(\mathfrak{f}, \mathfrak{g}) \backslash W(\mathfrak{g}, \mathfrak{h}) / W(p_0^*, \mathfrak{h})$.

A careful examination of the way \mathfrak{f}_0 sits in both \mathfrak{f} and \mathfrak{g}_0 gives us

4.4. Theorem. Let $Z = G/P$ be a complex flag manifold, G semisimple and simply connected, and let G_0 be a real form of G. Let $z \in Z$ such that $G_0(z)$ is open in Z, and let $\mathfrak{h}_0 \subset \mathfrak{g}_0 \cap \mathfrak{p}_0$ be a stable fundamental Cartan subalgebra of \mathfrak{g}_0. Then $K_0(z)$ is a compact complex submanifold of $G_0(z)$. Let K be the complexification of K_0, analytic subgroup of G with Lie algebra $\mathfrak{f} = \mathfrak{f}_0 \oplus \mathbb{C}$. Then $K_0(z) = K(z) \cong K/(K \cap \mathfrak{p}_z)$, complex flag manifold of K.

The compact subvariety $K_0(z)$ controls the topology of an open orbit $G_0(z) \subset Z$, as follows. As we saw before, or by Corollary 4.3, the compact real form $G_u \subset G$ is transitive on Z. That gives us a realization $Z = G_u/V_u$ where $V_u \subset G_u$ is the centralizer there of a torus subgroup. In particular V_u is connected. As $G_0 \subset G$ now Z is compact and simply connected. In view of Theorem 4.4, one can apply this argument to the compact subvariety $K_0(z) \subset G_0(z)$; so it is simply connected. Now a deformation argument shows that the open orbit $G_0(z) \subset Z$ has $K_0(z)$ as a deformation retract, so $G_0(z)$ is simply connected. Thus one obtains

4.5. Proposition. Let $Z = G/P$ be a complex flag manifold, G semisimple and simply connected, and let G_0 be a real form of G. Let $z \in Z$ such that $G_0(z)$ is open in Z. Then $G_0(z)$ is simply connected and G_0 has connected isotropy subgroup $(P_z \cap \tau P_z)_0$ at z.

The compact subvariety $Y = K_0(z)$ also has a strong influence on the function theory for an open orbit $D = G_0(z) \subset Z$. The idea is that a holomorphic function on D must be constant on gY whenever $g \in G$ and $gY \subset D$, so if there are “too many” translates of Y inside D then that holomorphic function must be constant on D. But this has to be formulated carefully.

Let $Z = G/P$ be a complex flag manifold, G semisimple and simply connected, and let G_0 be a real form of G. Let $z \in Z$ such that $G_0(z)$ is open in Z. Then there are decompositions $G = G_1 \times \cdots \times G_m$ and $P = P_1 \times \cdots \times P_m$ with $P_i = P \cap G_i$ and each G_i simple. Consider the corresponding decompositions $Z = Z_1 \times \cdots \times Z_m$ with $Z_i = G_i/P_i$ and $z = (z_1, \ldots, z_m)$, $G_0 = G_{1,0} \times \cdots \times G_{m,0}$, $G_0(z) = G_{1,0}(z_1) \times \cdots \times G_{m,0}(z_m)$ and $K_0(z) = K_{1,0}(z_1) \times \cdots \times K_{m,0}(z_m)$. If

(i) $G_{i,0} \cap (P_i)_z = ((P_i)_z \cap \tau(P_i)_z)_0$ is compact, thus contained in $K_{i,0}$,

(ii) $G_{i,0}/K_{i,0}$ is an hermitian symmetric coset space, and

(iii) $G_{i,0}/K_{i,0}$ is holomorphic for one of the two invariant complex structures on $G_{i,0}/K_{i,0}$

then we set $L_i = K_i$ so $L_{i,0} = K_{i,0}$. Otherwise we set $L_i = G_i$ so $L_{i,0} = G_{i,0}$. Note that each $G_{i,0}/L_{i,0}$ is a bounded symmetric domain, irreducible or reduced to a point. Set $L = L_0 \times \cdots \times L_m$ so $L_0 = L_{1,0} \times \cdots \times L_{m,0}$. Then we say that

$$D(G_0, z) = G_0 / L_0 = (G_{1,0}/L_{1,0}) \times \cdots \times (G_{m,0}/L_{m,0})$$
is the bounded symmetric domain subordinate to $G_0(z)$. Now we can state a precise result for holomorphic functions on $G_0(z)$.

4.7. Theorem. Let $Z = G/P$ be a complex flag manifold, G semisimple and simply connected, and let G_0 be a real form of G. Let $z \in Z$ with $G_0(z)$ is open in Z. Let $D(G_0, z)$ be the bounded symmetric domain subordinate to $G_0(z)$. Then $\pi : g(z) \mapsto gL_0$ is a holomorphic map of $G_0(z)$ onto $D(G_0, z)$, and the holomorphic functions on $G_0(z)$ are just the $f = f \cdot \pi$ where $f : D(G_0, z) \to \mathbb{C}$ is holomorphic.

Thus, in most cases there are no nonconstant holomorphic functions on $G_0(z)$, but in fact this depends on some delicate structure.

References for §4.

§5. Example: Hermitian Symmetric Spaces.

In this section, $Z = G_u/K_0$ is an irreducible hermitian symmetric space of compact type. Thus $Z = G/P$ where G is a connected simply connected complex simple Lie group with a real form $G_0 \subset G$ of hermitian type, as follows. Fix a Cartan involution θ of G_0 and the corresponding eigenspace decomposition $g_0 = \mathfrak{t}_0 + \mathfrak{s}_0$ where \mathfrak{t}_0 is the Lie algebra of the fixed point set $K_0 = G_0^\theta$. Then $G_u \subset G$ is the compact real form of G that is the analytic subgroup for the compact real form $g_u = \mathfrak{t}_0 + \mathfrak{s}_u$ of g where $\mathfrak{s}_u = \sqrt{-1} \mathfrak{s}_0$ of \mathfrak{g}.

There is a compact Cartan subalgebra $t_0 \subset \mathfrak{t}_0$ of \mathfrak{g}_0. If $\alpha \in \Gamma(\mathfrak{g}, t)$ then either $\mathfrak{g}_\alpha \subset \mathfrak{t}$ and we say that the root α is compact, or $\mathfrak{g}_\alpha \subset \mathfrak{s}$ and we say that α is noncompact. There is a simple root system $\Psi = \{\psi_0, \ldots, \psi_m\}$ such that ψ_0 is noncompact and the other ψ_i are compact. Furthermore, ψ_0 is a long root, and every noncompact positive root is of the form $\psi_0 + \sum_{1 \leq i \leq m} n_i \psi_i$ with each integer $n_i \geq 0$. Thus $\mathfrak{g} = \mathfrak{t} + \mathfrak{s}^+ + \mathfrak{s}^-$ where

$$
\mathfrak{t} = t + \sum_{\gamma_0 > 0} \mathfrak{g}_{\gamma_0}, \mathfrak{s}^+ = \sum_{\gamma_0 = 1} \mathfrak{g}_{\gamma_0}, \text{ and } \mathfrak{s}^- = \sum_{\gamma_0 = -1} \mathfrak{g}_{\gamma_0}.
$$
Here \(p = p_{\psi_1, \ldots, \psi_m} \), in other words
\[
(5.2) \quad p^r = \ell^r, \quad p^s = s^s, \quad \text{and} \quad p^- = s^-; \quad \text{so} \quad p = \ell + s^-.
\]

The Cartan subalgebras of \(\mathfrak{g}_0 \) all are \(\text{Ad}(G_0) \)-conjugate to one of the \(h_{\Gamma,0} \) given as follows. Let \(\Gamma = \{ \gamma_1, \ldots, \gamma_r \} \) be a set of noncompact positive roots that is \textit{strongly orthogonal} in the sense that
\[
(5.3) \quad \text{if } 1 \leq i < j \leq r \text{ then none of } \pm \gamma_i \pm \gamma_j \text{ is a root.}
\]
Then each \(\mathfrak{g}[\gamma_i] = [g_{\gamma_i}, \mathfrak{g}_{-\gamma_i}] + \mathfrak{g}_{-\gamma_i} \cong \mathfrak{s}(2, \mathbb{C}), \text{ say with}
\begin{align*}
 h_{\gamma_i} &\sim \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e_{\gamma_i} \sim \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f_{\gamma_i} \sim \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},
\end{align*}
\]
where \(h_{\gamma_i} \in [g_{\gamma_i}, \mathfrak{g}_{-\gamma_i}], e_{\gamma_i} \in \mathfrak{g}_{\gamma_i} \) and \(f_{\gamma_i} \in \mathfrak{g}_{-\gamma_i} \) as usual, and such that \(\mathfrak{g}_0[\gamma_i] = \mathfrak{g}_0 \cap \mathfrak{g}_{\gamma_i} \cong \mathfrak{s}(1,1) \) is spanned by \(\sqrt{-1} h_{\gamma_i}, e_{\gamma_i} + f_{\gamma_i} \) and \(\sqrt{-1}(e_{\gamma_i} - f_{\gamma_i}). \) Thus \(\sqrt{-1} h_{\gamma_i} \) spans the compact Cartan subalgebra \(t_{\gamma_i} = \mathfrak{g}_0[\gamma_i] \cap \mathfrak{t} \) of \(\mathfrak{g}_0[\gamma_i] \) and \(e_{\gamma_i} + f_{\gamma_i} \) spans the noncompact Cartan subalgebra \(\mathfrak{a}_{\gamma_i} = \mathfrak{g}_0[\gamma_i] \cap \mathfrak{a} \) of \(\mathfrak{g}_0[\gamma_i]. \) Strong orthogonality (5.3) says \([\mathfrak{g}_{\gamma_i}, \mathfrak{g}_{\gamma_j}] = 0 \) for \(1 \leq i < j \leq r. \) Define
\[
(5.4) \quad t_{\Gamma} = \sum_{1 \leq i \leq r} t_{\gamma_i} \quad \text{and} \quad \mathfrak{a}_{\Gamma} = \sum_{1 \leq i \leq r} \mathfrak{a}_{\gamma_i}.
\]
Then \(\mathfrak{g} \) has Cartan subalgebras
\[
(5.5) \quad t = t_{\Gamma} + (t \cap t_{\Gamma}^\perp) \quad \text{and} \quad \mathfrak{h}_{\Gamma} = \mathfrak{a}_{\Gamma} + (t \cap t_{\Gamma}^\perp)
\]
They are \(\text{Int}(\mathfrak{g}) \)-conjugate, for the \textit{partial Cayley transform}
\[
(5.5) \quad \alpha_{\Gamma} = \prod_{1 \leq j \leq r} \exp \left(\frac{\pi}{4} \sqrt{-1} (e_{\gamma_j} - f_{\gamma_j}) \right) \text{ satisfies } \text{Ad}(\alpha_{\Gamma}) \mathfrak{h}_{\Gamma} = \mathfrak{a}_{\Gamma}.
\]
However, their real forms
\[
(5.6) \quad t_0 = \mathfrak{g}_0 \cap t \quad \text{and} \quad \mathfrak{h}_{\Gamma,0} = \mathfrak{g}_0 \cap \mathfrak{h}_{\Gamma}
\]
are not \(\text{Ad}(G_0) \)-conjugate except in the trivial case where \(\Gamma \) is empty, for the Killing form has rank \(m = \dim t_0 \) and signature \(2|\Gamma| - m \) on \(\mathfrak{h}_{\Gamma,0}. \) More precisely,

5.7. \textbf{Proposition.} \textit{Every Cartan subalgebra of } \(\mathfrak{g}_0 \) \textit{is } \(\text{Ad}(G_0) \)-\textit{conjugate to one of the } \(h_{\Gamma,0} \), \textit{and Cartan subalgebras } \(\mathfrak{h}_{\Gamma,0} \) \textit{and } \(\mathfrak{h}_{\Gamma',0} \) \textit{are } \(\text{Ad}(G_0) \)-\textit{conjugate if and only if the cardinalities } \(|\Gamma| = |\Gamma'|. \)

We recall Kostant’s “cascade construction” of a maximal set of strongly orthogonal noncompact positive roots in \(\Sigma(\mathfrak{g}, \mathfrak{t}). \) This set has cardinality \(\ell = \text{rank}_{\mathbb{R}} \mathfrak{g}_0 \) and is given by
\[
\Xi = \{ \xi_1, \ldots, \xi_\ell \}, \quad \text{where}
\begin{align*}
(5.8) \quad &\xi_1 \text{ is the maximal (necessarily noncompact positive) root and} \\
&\xi_{m+1} \text{ is a maximal noncompact positive root } - \{ \xi_1, \ldots, \xi_m \}.
\end{align*}
\]
The roots ξ are long, and any set of strongly orthogonal noncompact positive long roots in $\Sigma(\mathfrak{g}, \mathfrak{t})$ is $W(G_0, T_0)$-conjugate to a subset of Ξ. Further, the Weyl group $W(G_0, T_0)$ induces every permutation of Ξ.

Let $z_0 = 1 \cdot P \in G/P = Z$, the base point of our flag manifold Z when Z is viewed as a homogeneous space. The Cartan subalgebra $\mathfrak{h}_{T_0} \subset \mathfrak{g}_0$ leads to the orbits $G_0(c \mathfrak{c}_\Delta z_0) \subset Z$ where $\Gamma \cup \Delta$ is a set of strongly orthogonal noncompact positive roots in $\Sigma(\mathfrak{g}, \mathfrak{t})$ with Γ and Δ disjoint. In view of the Weyl group equivalence just discussed, we may take $\Gamma = \{\xi_1, \ldots, \xi_r\}$ and $\Delta = \{\xi_{r+1}, \ldots, \xi_{r+s}\}$, both inside Ξ. Using $G_0 = K_0 \exp(\alpha_{\Xi, 0}) K_0$ one arrives at

5.9. Theorem. The G_0-orbits on Z are just the orbits $D_{\Gamma, \Delta} = G_0(c \mathfrak{c}_\Delta z_0)$ where Γ and Δ are disjoint subsets of Ξ. Two such orbits $D_{\Gamma, \Delta} = D_{\Gamma', \Delta'}$ if and only if cardinalities $|\Gamma| = |\Gamma'|$ and $|\Delta| = |\Delta'|$. An orbit $D_{\Gamma, \Delta}$ is open if and only if Γ is empty, closed if and only if $(\Gamma, \Delta) = (\Xi, \emptyset)$. An orbit $D_{\Gamma, \Delta}$ is in the closure of $D_{\Gamma', \Delta'}$ if and only if $|\Delta'| \leq |\Delta|$ and $|\Gamma \cup \Delta| \leq |\Gamma \cup \Delta'|$

References for §5.

§6. The Closed Orbit.

There must be at least one closed G_0–orbit on Z, by Corollary 3.4. In the examples of §5 it is unique. We will see that it is unique in general and that it has some interesting structure.

First look at the case where $G = SL(2; \mathbb{C}), G_0 = SU(1, 1)$, and X is the Riemann sphere. G acts as usual by linear fractional transformations. Then

$$G_0 = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \bigg| |a|^2 - |b|^2 = 1 \right\}.$$
and are three G_0–orbits, as follows.

The interior of the unit disk $G_0(0)$:

$$P_0 = \left\{ \begin{pmatrix} a & 0 \\ c & a^{-1} \end{pmatrix} \right\} \quad \text{and} \quad H_0 = \left\{ \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \right\} \mid \theta \text{ real}.$$

The exterior of the unit disk $G_0(\infty)$:

$$P_\infty = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \right\} \quad \text{and} \quad H_0 = \left\{ \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \right\} \mid \theta \text{ real}.$$

\[(6.2) \quad \text{The unit circle } G_0(1):\]

$$P_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc = 1, a + b = c + d \right\}$$

so $p_1^{-1} = \left\{ \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} \right\}$, $p_1^{-n} = \left\{ \begin{pmatrix} -b & b \\ -c & c \end{pmatrix} \right\}$

and $H_0 = \left\{ \pm \begin{pmatrix} \cosh(t) & \sinh(t) \\ \sinh(t) & \cosh(t) \end{pmatrix} \right\} \mid t \text{ real}.$

The first two give the open orbits, with H_0 compact, and the third gives the closed orbit, where H_0 is the $T_0 A_0$ of an Iwasawa decomposition of G_0. That mirrors the general case for closed orbits:

\[6.3. \quad \text{Theorem.} \quad \text{Let } X = G/P \text{ be a complex flag manifold and let } G_0 \text{ be a real form of } G. \text{ Then there is a unique closed orbit } G_0(z) \subset Z. \text{ Further, there is an Iwasawa decomposition } G_0 = K_0 A_0 N_0 \text{ such that } G_0 \cap P_z \text{ contains } H_0 N_0 \text{ whenever } H_0 \text{ is a Cartan subgroup of } G_0 \text{ that contains } A_0. \text{ (In other words, whenever } H_0 = T_0 A_0 \text{ where } T_0 \text{ is a Cartan subgroup of the } K_0 \text{-centralizer } M_0 \text{ of } A_0.)\]

Proof. We first consider the case where $P = B$, Borel subgroup of G. Fix a closed orbit $G_0(x) \subset X$. Then $G_0(x)$ is compact. I claim that $G_0 \cap B_x$ contains the $A_0 N_0$ of an Iwasawa decomposition $G_0 = K_0 A_0 N_0$. Let $H_0' \subset G_0 \cap B_x$ be a Cartan subgroup. Suppose that it is not conjugate to the $T_0 A_0$ of a fixed minimal parabolic subalgebra $g_0 = m_0 + a_0 + n_0 \subset g_0$. Replacing g_0 by a G_0–conjugate we then have $H_0' = T_0' A_0'$ with $T_0' \subset T_0 \subset \text{rel}_0$ and $A_0' \subset A_0$. Then we have a root $\alpha \in \Sigma = \Sigma(\mathfrak{g}, \mathfrak{h})$ that vanishes on t, and such that the intersection of

\[(6.4) \quad g[\alpha] = \mathfrak{g}_\alpha + \mathfrak{g}_{-\alpha} + [\mathfrak{g}_\alpha, \mathfrak{g}_{-\alpha}] \]

with \mathfrak{h} is contained in α while the intersection with \mathfrak{h}' is contained in α'. This is exactly the example of (6.1) and (6.2). Now the orbit $G[\alpha](x)$, which is a Riemann sphere, intersects $G_0(x)$ in an open hemisphere. That contradicts our hypothesis that $G_0(x)$ is closed in X. We have proved2 that $G_0 \cap B_x$ contains the $T_0 A_0$ of an Iwasawa decomposition of G_0.

2Here is a shorter, but less elementary, proof. $A_0 N_0$ is a solvable group acting birationally on the complete variety $G_0(x)$, so it has a fixed point by a theorem of Borel. If $g(x)$ is that fixed point then $Ad(g^{-1})(A_0 N_0)$ fixes x.
Denote complexification by dropping the subscript 0. Since \(T_0 A_0 \subseteq B_x \) now \(B_x = B_{M,x} A N \) where \(B_{M,x} \) is a Borel subgroup of \(M = Z_K(A) \). It follows that \(G_0 \cap B_x = T_0 A_0 N_0 \). Now let \(G_0(x') \) be another closed orbit on \(X \). Then \(B_{x'} = B_{M',x'} A' N' \) for another Iwasawa decomposition \(G_0 = K_0' A_0' N_0' \) and a choice of Borel subgroup \(B_{M',x'} \subseteq M' \). But any two Iwasawa decompositions of \(G_0 \) are conjugate by an element of \(G_0 \), and using compactness of \(M_0 \) we have that any two Borel subalgebras of \(M \) are conjugate by an element of \(M_0 \). Thus \(x' \in G_0(x) \) and \(G_0(x) = G_0(x') \).

We have proved uniqueness of the closed orbit when \(P \) is a Borel subgroup of \(G \). For the general case, choose a Borel subgroup \(B \subseteq P \) and note that the \(G \)-equivariant holomorphic fibration \(\pi : X = G/B \rightarrow G/P = Z \) has compact fibres. Now the closed \(G \)-orbits in \(Z \) are just the \(\pi(G_0(x)) \) where \(G_0(x) \) is a closed \(G \)-orbit in \(X \). The latter is unique. This completes the proof. \(\Box \)

Another interesting fact about the structure and geometry of closed orbits is

6.5. Theorem. Let \(Z = G/P \) be a complex flag manifold and let \(G_0 \) be a real form of \(G \). Let \(G_0(z) \) be the unique closed \(G_0 \)-orbit on \(Z \). Then \(\dim \mathbb{R} G_0(z) \geq \dim \mathbb{C} Z \), and the following conditions are equivalent.

1. \(\dim \mathbb{R} G_0(z) = \dim \mathbb{C} Z \).
2. \(\pi \Phi^n = \Phi^n \).
3. View \(G \) as the group of complex points, and \(G_0 \) as an open subgroup in the group of real points, of a linear algebraic group defined over \(\mathbb{R} \). Then \(P_z \) is the group of complex points in an algebraic subgroup defined over \(\mathbb{R} \).
4. \(Z \) is the set of complex points in a projective variety defined over \(\mathbb{R} \), and \(G_0(z) \) is the set of real points.

References for §6.

In this part we combine the Bott–Borel–Weil Theorem with unitary induction, realizing the unitary principal series on the closed orbit, in order to indicate the pattern used later for geometric realization of the standard tempered representations.

§7. Principal Series and the Closed Orbit.

In order to introduce the connection between unitary representations of \(G_0 \) and \(G_0 \)-orbits on the complex flag manifold \(Z = G/P \), we look at the principal series of \(G_0 \).

A subalgebra \(q_0 \subseteq g_0 \) is a parabolic subalgebra of \(g_0 \) if it is a real form of a parabolic subalgebra \(q \subseteq g \). A subgroup \(Q_0 \subseteq G_0 \) is a parabolic subgroup of \(G_0 \) if it is a real form of a parabolic subgroup \(Q \subseteq G \), that is, if \(Q_0 = G_0 \cap Q \).
and its Lie algebra \mathfrak{g}_0 is a parabolic subalgebra of \mathfrak{g}_0. For example, fix an Iwasawa decomposition $G_0 = K_0 A_0 N_0$, and let $M_0 = Z_{G_0}(A_0)$, as usual. Then $Q_0 = M_0 A_0 N_0$ is minimal among the parabolic subgroups of G_0 and is called a minimal parabolic subgroup. From the construction, any two minimal parabolic subgroups of G_0 are conjugate. Now fix a minimal parabolic subgroup $Q_0 = M_0 A_0 N_0$.

Whenever E is a topological group we write \hat{E} for its unitary dual. Thus \hat{E} consists of the unitary equivalence classes of (strongly continuous) topologically irreducible unitary representations of E. Now $[\eta] \in \widehat{M_0}$ and $\sigma \in \mathfrak{a}_0^*$ determine $[\alpha_{\eta, \sigma}] \in \widehat{Q_0}$ by

$$
\alpha_{\eta, \sigma}(\text{man}) = \eta(m) e^{i\sigma(\log z)}.
$$

(7.1)

The corresponding principal series representation of G_0 is

$$
\pi_{\eta, \sigma} = \text{Ind}_{Q_0}^{G_0}(\alpha_{\eta, \sigma}), \quad \text{unitarily induced representation}.
$$

(7.2)

The principal series of G_0 consists of the unitary equivalence classes of these representations. A famous result of Bruhat says that if σ satisfies a certain nonsingularity condition then $\pi_{\eta, \sigma}$ is irreducible.

In order to realize the principal series of G_0 on closed orbits, we need the Bott-Borel-Weil Theorem for M_0. We have to be careful here because the compact group M_0 need not be connected. We will first decompose M_0 as the product $Z_{M_0}(M_0^0)M_0^0$ where M_0^0 is its identity component, then indicate the analog of the Cartan highest weight description for $\widehat{M_0}$. That done, the standard Bott-Borel-Weil Theorem for M_0^0 will carry over to M_0.

Choose a Cartan subgroup $T_0 \subset M_0$. It specifies a Cartan subgroup $H_0 = T_0 A_0 \cong T_0 \times A_0$ in G_0. Our choice of Q_0 specifies a choice of positive restricted root system $\Sigma^+(g_0, a_0)$: the Lie algebra of N_0 is given by $n_0 = \sum_{\alpha \in \Sigma^+(g_0, a_0)}(g_0)\alpha$. Now any positive root system $\Sigma^+(m, t)$ specifies a positive system $\Sigma^+(g, h)$ by

$$
\alpha \in \Sigma^+(g, h) \text{ if and only if } \alpha|_{\mathfrak{a}_0} = 0 \text{ and } \alpha|_t \in \Sigma^+(m, t)
$$

or $\alpha|_{\mathfrak{a}_0} \neq 0$ and $\alpha|_{\mathfrak{a}_0} \in \Sigma^+(g_0, a_0)$.

(7.3)

7.4. Lemma. $M_0 = Z_{M_0}(M_0^0)M_0^0$. Given a unitary representation class $[\eta] \in \widehat{M_0}$, there exist unique classes $[\chi] \in Z_{M_0}(M_0^0)$ and $[\eta^0] \in \widehat{M_0^0}$ such that $[\eta] = [\chi \otimes \eta^0]$, and $[\chi]$ and $[\eta^0]$ restrict to multiples of the same unitary character on the center of M_0^0.

Remark. The argument will show that T_0 meets every topological component of M_0.

Proof. The first assertion is equivalent to: if $m \in M_0$ then the coset $m M_0^0$ meets $Z_{M_0}(M_0^0)$. Replacing m by some mm' with $m' \in M_0^0$ we may assume
that $\text{Ad}(m)$ preserves both T_0 and a positive root system $\Sigma^+(m,t)$. By definition of M_0, $\text{Ad}(m)$ acts trivially on A_0, so it preserves the positive restricted root system $\Sigma^+(\mathfrak{g}_0,\mathfrak{a}_0)$. Now $\text{Ad}(m)$ preserves the positive root system $\Sigma^+(\mathfrak{g},\mathfrak{h})$ defined in (7.3). Thus m centralizes \mathfrak{h}, that is, $m \in H$. Now $m \in M_0 \cap H = T_0$. In particular $\text{Ad}(m)$ induces an inner automorphism on M_0^0. Thus mM_0^0 meets $Z_{M_0}(M_0^0)$, as claimed.

The second assertion follows from the first. \hfill \Box

Let Ψ_m denote the set of simple roots in $\Sigma^+(m,t)$. Every subset $\Phi \subset \Psi_m$ defines

\[\Phi = \{ \xi \in \Phi \mid \phi(\xi) = 0 \text{ for all } \phi \in \Phi \} \]

and $\Phi_0 = m_0 \cap \Phi$, real form of Φ.

\[U_\Phi = Z_M(\Phi), U_{\Phi_0} = M_0 \cap U_\Phi, \text{ and their Lie algebras } u_\Phi \text{ and } u_{\Phi_0}, \]

(7.5) $\tau_\Phi = u_\Phi + \sum_{\gamma \in \Sigma^+(m,t)} m_{-\gamma}$, parabolic subalgebra of m

$R_\Phi = N_M(\tau_\Phi)$, corresponding parabolic subgroup of M, and

$S_\Phi = M/R_\Phi$, associated complex flag manifold.

Lemma 7.4 holds for U_{Φ_0} By Lemma 1.14, M_0 acts transitively on S_Φ, so $M_0 \cap R_\Phi = U_{\Phi_0}$ implies

\[(7.6) \text{ Lemma. } S_\Phi \text{ is a compact homogeneous Kaehler manifold under the action of } M_0, \text{ and } S_\Phi = M_0/U_{\Phi_0} \text{ as coset space. Furthermore } U_{\Phi_0} = Z_{M_0}(M_0)U_{\Phi_0}, \text{ so } \widetilde{U}_{\Phi_0} \text{ decomposes as does } \widetilde{M}_0 \text{ in Lemma 7.4.} \]

An irreducible unitary representation μ of U_{Φ_0}, say with representation space V_{μ}, gives us

\[V_{\mu} \rightarrow S_\Phi : U_{\Phi_0} \text{-homogeneous, hermitian, holomorphic vector bundle,} \]

(7.7) $A^{p,q}(S_\Phi;V_{\mu})$: space of $C^\infty V_{\mu}$-valued (p,q)-forms on S_Φ, \n
$\mathcal{O}(V_{\mu})$: sheaf of germs of holomorphic sections of $V_{\mu} \rightarrow S_\Phi$.

If $T \rightarrow S_\Phi$ is the holomorphic tangent bundle then $A^{p,q}(S_\Phi;V_{\mu})$ is the space of C^∞ sections of

(7.8) $V_{\mu}^{p,q} = V_{\mu} \otimes \Lambda^p(T^*) \otimes \Lambda^q(T^*) \rightarrow S_\Phi$.

As M_0 is compact, $V_{\mu}^{p,q}$ has an M_0-invariant hermitian metric, so we also have the Hodge–Kodaira orthocomplementation operators

(7.9) $\sharp: A^{p,q}(S_\Phi;V_{\mu}) \rightarrow A^{n-p,n-q}(S_\Phi;V_{\mu}^*)$

and $\sharp^\ast: A^{n-p,n-q}(S_\Phi;V_{\mu}^*) \rightarrow A^{p,q}(S_\Phi;V_{\mu})$

where $n = \dim_{\mathbb{C}} S_\Phi$. The global M_0-invariant hermitian inner product on $A^{p,q}(S_\Phi;V_{\mu})$ is given by taking the inner product in each fibre of $V_{\mu}^{p,q}$ and integrating over S_Φ. It can also be expressed in terms of the \sharp operator,

(7.10) $\langle F_1, F_2 \rangle_{S_\Phi} = \int_{M_0} \langle F_1, F_2 \rangle_{mU_{\Phi_0}} dmU_{\Phi_0} = \int_{S_\Phi} F_1 \wedge \sharp F_2$.

where \wedge means exterior product followed by contraction of V_μ against V_μ^*. The last equality of (7.10) is essentially the definition of \mathfrak{g}. Now the Cauchy–Riemann operator

$$
\overline{\partial}: A^{p,q}(S_\Phi; V_\mu) \to A^{p,q+1}(S_\Phi; V_\mu)
$$

has formal adjoint

$$
(7.11) \quad \overline{\partial^*} : A^{p,q+1}(S_\Phi; V_\mu) \to A^{p,q}(S_\Phi; V_\mu)
$$

given by $\overline{\partial^*} = -i\overline{\partial}^*$. That in turn defines an operator that is elliptic along each gS_Φ, the Kodaira–Hodge–Laplace operator

$$
(7.12) \quad \Box = \partial \overline{\partial}^* + \overline{\partial}^* \partial : A^{p,q}(S_\Phi; V_\mu) \to A^{p,q}(S_\Phi; V_\mu).
$$

We have the space of square integrable V_μ–valued (p,q)–forms on S_Φ,

$$
(7.13) \quad L^p,q_2(S_\Phi; V_\mu) := L^2 \text{ completion of } A^{p,q}(S_\Phi; V_\mu) \text{ for the inner product (7.10)}.
$$

Weyl’s Lemma says that the closure of $\overline{\Box}$ of \Box, as a densely defined operator on $L^p,q_2(S_\Phi; V_\mu)$ from the domain $A^{p,q}(S_\Phi; V_\mu)$, is essentially self–adjoint. Its kernel

$$
(7.14) \quad \mathcal{H}^{p,q}_2(S_\Phi; V_\mu) = \{ \omega \in \text{ Domain}(\Box) | \Box \omega = 0 \}
$$

is the space of square integrable harmonic (p,q)–forms on S_Φ with values in V_μ. Harmonic forms are smooth by elliptic regularity, i.e., $\mathcal{H}^{p,q}_2(S_\Phi; V_\mu) \subset \mathcal{H}^{p,q}(S_\Phi; V_\mu)$. Everything is invariant under the action of M_0, and the natural action of the group M_0 on $\mathcal{H}^{p,q}_2(S_\Phi; V_\mu)$ is a unitary representation.

We write $\mathcal{H}^{p,q}_2(S_\Phi; V_\mu)$ for $\mathcal{H}^{p,q}_2(S_\Phi; V_\mu)$, because those are the only harmonic spaces that we will use, and because $\mathcal{H}^{p,q}_2(S_\Phi; V_\mu)$ is naturally isomorphic to the sheaf cohomology $H^q(S_\Phi, \mathcal{O}(V_\mu))$.

Just to avoid confusion, we state some conventions explicitly. We will use (unless we state otherwise) χ for representations of $Z_{M_0}(M_0^0)$. We will use μ for representations of $U_{\Phi,0}$ and μ^0_Φ for representations of its identity component $U_{\Phi,0}^0$, ρ_{Φ} for half the sum of the roots in $\Sigma^+(u_\Phi, t)$, and μ_β^0 for the irreducible representation of $U_{\Phi,0}$ of highest weight $\beta - \rho_{u_\Phi}$ (corresponding to infinitesimal character β). Similarly, we will use η for representations of M_0 and η^0_ν for representations of its identity component M_0^0, ρ_m for half the sum of the roots in $\Sigma^+(m, t)$, and η^0_ν for the irreducible representation of M_0^0 of highest weight $\nu - \rho_m$ (corresponding to infinitesimal character ν). With these conventions, the Bott–Borel–Weil Theorem for M_0 is
7.15. Theorem. Let \([\mu] = [\chi \otimes \mu_0^g] \in U_{\Phi,0}^\circ\) and fix an integer \(q \geq 0\).

1. If \([\beta - \rho_{u_0} + \rho_m, \alpha] = 0\) for some \(\alpha \in \Sigma(m, t)\) then \(\mathcal{H}^q(\mathcal{S}_\Phi; V_\mu) = 0\).

2. If \([\beta - \rho_{u_0} + \rho_m, \alpha] \neq 0\) for all \(\alpha \in \Sigma(m, t)\), let \(w\) be the unique element in \(W(m, t)\) such that \(\nu = w(\beta - \rho_{u_0} + \rho_m)\) is in the positive Weil chamber, i.e., satisfies \((\nu, \alpha) > 0\) for all \(\alpha \in \Sigma^+(m, t)\). So \(q_0 = \text{length}(w) = \lfloor \{\alpha \in \Sigma^+(m, t) | (\beta - \rho_{u_0} + \rho_m, \alpha) < 0\}\rfloor\). Then \(\mathcal{H}^q(\mathcal{S}_\Phi; V_\mu) = 0\) for \(q \neq q_0\), and \(M_0\) acts irreducibly on \(\mathcal{H}^q(\mathcal{S}_\Phi; V_\mu)\) by \([\chi \otimes \eta^g]\).

Fix \([\mu] = [\chi \otimes \mu_0^g] \in U_{\Phi,0}^\circ\) as before. Given \(\sigma \in a^\circ\) we will use the Bott–Borel–Weil Theorem to find the principal series representation \(\pi_{\chi \otimes \eta^g, \sigma}\) on a cohomology space related to the closed orbit in the complex flag manifold \(Z_\Phi = G/P_\Phi\). Here the simple root system \(\Psi_m \subset \Psi\) by the coherence in our choice of \(\Sigma^+(g, \mathfrak{h})\), so \(\Phi \subset \Psi\) and \(\Phi\) defines a parabolic subgroup \(P_\Phi \subset G\).

Let \(z_\Phi = 1P_\Phi \in G/P_\Phi = Z_\Phi\). As \(A_0N_0 \subset G_0 \cap P_\Phi\) we have \(G_0 \cap P_\Phi = U_{\Phi,0}^\circ A_0N_0\). Thus \(Y_\Phi = G_0(z_\Phi)\) is the closed \(G_0\)-orbit on \(Z_\Phi\), and \(S_\Phi\) sits in \(Y_\Phi\) as the orbit \(M_0(z_\Phi)\). Here note that \(Q_0 = M_0A_0N_0 = \{g \in G_0 | gS_\Phi = S_\Phi\}\).

7.16. Lemma. The map \(Y_\Phi \to G_0/Q_0\), given by \(g(z_\Phi) \mapsto gQ_0\), defines a \(G_0\)-equivariant fibre bundle with structure group \(M_0\) and whose fibres \(gS_\Phi\) are the maximal complex analytic submanifolds of \(Y_\Phi\).

The data \((\mu, \sigma)\) defines a representation \(\gamma_{\mu, \sigma}\) of \(U_{\Phi,0}^\circ A_0N_0\) by

\[
\gamma_{\mu, \sigma}(uan) = e^{(\rho_\Phi + i\sigma)(\log s)} \mu(u) \quad \text{where} \quad \rho_\Phi = \frac{1}{2} \sum_{\alpha \in \Sigma^+} \mathfrak{g}_\alpha.
\]

That defines a \(G_0\)-homogeneous complex vector bundle

\[
\mathcal{V}_{\mu, \sigma} \to G_0/U_{\Phi,0}^\circ A_0N_0 = Y_\Phi \quad \text{such that} \quad \mathcal{V}_{\mu, \sigma}|_{S_\Phi} = \mathcal{V}_\mu.
\]

Each \(\mathcal{V}_{\mu, \sigma}|_{S_\Phi}\) is an \(\text{Ad}(g)Q_0\)-homogeneous holomorphic vector bundle.

Since \([\mu]\) is unitary and \(K_0\) acts transitively on \(G_0/Q_0\) we have a \(K_0\)-invariant hermitian metric on \(\mathcal{V}_{\mu, \sigma}\). We will use it without explicit reference.

Consider the subbundle \(\mathcal{T} \to Y_\Phi\) of the complexified tangent bundle of \(Y_\Phi\), defined by

\[
\mathcal{T}|_{S_\Phi} \to gS_\Phi\] is the holomorphic tangent bundle of \(gS_\Phi\).

It defines

\[
\mathcal{V}^{p,q}_{\mu, \sigma} = \mathcal{V}_{\mu, \sigma} \otimes \mathcal{A}^p(T^\ast) \otimes \mathcal{A}^q(T) \to Y_\Phi,
\]

\[
\mathcal{A}^{p,q}(Y_\Phi; \mathcal{V}_{\mu, \sigma}) : C^\infty \text{ sections of } \mathcal{V}^{p,q}_{\mu, \sigma} \to Y_\Phi, \quad \text{and}
\]

\[
\mathcal{O}(\mathcal{V}_{\mu, \sigma}) : \text{sheaf of germs of } C^\infty \text{ sections of } \mathcal{V}_{\mu, \sigma} \to Y_\Phi
\]

that are holomorphic over every \(gS_\Phi\).

\(\mathcal{A}^{p,q}(Y_\Phi; \mathcal{V}_{\mu, \sigma})\) is the space of \(\mathcal{V}_{\mu, \sigma}\)-valued partially \((p, q)\)-forms on \(Y_\Phi\).

The fibre \(V_\mu\) of \(\mathcal{V}_{\mu} \to S_\Phi\) has a positive definite \(U_{\Phi,0}^\circ\)-invariant hermitian inner product because \(\mu\) is unitary; we translate this around by \(K_0\) to obtain a
K_0–invariant hermitian structure on the vector bundle $V^{p,q}_{\mu,\sigma} \to Y_\Phi$. Similarly $T \to Y_\Phi$ carries a K_0–invariant hermitian metric. Using these hermitian metrics we have K_0–invariant Hodge–Kodaira orthocomplementation operators

$$
\begin{align*}
\mathcal{T} : & \ A^{p,q}(Y_\Phi; V_{\mu,\sigma}) \to A^{n-p,n-q}(Y_\Phi; V_{\mu,\sigma}) \\
\mathcal{T}^* : & \ A^{n-p,n-q}(Y_\Phi; V_{\mu,\sigma}) \to A^{p,q}(Y_\Phi; V_{\mu,\sigma})
\end{align*}
$$

(7.19)

where $n = \dim C S_\Phi$. The global G_0–invariant hermitian inner product on $A^{p,q}(Y_\Phi; V_{\mu,\sigma})$ is given by taking the M_0–invariant inner product along each fibre of $Y_\Phi \to G_0/Q_0$ and integrating over G_0/Q_0,

$$
(F_1, F_2)_{Y_\Phi} = \int_{G_0/Q_0} \iint_{S_\Phi} F_1 \wedge^* F_2 \ d(k M_0).
$$

where \wedge means exterior product followed by contraction of V_μ against V^*_μ.

The \mathcal{T} operator of Z_Φ induces the \mathcal{T} operators on each of the gS_Φ, so they fit together to give us an operator

$$
\mathcal{T} : A^{p,q}(Y_\Phi; V_{\mu,\sigma}) \to A^{p,q+1}(Y_\Phi; V_{\mu,\sigma})
$$

that has formal adjoint

$$
\mathcal{T}^* : A^{p,q+1}(Y_\Phi; V_{\mu,\sigma}) \to A^{p,q}(Y_\Phi; V_{\mu,\sigma})
$$

(7.21b)

That in turn defines an elliptic operator, the “partial Kodaira–Hodge–Laplace operator”

$$
\square = \mathcal{T} \mathcal{T}^* + \mathcal{T}^* \mathcal{T} : A^{p,q}(Y_\Phi; V_{\mu,\sigma}) \to A^{p,q}(Y_\Phi; V_{\mu,\sigma}).
$$

$A^{p,q}(Y_\Phi; V_{\mu,\sigma})$ is a pre Hilbert space with the global inner product (7.20).

Denote

$$
L^{p,q}_T(Y_\Phi; V_{\mu,\sigma}) : \text{Hilbert space completion of } A^{p,q}(Y_\Phi; V_{\mu,\sigma}).
$$

Apply Weyl’s Lemma along each gS_Φ to see that the closure of \square of \square, as a densely defined operator on $L^{p,q}_T(Y_\Phi; V_{\mu,\sigma})$ from the domain $A^{p,q}(Y_\Phi; V_{\mu,\sigma})$, is essentially self–adjoint. Its kernel

$$
\mathcal{H}^{p,q}_L(Y_\Phi; V_{\mu,\sigma}) = \{ \omega \in \text{Domain}(\square) \mid \square \omega = 0 \}
$$

(7.23)

is the space of square integrable partially harmonic (p, q)–forms on Y_Φ with values in $V_{\mu,\sigma}$.

The factor $e^{\gamma_{\mu,\sigma}}$ in the representation $\gamma_{\mu,\sigma}$ that defines $V_{\mu,\sigma}$ insures that the global inner product on $A^{p,q}(Y_\Phi; V_{\mu,\sigma})$ is invariant under the action of G_0. The other ingredients in the construction of $\mathcal{H}^{p,q}_L(Y_\Phi; V_{\mu,\sigma})$ are invariant as well, so G_0 acts naturally on $\mathcal{H}^{p,q}_L(Y_\Phi; V_{\mu,\sigma})$ by isometries. This action is a unitary representation of G_0.

Essentially as before, we write $\mathcal{H}^0_L(Y_\Phi; V_{\mu,\sigma})$ for $\mathcal{H}^{0,0}_L(Y_\Phi; V_{\mu,\sigma})$, because those are the only harmonic spaces that we will use, and because $\mathcal{H}^0_L(Y_\Phi; V_{\mu,\sigma})$ is closely related to the sheaf cohomology $H^q(Y_\Phi, \mathcal{O}(V_{\mu,\sigma}))$. The relation, which we will see later, is that they have the same underlying Harish–Chandra module.

We can now combine the Bott–Borel–Weil Theorem 7.15 with the definition ((7.1) and (7.2)) of the principal series, obtaining
7.24. Theorem. Let $[\mu] = [\chi \otimes \rho^0_{\beta}] \in \widehat{\mathfrak{g}_0}$ and $\sigma \in \mathfrak{a}_0^*$, and fix an integer $q \geq 0$.
1. If $\langle \beta - \rho_{\mathfrak{u}_0} + \rho_{\mathfrak{m}}, \alpha \rangle = 0$ for some $\alpha \in \Sigma(m,t)$ then $H^q_{\mathfrak{g}_0}(Y_{\mathfrak{g}_0};\mathcal{V}_{\mu,\sigma}) = 0$.
2. If $\langle \beta - \rho_{\mathfrak{u}_0} + \rho_{\mathfrak{m}}, \alpha \rangle \neq 0$ for all $\alpha \in \Sigma(m,t)$, let w be the unique element in $W(m,t)$ such that $v = w(\beta - \rho_{\mathfrak{u}_0} + \rho_{\mathfrak{m}})$ is in the positive Weyl chamber, i.e. satisfies $\langle \nu, \alpha \rangle > 0$ for all $\alpha \in \Sigma(m,t)$. So $q_0 = \text{length}(w) = |\{\alpha \in \Sigma^+(m,t) \mid \langle \beta - \rho_{\mathfrak{u}_0} + \rho_{\mathfrak{m}}, \alpha \rangle < 0\}|$. Then $H^q_{\mathfrak{g}_0}(Y_{\mathfrak{g}_0};\mathcal{V}_{\mu,\sigma}) = 0$ for $q \neq q_0$, and the natural action of G_0 on $H^q_{\mathfrak{g}_0}(Y_{\mathfrak{g}_0};\mathcal{V}_{\mu,\sigma})$ is the principal series representation $\pi_{\chi \otimes \rho^0_{\beta},\sigma}$.

References for §7.

PART 3. TEMPERED SERIES AND THE PLANCHEREL FORMULA.

In this Part we indicate the basic facts on tempered representations and see just how the tempered series suffice for harmonic analysis on the real group.

§8. THE DISCRETE SERIES.

We recall the definition and Harish-Chandra parametrization of the discrete series for reductive Lie groups. This can be viewed as a noncompact group version of Cartan’s theory of the highest weight for representations of compact Lie groups.

The discrete series of a unimodular locally compact group G_0 is the subset $\widehat{G_{0,d}} \subset \widehat{G_0}$ consisting of all classes $[\pi]$ for which π is equivalent to a subrepresentation of the left regular representation of G_0. The following are equivalent: (i) π is a discrete series representation of G_0, (ii) every coefficient $f_{u,v}(x) = \langle u, \pi(x)v \rangle$ belongs to $L^2(G_0)$, (iii) for some nonzero u, v in the representation space H_π, the coefficient $f_{u,v} \in L^2(G_0)$. Then one has orthogonality relations much as in the case of finite groups: there is a real number $\deg(\pi) > 0$
such that the $L^2(G_0)$-inner product of coefficients of π is given by

\[\langle f_{u,v} f_{s,t} \rangle = \frac{1}{\text{deg}(\pi)} \langle u,s \rangle \langle v,t \rangle \text{ for } s,t,u,v \in H_\pi. \]

Furthermore, if π' is another discrete series representation of G_0, and is not equivalent to π, then

\[\langle f_{u,v} f_{u',v'} \rangle = 0 \text{ for } u,v \in H_\pi \text{ and } u',v' \in H_{\pi'}. \]

In fact these orthogonality relations come out of convolution formulae. With the usual

\[f \ast h(x) = [L(f)h](x) = \int_G f(y)h(y^{-1}x) \, dy \]

we have

\[f_{u,v} \ast f_{s,t} = \frac{1}{\text{deg}(\pi)} \langle u,t \rangle f_{s,v} \text{ for } s,t,u,v \in H_\pi \]

and

\[f_{u,v} \ast f_{u',v'} = 0 \text{ for } u,v \in H_\pi \text{ and } u',v' \in H_{\pi'}. \]

whenever π and π' are inequivalent discrete series representations of G_0.

If G_0 is compact, then every class in \hat{G}_0 belongs to the discrete series, and if Haar measure is normalized as usual to total volume 1 then $\text{deg}(\pi)$ has the usual meaning, the dimension of H_π. The orthogonality relations for irreducible unitary representations of compact groups are more or less equivalent to the Peter–Weyl Theorem.

More generally, if G_0 is a unimodular locally compact group then $L^2(G_0) = \oplus \langle \pi \rangle \in \overset{0}{L}^2(G_0)$, orthogonal direct sum, where $\overset{0}{L}^2(G_0) = \bigoplus_{\pi \in H_{\pi}} H_\pi \otimes H_{\pi}^*$, the “discrete” part, and $\overset{1}{L}^2(G_0) = \overset{0}{L}^2(G_0)^\perp$, the “continuous” part. If, further, G_0 is a group of type I then $\overset{1}{L}^2(G_0)$ is a continuous direct sum (direct integral) over $\hat{G}_0 \setminus \overset{0}{G}_{0,d}$ of the Hilbert spaces $H_\pi \otimes H_{\pi}^*$.

We will need the discrete series, not only for G_0 but for certain reductive subgroups as well. (A Lie group is called reductive if its Lie algebra is the direct sum of a semisimple Lie algebra and a commutative Lie algebra.) These reductive subgroups generally will not be semisimple, and even if G_0 is connected they will generally not be connected. So we want to work with a class of groups that is hereditary in the sense that it includes all the connected semisimple Lie groups of finite center, and also includes the above-mentioned subgroups of groups in the class. That is the Harish–Chandra class, or class \mathcal{H}.

While I’ll state results for Harish–Chandra class, I’ll set things up so that the statements remain valid without essential change for the larger hereditary
class that contains all connected semisimple groups, whether of finite or of infinite center.

Let G_0 be a reductive Lie group, G^0_0 its identity component, g_0 its Lie algebra, and $g = g_0 \otimes \mathbb{R} \mathbb{C}$. Suppose that $[G^0_0, G^0_0]$ has finite center, that G_0/G^0_0 is finite, and that if $x \in G_0$ then $\text{Ad}(x)$ is an inner automorphism of g. Then we say that G_0 belongs to class \mathcal{H}.

If π is a unitary representation of G_0, and if $f \in L^1(G_0)$, we have the bounded operator $\pi(f) = \int_{G_0} f(x)\pi(x)dx$ on H_z. Now suppose that π has finite composition series, i.e., is a finite sum of irreducible representations. If $f \in C_c^\infty(G_0)$ then $\pi(f)$ is of trace class. Furthermore, the map

\begin{equation}
\Theta_\pi : C_c^\infty(G_0) \rightarrow \mathbb{C} \text{ defined by } \Theta_\pi(f) = \text{trace } \pi(f)
\end{equation}

is a distribution on G_0. Θ_π is called the character, the distribution character or the global character of π.

Let $Z(g)$ denote the center of the universal enveloping algebra $U(g)$. If we interpret $U(g)$ as the algebra of all left-invariant differential operators on G_0 then $Z(g)$ is the subalgebra of those which are also invariant under right translations. If π is irreducible then $d\pi|Z(g)$ is an associative algebra homomorphism $\chi_\pi : Z(g) \rightarrow \mathbb{C}$ called the infinitesimal character of π. We say that π is quasi-simple if it has an infinitesimal character, i.e., if it is a direct sum of irreducible representations that have the same infinitesimal character.

Let π be quasi-simple. Then the distribution character Θ_π satisfies a system of differential equations

\begin{equation}
z \cdot \Theta_\pi = \chi_\pi(z)\Theta_\pi \text{ for all } z \in Z(g)
\end{equation}

The regular set

\[G_0' = \{ x \in G_0 : \text{Ad}(x) \text{ is a Cartan subalgebra of } g \} \]

is a dense open subset whose complement has codimension ≥ 2. Every $x \in G_0'$ has a neighborhood on which at least one of the operators $z \in Z(g)$ is elliptic. It follows that $\Theta_\pi|_{G_0'}$ is integration against a real analytic function T_π on G_0'.

A much deeper result of Harish-Chandra says that Θ_π has only finite jump singularities across the singular set $G_0 \setminus G_0'$, so T_π is locally L^1 and Θ_π is integration against it,

\begin{equation}
\Theta_\pi(f) = \int_{G_0} f(x)T_\pi(x)dx \text{ for all } f \in C_c^\infty(G_0).
\end{equation}

So we may (and do) identify Θ_π with the function T_π. This key element of Harish-Chandra’s theory allows the possibility of a priori estimates on characters and coefficients as well as explicit character formulae.

Fix a Cartan involution θ of G_0. In other words, θ is an automorphism of G_0, θ^2 is the identity, and the fixed point set $K_0 = G_0^\theta$ is a maximal compact
subgroup of G_0. The choice is essentially unique, because the Cartan involutions of G_0 are just the $\Ad(x) \cdot \theta \cdot \Ad(x)^{-1}$, $x \in G_0^0$. If $G_0 = U(p, q)$ then
$$\theta(x) = x^{-1} \quad \text{and} \quad K_0 = U(p) \times U(q).$$

Every Cartan subgroup of G_0 is $\Ad(G_0^0)$-conjugate to a θ-stable Cartan subgroup. In particular, G_0 has compact Cartan subgroups if and only if K_0 contains a Cartan subgroup of G_0.

Harish-Chandra proved that G_0 has discrete series representations if and only if it has a compact Cartan subgroup. Suppose that this is the case and fix a compact Cartan subgroup $T_0 \subseteq K_0$ of G_0. Let $\Sigma = \Sigma(g, t)$ be the root system, $\Sigma^+ = \Sigma^+(g, t)$ a choice of positive root system, and let $p = \frac{1}{2} \sum_{\alpha \in \Sigma^+} \alpha$.

If $\xi \in \mathfrak{t}$ then $\rho(\xi)$ is half the trace of $\ad(\xi)$ on $\sum_{\alpha \in \Sigma^+} \mathfrak{g}_\alpha$.

If π is a discrete series representation of G_0 and Θ_π is its distribution character, then the equivalence class of π is determined by the restriction of Θ_π to $T_0 \cap G_0^0$. Harish-Chandra parameterizes the discrete series of G_0 by parameterizing those restrictions.

Let G_0^\dagger denote the finite index subgroup $T_0G_0^0 = Z_{G_0}(G_0^0)G_0^0$ of G_0. In fact here the argument of Lemma 7.4 is easily modified to prove $T_0 = Z_{G_0}(G_0^0)T_0^0$, so $T_0 = T_0^\dagger$. Lemma 7.4 says that the group M_0 of a minimal parabolic subgroup of G_0 satisfies $M_0 = M_0^\dagger$, and similarly in that context we have $U_{\Phi, 0} = U_{\Phi, 0}^\dagger$. In general, where M_0 may be noncompact, this need not hold.

The Weyl group $W^\dagger = W(G_0^\dagger, T_0)$ coincides with $W^0 = W(G_0^0, T_0^0)$ and is a normal subgroup of $W = W(G_0, T_0)$.

Every irreducible unitary representation of $T_0 = Z_{G_0}(G_0^0)T_0^0$ is of the form $\chi \otimes e^{i(\lambda - p)}$, where $\lambda \in \mathfrak{t}_0^*$ and $\lambda - p$ satisfies an integrality condition, where $\chi \in Z_{G_0}(G_0^0)$, and where χ and $e^{i(\lambda - p)}$ restrict to (multiples of) the same unitary character on the center of G_0^0.

Let $\chi \otimes e^{i(\lambda - p)} \in \mathfrak{T}_0$ as above. Suppose that λ is regular, i.e., that $\langle \lambda, \alpha \rangle \neq 0$ for all $\alpha \in \Sigma$. Then there are unique discrete series representations π_λ^0 of G_0^0 and $\pi_{\chi, \lambda}^\dagger$ of G_0^\dagger whose distribution characters satisfy

$$(8.6a) \quad \Theta_{\pi_\lambda^0}(x) = (-1)^q(\lambda) \frac{\sum_{w \in W_0} \operatorname{sign}(w)e^{w(\lambda)}}{\prod_{\alpha \in \Sigma^+}(e^{\alpha/2} - e^{-\alpha/2})}$$

and

$$\Theta_{\pi_{\chi, \lambda}^\dagger}(z x) = \operatorname{trace}(z) \Theta_{\pi_\lambda^0}(x)$$

for $z \in Z_{G_0}(G_0^0)$ and $x \in T_0^0 \cap G_0^0$, where

$$(8.6b) \quad q(\lambda) = |\{ \alpha \in \Sigma^+ | \langle \alpha, \lambda \rangle < 0 \}| + |\{ \beta \in \Sigma^+(g, t) \setminus \Sigma^+(g, t) \setminus \Sigma^+ | \langle \beta, \lambda \rangle > 0 \}|.$$
because its conjugates by elements of G_0/G_0^\dagger are mutually inequivalent, consequence of regularity of λ. $\pi_{\chi,\lambda}$ is characterized by the fact that its distribution character is supported in G_0^\dagger and is given on G_0^\dagger by

\begin{equation}
\Theta_{\pi_{\chi,\lambda}} = \sum_{1 \leq i \leq r} \Theta_{\pi_{\chi,\lambda}} \cdot \gamma_i^{-1}
\end{equation}

with $\gamma_i = \text{Ad}(g_i)|_{G_0^\dagger}$ where $\{g_1, \ldots, g_r\}$ is any system of coset representatives of G_0 modulo G_0^\dagger. To combine these into a single formula one chooses the g_i so that they normalize T_0, i.e., chooses the γ_i to be a system of coset representatives of W modulo W^\dagger.

Every discrete series representation of G_0 is equivalent to a representation $\pi_{\chi,\lambda}$ as just described. Discrete series representations $\pi_{\chi,\lambda}$ and $\pi_{\chi',\lambda'}$ are equivalent if and only if $\chi' \otimes e^{i\lambda'} = (\chi \otimes e^{i\lambda}) \cdot w^{-1}$ for some $w \in W$. And λ is both the infinitesimal character and the Harish-Chandra parameter for the discrete series representation $\pi_{\chi,\lambda}$.

References for §8.

The representations of G_0 that enter into its Plancherel formula are the \textbf{tempered representations}. They are constructed from a class of real parabolic subgroups of G_0 called the \textbf{cuspidal parabolic subgroups}. One constructs a standard tempered representation by first constructing a relative discrete series representation for the reductive part of cuspidal parabolic subgroup, and then by unitary induction from the parabolic subgroup up to G_0. We start by recalling the definitions.

Let H_0 be a Cartan subgroup of G_0. Fix a Cartan involution θ of G_0 such that $\theta(H_0) = H_0$. We write K_0 for the fixed point set G_0^θ, which is a maximal compact subgroup of G_0. Decompose

$$\mathfrak{h}_0 = \mathfrak{t}_0 \oplus \mathfrak{a}_0 \text{ and } H_0 = T_0 \times A_0 \tag{9.1}$$

where $T_0 = H_0 \cap K_0$, $\theta(\xi) = -\xi$ on \mathfrak{a}_0, and $A_0 = \exp_G(\mathfrak{a}_0)$.

Then the centralizer $Z_{G_0}(A_0)$ of A_0 in G_0 has form $M_0 \times A_0$ where $\theta(M_0) = M_0$. The group M_0 is a reductive Lie group of Harish-Chandra class. T_0 is a compact Cartan subgroup of M_0, so M_0 has discrete series representations.

Suppose that our positive root system $\Sigma^+ = \Sigma^+(\mathfrak{g}, \mathfrak{h})$ is defined by positive root systems $\Sigma^+(\mathfrak{m}, \mathfrak{t})$ and $\Sigma^+(\mathfrak{g}_0, \mathfrak{a}_0)$ as in (7.3).

A (real) parabolic subgroup $P_0 \subset G_0$ is called \textbf{cuspidal} if the commutator subgroup of the Levi component (reductive part) has a compact Cartan subgroup.

The Cartan subgroup $H_0 \subset G_0$ defines a cuspidal parabolic subgroup $P_0 = M_0A_0N_0$ of G_0 as follows. The Lie algebra of N_0 is $\mathfrak{n}_0 = \sum_{\alpha \in \Sigma^+ - \Sigma^+(\mathfrak{g}_0, \mathfrak{a}_0)} (\mathfrak{g}_0)_{-\alpha}$, M_0 and A_0 are as above, and $M_0A_0 = M_0 \times A_0$ is the Levi component of P_0. One extreme is the case where $\dim \mathfrak{a}_0$ is maximal; then P_0 is a minimal parabolic subgroup of G_0. The other extreme is where $\dim \mathfrak{a}_0$ is minimal; if $\mathfrak{a}_0 = 0$ then $P_0 = G_0$.

Every cuspidal parabolic subgroup of G_0 is produced by the construction just described, as H_0 varies. Two cuspidal parabolic subgroups of G_0 are \textbf{associated} if they are constructed as above from G_0-conjugate Cartan subgroups; then we say that the G_0-conjugacy class of Cartan subgroups is \textbf{associated} to the G_0-association class of cuspidal parabolic subgroups.

As in (7.1),

$$[\eta] \in \widehat{M_0} \text{ and } \sigma \in \mathfrak{a}_0^* \text{ determine } [\alpha_{\eta, \sigma}] \in \hat{P}_0 \text{ by } \alpha_{\eta, \sigma}(m) = \eta(m)e^{i\sigma(\log m)} \tag{9.2}$$
Then we have

\[
\pi_{\eta, \sigma} = \text{Ind}_{P_0}^{G_0}(\alpha_{\eta, \sigma}), \quad \text{unitarily induced representation.}
\]

The H_0-series or principal H_0-series of G_0 consists of the unitary equivalence classes of the representations (9.3) for which η is a discrete series representation of M_0. Harish-Chandra extended Bruhat's irreducibility results to all the H_0-series.

As the terminology indicates, $\pi_{\eta, \sigma} = \text{Ind}_{P_0}^{G_0}(\alpha_{\eta, \sigma})$ is independent of choice of $\Sigma^+(g_0, a_0)$. In fact this is the case even if η does not belong to the discrete series of M_0, and is a consequence of the character formula, which we now describe.

If J_0 is a Cartan subgroup of G_0 we write G_{J_0} for the set of G_0-regular elements that are G_0-conjugate to an element of J_0. If further we fix a positive root system $\Sigma^+(g_0)$ then we write $\Delta_{G_0, J_0} = \prod_{\gamma \in \Sigma^+(g_0)} (e^{\gamma/2} - e^{-\gamma/2})$. Passing to a 2-sheeted cover if necessary (it is not necessary if $G_0 \subset G$ with G complex and simply connected), e^σ and Δ_{G_0, J_0} are well defined functions on J_0.

When dealing with both G_0 and M_0, we write $M_{J_0}^H$ for the M_0-regular subset of M_0. If L_0 is a Cartan subgroup of M_0 we write $M_{L_0}^H$ for the set of elements of $M_{J_0}^H$ that are M_0-conjugate to an element of L_0.

9.4. **Theorem.** Fix a cuspidal parabolic subgroup $P_0 = M_0 A_0 N_0$ of G_0, let $[\eta] \in \hat{M}_0$, and let $\sigma \in a_0^*$. Let χ_{ν}, with $\nu \in \mathfrak{t}^*$, be the infinitesimal character of η and let Ψ_η be the distribution character.

1. $[\pi_{\eta, \sigma}]$ has infinitesimal character $\chi_{\nu + i \sigma}$ relative to \mathfrak{h}.

2. $[\pi_{\eta, \sigma}]$ is a finite sum of classes from \hat{G}_0. So it has well defined distribution character $\Theta_{\pi_{\eta, \sigma}}$ that is a locally summable function analytic on the regular set $G_{J_0}^L$.

3. $\Theta_{\pi_{\eta, \sigma}}$ has support in the closure of $\bigcup G_{J_0}^L$ where J_0 runs over a system of representatives of the G_0-conjugacy classes of Cartan subgroups of $M_0 A_0$.

4. Fix a Cartan subgroup $J_0 = J_{M_0} \times A_0$ of $M_0 A_0$. Let $\{J_i, 0 = g_i J_0 g_i^{-1} \mid 1 \leq i \leq \ell(J_0)\}$ be a system of representatives of the $M_0 A_0$-conjugacy classes of Cartan subgroups of $M_0 A_0$ that are G_0-conjugate to J_0. For each index i let $N_{G_0}(J_i, 0)$ and $N_{M_0 A_0}(J_i, 0)$ denote normalizers in G_0 and $M_0 A_0$. Let $h \in J_0 \cap G_0$ and define $h_i = g_i h g_i^{-1} \in J_i, 0$. Then the sets $N_{G_0}(J_i, 0)(h_i)$ and $N_{M_0 A_0}(J_i, 0)(h_i)$ are finite, and $\Theta_{\pi_{\eta, \sigma}}(h)$ is given by

\[
\sum_{i=1}^{\ell(J_0)} \left\lfloor \frac{1}{|\Delta_{G_0, J_i, 0}(h_i)|} \right\rfloor \times \sum_{N_{G_0}(J_i, 0)(h_i)} \frac{|\Delta_{M_0 A_0, J_i, 0}(wh_i)|}{|N_{M_0 A_0}(J_i, 0)(wh_i)|} \Psi_\eta\left((wh_i)_{\mathfrak{m}_0}\right) e^{i \text{deg}(wh_i)_{\mathfrak{w}_0}}.
\]

If $h \in J_0^0$, so each $h_i \in J_i, 0$, then the second sum runs over the Weyl group $W(G_0, J_i, 0)$.

5. If \(t \in T_0 \) and \(a \in A_0 \) with \(ta \in G_0^t \) then (9.5) reduces to

\[
\Theta_{\pi_{\eta,\sigma}}(ta) = \frac{1}{|\Delta_{M_0, T_0}(t)|} \sum_{N_{G_0}(H_0)(ta)} \frac{1}{|N_{M_0}(T_0)(ut)|} \Psi_\eta(ut)e^{i\sigma(\log(wa))}.
\]

The formula (9.5) shows in particular that the distribution \(\Theta_{\pi_{\eta,\sigma}} \) is independent of the choice of cuspidal parabolic subgroup \(P_0 \) associated to the \(G_0 \)-conjugacy class of \(H_0 \). As \([\pi_{\eta,\sigma}] \) is a finite sum from \(\widehat{G}_0 \), now \([\pi_{\eta,\sigma}] \) also is independent of choice of \(P_0 \) for the given \(H_0 \). So Theorem 9.4 implies

9.7. Corollary. The class \([\pi_{\eta,\sigma}] \) is independent of choice of cuspidal parabolic subgroup \(P_0 = M_0A_0N_0 \) for the given Cartan subgroup \(H_0 = T_0 \times A_0 \).

The proof of Theorem 9.4 is a bit technical. It is based on the Harish-Chandra transform \(\mathcal{F}_{P_0} : C^\infty(G_0) \to C^\infty(M_0A_0) \), given by

\[
\mathcal{F}_{P_0}(b)(ma) = e^{-\rho(\log a)} \int_{K_0} \left\{ \int_{N_0} b(km a k^{-1})d\gamma \right\} dk.
\]

One first proves that \(\pi_{\eta,\sigma}(b) \) is of trace class with

\[
\text{trace} \pi_{\eta,\sigma}(b) = \int_{M_0A_0} \mathcal{F}_{P_0}(b)(ma) \Psi_\eta(m)e^{i\sigma(\log a)}dmda.
\]

Then one can calculate the infinitesimal character. From that, a look at \(K_0 \)-types proves finiteness of the composition series. Then one has to extend the Weyl integration formula appropriately in order to compute the character formulas.

Theorem 9.4 specializes to the \(H_0 \)-series as follows. Express

\[
\eta = \eta_{\chi,\nu} = \text{Ind}_{M_0^\dagger}^{M_0^0} (\chi \otimes \eta_{\nu})
\]

corresponding to \(\chi \in Z_{M_0}(M_0^0) \) and \(e^{\nu-\rho} \in \hat{T}_0^0 \) that restrict to multiples of the same unitary character on the center of \(M_0^0 \). Choose coset representatives \(\{x_1, \ldots, x_t\} \) of \(M_0 \) modulo \(M_0^0 \) that normalize \(t_0 \). They represent Weyl group elements \(w_i \in W(M_0, T_0) \) that form a system of representatives of \(W(M_0, T_0) \) modulo \(W(M_0^0, T_0^0) \). Now, following (8.6) and (8.7), the distribution character of \(\eta \) is supported on \(M_0^\dagger \), and it satisfies

\[
\Psi_{\eta_{\chi,\nu}}(zt) = \sum_{i=1}^t (-1)^{q_i} \text{trace} \chi(x_i z x_i^{-1}) \times \\
\times \frac{1}{\Delta_{M_0, T_0}(t)} \sum_{W(M_0^0, T_0^0)} \det(w w_i) e^{w w_i \nu}(t)
\]

for \(z \in Z_{M_0}(M_0^0) \) and \(t \in T_0^0 \cap G_0^t \). The formula (9.11) characterizes \([\eta_{\chi,\nu}] \). With Theorem 9.4 it gives
9.12. **Theorem.** Let \([\eta_{\chi,\nu}, \sigma] \in \hat{M}_{0,d}\) as in (9.10) and let \(\sigma \in \mathfrak{a}_0^*\). Then
\[\Theta_{\eta_{\chi,\nu}, \sigma}(zta) = \frac{1}{|\Delta_{M_0, H_0}(zta)|} \sum_{w \in \{zta\}} \frac{1}{|N_{M_0}(T_0)(w(zta))|} \Psi_{\eta_{\chi,\nu}}(w(zta)) e^{i\sigma(\log(wa))}\]

where \(w(zta)\) runs over \(N_{M_0}(H_0)(zta)\), the \(\Psi_{\eta_{\chi,\nu}}(w(zta))\) are given by (9.11),
\(z \in Z_{M_0}(M_0^0, t \in T_0^0 \cap M_0^0\) and \(a \in A_0\).

Two \(H_0\)-series representations \([\pi_{\eta_{\chi,\nu}, \sigma}], [\pi_{\eta_{\chi',\nu'}, \sigma}']\) of \(G_0\) are equal if and only if \((|\chi'|, \nu', \sigma')\) is in the Weyl group orbit \(W(G_0, H_0)(|\chi|, \nu, \sigma)\).

The \(H_0\)-series representations \([\pi_{\eta_{\chi,\nu}, \sigma}]\) has dual \([\pi_{\eta_{\chi',\nu'}, \sigma}] = [\pi_{\eta_{\chi,\nu'}}]\) and has infinitesimal character \(\chi_{\nu + i \sigma}\) relative to \(\mathfrak{h}\). In particular it sends the Casimir element of \(U(\mathfrak{g})\) to \(||\nu||^2 + ||\sigma||^2 - ||\rho||^2\).

Two complements to Theorem 9.12. First, one can check that if \(H_0\) and \(H_0'\) are non-conjugate Cartan subgroups of \(G_0\) then every \(H_0\)-series representation is disjoint (no composition factors in common) from every \(H_0'\)-series representation. This is seen by examining the real and imaginary parts of the infinitesimal character. Second, the Harish–Chandra condition for irreducibility of \([\pi_{\eta_{\chi,\nu}, \sigma}]\) is that \(\sigma\) be regular for \((\mathfrak{g}_0, \mathfrak{a}_0)\).

References for §9.

§10. Indication of the Plancherel Formula.

We start with Kostant’s “cascade construction” for the conjugacy classes of Cartan subgroups of \(G_0\). Suppose first that \(G_0\) has a compact Cartan subgroup \(T_0\). Fix a Cartan involution \(\theta\) of \(G_0\) such that \(\theta(T_0) = T_0\) and the corresponding \(\pm 1\) eigenspace decomposition \(\mathfrak{g}_0 = \mathfrak{t}_0 + \mathfrak{a}_0\) where \(\mathfrak{t}_0\) is the Lie
algebra of the maximal compact subgroup \(K_0 = \{ g \in G_0 \mid \theta(g) = g \} \). If \(\alpha \in \Sigma(g, t) \) then either \(\mathfrak{g}_\alpha \subset \mathfrak{k} \) and we say that \(\alpha \) is **compact**, or \(\mathfrak{g}_\alpha \subset \mathfrak{s} \) and we say that \(\alpha \) is **noncompact**.

Let \(\alpha \in \Sigma(g, t) \) be noncompact. Let \(\mathfrak{g}[\alpha] = \mathfrak{g}_\alpha + \mathfrak{g}_{-\alpha} + [\mathfrak{g}_\alpha, \mathfrak{g}_{-\alpha}] \) as in (6.4), let \(G[\alpha] \) denote the corresponding analytic subgroup of \(G \), and consider the corresponding real forms \(\mathfrak{g}_0[\alpha] = \mathfrak{g}_0 \cap \mathfrak{g}[\alpha] \) and \(G_0[\alpha] = G_0 \cap G[\alpha] \). Then \(G_0[\alpha] \cap T_0 \) is a compact Cartan subgroup, and we can simply replace it by the noncompact Cartan subgroup of \(G_0[\alpha] \). Let \(\mathfrak{a}_0[\alpha] \) denote the Lie algebra of that noncompact Cartan subgroup. Then we have a new Cartan subgroup

\[
(10.1a) \quad \mathfrak{h}_0[\alpha] = (t_0 \cap (\mathfrak{g}_0[\alpha] \cap t_0)^\perp) + \mathfrak{a}_0[\alpha]
\]

and the corresponding Cartan subgroup

\[
(10.1b) \quad H_0[\alpha] = \{ g \in G_0 \mid \text{Ad}(g)\xi = \xi \text{ for all } \xi \in \mathfrak{h}_0[\alpha] \}.
\]

The point is that \(H_0[\alpha] \) has one compact dimension less than that of \(T_0 \) and one noncompact dimension more.

Let \(\alpha, \beta \in \Sigma(g, t) \) be noncompact. We can carry out the construction (10.1) for \(\alpha \) and \(\beta \) independently, one after the other, in \(\alpha \) and \(\beta \) are **strongly orthogonal** in the sense that \(\alpha \) and \(\beta \) are linearly independent and neither of \(\alpha \pm \beta \) are roots. We write this relation as \(\alpha - \beta \). If \(\alpha - \beta \) then we have the new Cartan subgroup \(H_0[\alpha, \beta] \) given by

\[
(10.2a) \quad \mathfrak{h}_0[\alpha, \beta] = (t_0 \cap ((\mathfrak{g}_0[\alpha] \oplus \mathfrak{g}_0[\beta]) \cap t_0)^\perp) + (\mathfrak{a}_0[\alpha] \oplus \mathfrak{a}_0[\beta])
\]

and

\[
(10.2b) \quad H_0[\alpha, \beta] = \{ g \in G_0 \mid \text{Ad}(g)\xi = \xi \text{ for all } \xi \in \mathfrak{h}_0[\alpha, \beta] \}.
\]

Here \(H_0[\alpha, \beta] \) has two compact dimensions less than that of \(T_0 \) and two noncompact dimensions more.

We say that a set \(S \) of noncompact roots is **strongly orthogonal** if it is linearly independent and if any two of its elements are strongly orthogonal. Then as above we have a Cartan subgroup \(H_0[S] \) given by

\[
(10.3a) \quad \mathfrak{h}_0[S] = (t_0 \cap ((\sum_{\alpha \in S} \mathfrak{g}_0[\alpha]) \cap t_0)^\perp) + (\sum_{\alpha \in S} \mathfrak{a}_0[\alpha])
\]

and

\[
(10.3b) \quad H_0[S] = \{ g \in G_0 \mid \text{Ad}(g)\xi = \xi \text{ for all } \xi \in \mathfrak{h}_0[S] \}.
\]

Here \(H_0[S] \) has \(|S|\) compact dimensions fewer than \(T_0 \) has, and \(H_0[S] \) has \(|S|\) noncompact dimensions more than \(T_0 \) has.

Cartan subgroups \(H_0[S_1] \) and \(H_0[S_2] \) are \(G_0 \)-conjugate if and only if some \(w \in W(G_0, T_0) \) sends \(S_1 \) to \(S_2 \). Kostant proved that every Cartan
subgroup of G_0 is conjugate to $\mathfrak{h}_0 \{S\}$ for some set S of strongly orthogonal noncompact roots.

This sets up a hierarchy among the conjugacy classes of Cartan subgroups of $G_0 : H_0 \{S_1\} \leq H_0 \{S_2\}$ if and only if some Weyl group element $w \in W(G_0, T_0)$ sends S_2 to a subset of S_1. That in turn sets up a hierarchy among parts of the regular set G_0^\prime. If H_0 is any Cartan subgroup of G_0 we denote $G_0^\prime H_0 = G_0^\prime \cap \text{Ad}(G) H_0$, the set of all regular elements G_0^\prime that are conjugate to an element of H_0. Now $G_0^\prime H_0 \{S_1\} \leq G_0^\prime H_0 \{S_2\}$ if and only if some Weyl group element $w \in W(G_0, T_0)$ sends S_2 to a subset of S_1. Here G_0^\prime sits at the top, the $G_0^\prime H_0 \{\alpha, \beta\}$ sit just below, the $G_0^\prime H_0 \{\alpha, \beta\}$ are on the next level down, and finally the part of G_0^\prime corresponding to the Cartan subgroup of the minimal parabolic subgroups sit at the bottom.

If G_0 does not have a compact Cartan subgroup, we reduce to that case as follows. Let $H_0 = T_0 \times A_0$ be a Cartan subgroup that is as compact as possible, i.e., T_0 is a Cartan subgroup of a maximal compact subgroup $K_0 \subset G_0$. Let $P_0 = M_0 A_0 N_0$ be an associated cuspidal parabolic subgroup. Then just do the cascade construction for M_0, obtaining a family of Cartan subgroups $H_{M_0} \{S\} \subset M_0$ as S runs over the $W(M_0, T_0)$-conjugacy classes of strongly orthogonal sets $S \subset \Sigma(m, t)$ of noncompact roots of m. Then the $H_0 \{S\} = H_{M_0} \{S\} \times A_0$ give the conjugacy classes of Cartan subgroups of G_0.

A careful examination of the character formulae (8.6), (8.7), (9.11) and (9.13) shows that the various tempered series exhaust enough of \widehat{G}_0 for a decomposition of $L_2(G_0)$ essentially as

$$
(10.4) \sum_{H_0 \in \text{Car}(G_0)} \sum_{\chi \otimes e^r = e^{\sigma} \in \mathcal{T}_0} \int_{\mathfrak{a}_0^+} H_{\pi_{x, r, \sigma}} \otimes H_{\pi_{x, r, \sigma}}^* m(H_0 : \chi : \nu : \sigma) d\sigma.
$$

Here $\text{Car}(G_0)$ denotes the set of G_0-conjugacy classes of Cartan subgroups and the Borel measure $m(H_0 : \chi : \nu : \sigma) d\sigma$ is the Plancherel measure on \widehat{G}_0. In general the Plancherel density $m(H_0 : \chi : \nu : \sigma)$ has a formula that varies with the component of the regular set. This was worked out by Harish–Chandra for groups of Harish–Chandra class, and somewhat more generally by Herb and myself. Harish–Chandra’s approach is based on an analysis of the structure of the Schwartz space, while Herb and I use explicit character formulae. These explicit formulae allow us to prove a formula (10.4), as follows.

Start with $G_{H_0}^\prime$ where H_0 represents the conjugacy class of Cartan subgroups of G_0 that are as compact as possible. A look at the character formulae cited above, shows that the H_0-series representations suffice to expand functions $f \in C_0^\infty(G_0)$. That expansion formula gives us a map

$$
(10.5a) \quad C_0^\infty(G_0) \to C^\infty(G_0 \setminus G_{H_0}^\prime) \text{ by } f \mapsto f_1
$$

where r_x denotes right translation by $x \in G_0$ and

$$
(10.5b) \quad f_1(x) = f(x) - \sum_{\chi \otimes e^r = e^{\sigma} \in \mathcal{T}_0} \int_{\mathfrak{a}_0^+} \Theta_{\pi_{x, r, \sigma}}(r_x f) m(H_0 : \chi : \nu : \sigma) d\sigma.
$$
Now let \(\{H_0(\alpha_1), \ldots, H_0(\alpha_{m_1})\} \) be a set of representatives of the conjugacy classes of Cartan subgroups just below \(H_0 \). A look at the character formulae cited above, shows that the \(H_0(\alpha_i) \)-series representations suffice to expand functions \(f \in C^\infty_0(G^H_0(\alpha_i)) \). Those expansions do not interact, nor do they introduce nonzero values in \(G^H_0 \), so they give us a map

\[
C^\infty_0(G_0 \setminus G^H_0) \to C^\infty_0\left(G_0 \setminus \left(G^H_0 \cup \bigcup G^H_0(\alpha_i)\right)\right) \quad \text{by} \quad f_1 \mapsto f_2
\]

where

\[
f_2(x) - f_1(x) = \\
\sum_{1 \leq i \leq m_1} \sum_{\chi \otimes e^{x - \mu} m \in T_0(\alpha_i)} \int_{\Omega_0(\alpha_i)} \Theta_{\pi,\chi,\nu,\sigma}(r_x f)m(H_0(\alpha_i) : \chi : \nu : \sigma) \, d\sigma.
\]

Now simply proceed down one level at a time. The tricky point here is to know the character formulae completely, so that one knows \(f_j \) well enough to compute \(f_{j+1} \). Finally, one obtains the final form

\[
f(x) = \sum_{H_0 \in \text{Car}(G_0)} \sum_{\chi \otimes e^{x - \mu} m \in T_0} \int_{\Omega_0} \Theta_{\pi,\chi,\nu,\sigma}(r_x f)m(H_0 : \chi : \nu : \sigma) \, d\sigma.
\]

References for §10.

PART 4. GEOMETRIC REALIZATION OF THE TEMPERED SERIES.

In this Part we show how the standard tempered representations occur as natural geometric objects over certain real group orbits.

§11. MEASURABLE OPEN ORBITS AND THE DISCRETE SERIES.

Fix a complex flag manifold $Z = G/P$. An open orbit $G_0(z) \subset Z$ is called measurable if it carries a G_0-invariant volume element. If that is the case, then the invariant volume element is the volume element of a G_0-invariant, possibly indefinite, Kaehler metric on the orbit, and the isotropy subgroup $G_0 \cap P_z$ is the centralizer in G_0 of a (compact) torus subgroup of G_0. In more detail, measurable open orbits are characterized by

11.1. Proposition. Let $D = G_0(z)$ be an open G_0-orbit on the complex flag manifold $Z = G/P$. Then the following conditions are equivalent.

1. The orbit $G_0(z)$ is measurable.
2. $G_0 \cap P_z$ is the G_0-centralizer of a (compact) torus subgroup of G_0.
3. D has a G_0-invariant possibly indefinite Kaehler metric, thus a G_0-invariant measure obtained from the volume form of that metric.
4. $\tau \Phi^\circ = \Phi^\circ$, and $\tau \Phi^w = -\Phi^w$ where $p_z = p_\Phi$.
5. $p_z \cap \tau p_z$ is reductive, i.e. $p_z \cap \tau p_z = p_z^r \cap \tau p_z^r$.
6. $p_z \cap \tau p_z = p_z^r$.
7. τp is Ad (G)-conjugate to the parabolic subalgebra $p^- = p^r + p^n$ opposite to p.

In particular, if one open G_0-orbit on Z is measurable, then they all are measurable.

Note that condition 4 of Proposition 11.1 is automatic if the Cartan subalgebra h_0, relative to which $p_z = p_\Phi$, is the Lie algebra of a compact Cartan subgroup of G_0, for in that case $\tau \alpha = -\alpha$ for every $\alpha \in \Sigma(p, h)$. In particular, if G_0 has discrete series representations, so that by a result of Harish-Chandra it has a compact Cartan subgroup, then every open G_0-orbit on Z is measurable.

Condition 4 is also automatic if P is a Borel subgroup of G, and more generally Condition 7 provides a quick test for measurability.

Now suppose that G_0 has a compact Cartan subgroup $T_0 \subset K_0$. Let $Z = G/P$ be a complex flag manifold, let $z \in Z$, set $D = G_0(z)$, and suppose that

\[(11.2) \quad D \text{ is open in } Z \text{ and } G_0 \text{ has compact isotropy subgroup } U_0 \text{ at } z.\]

Passing to a conjugate, equivalently moving z within D, we may suppose $T_0 \subset U_0$.

Let $\mu \in \widehat{U}_0$, let E_μ denote the representation space, and let $E_\mu \rightarrow D \cong G_0/U_0$ denote the associated holomorphic homogeneous vector bundle. Then μ is finite dimensional and is constructed as follows. First, $U_0 \cap G_0^0$ is the identity component U_0^0, and $U_0 = Z_{G_0}(G_0^0)U_0^0$. Second there are irreducible
representations $[\chi] \in Z_{G_0}(G_0^\circ)$ and $[\mu^0] \in U_0^\circ$ that agree on Z_{G_0} such that $[\mu] = [\chi \otimes \mu^0]$.

Let $\beta - \rho_u$ denote the highest weight of μ^0, corresponding to infinitesimal character β, and suppose that

$$\lambda = \beta - \rho_u + \rho_\theta$$

is regular. Then G_0 has a discrete series representation $\pi_{\chi, \lambda}$, whose infinitesimal character has Harish-Chandra parameter λ.

Since μ is unitary, the bundle $E_\mu \to D$ has a G_0-invariant hermitian metric. Essentially as in the compact case, we have the spaces

$$A_0^{(p, q)}(D; E_\mu) : C^\infty \text{ compactly supported } E_\mu\text{-valued (p, q)-forms on } D,$$

the Kodaira–Hodge orthocomplementation operators

$$\tilde{\xi} : A_0^{(p, q)}(D; E_\mu) \to A_0^{(n-p, n-q)}(D; E_\mu^*)$$

and

$$\tilde{\eta} : A_0^{(n-p, n-q)}(D; E_\mu^*) \to A_0^{(p, q)}(D; E_\mu)$$

where $n = \dim_C D$. Thus we have a positive definite inner product on $A_0^{(p, q)}(D; E_\mu)$ give by

$$\langle F_1, F_2 \rangle_D = \int_{G_0} \langle F_1, F_2 \rangle_{gU_0} d(gU_0) = \int_D F_1 \overline{\nabla} F_2$$

and thus

$$L_2^{(p, q)}(D; E_\mu) : \text{ Hilbert space completion of } (A_0^{(p, q)}(D; E_\mu), \langle \cdot, \cdot \rangle_D).$$

Let \Box denote the Kodaira–Hodge–Laplace operator $\overline{\partial} \partial^* + \overline{\partial}^* \partial$ of E_μ. Then \Box is a hermitian–symmetric elliptic operator on $L_2^{(0, q)}(D; E_\mu)$ with domain $A_0^{(p, q)}(D; E_\mu)$, and a result of Andreotti and Vesentini allows one to conclude that its closure \Box is self-adjoint. Accordingly, we have the Hilbert spaces

$$H^{(p, q)}(D; E_\mu) = \{ \omega \in \text{Domain}(\Box) \mid \Box(\omega) = 0 \}$$

of square integrable harmonic E_μ-valued $(0, q)$-forms on D. The natural actions of G_0 on those spaces are unitary representations.

We write $H^0(D; E_\mu)$ for $\mathcal{H}^{(0, q)}(D; E_\mu)$ and we write π^q_{μ} for the unitary representation of G_0 on $H^q(D; E_\mu)$.

11.9. Theorem. Let $[\mu] = [\chi \otimes \mu^0] \in \widehat{U}_0$ where μ^0 has highest weight $\beta - \rho_u$ and thus has infinitesimal character β. If $\lambda + \rho$ (as in (11.3)) is $\Sigma(g, t)$-singular
then every $H^q(D; E_\mu) = 0$. Now suppose that $\lambda = \beta - \rho_u + \rho_\beta$ is $\Sigma(\mathfrak{g}, t)$-regular and define

\begin{equation}
q_u(\lambda) = |\{\alpha \in \Sigma^+(\mathfrak{k}, t) \setminus \Sigma^+(u, t) \mid \langle \lambda, \alpha \rangle < 0\}| + |\{\beta \in \Sigma^+(\mathfrak{g}, t) \setminus \Sigma^+(\mathfrak{k}, t) \mid \langle \lambda, \beta \rangle > 0\}|.
\end{equation}

Then $H^q(D; E_\mu) = 0$ for $q \neq q_u(\lambda)$, and G_0 acts irreducibly on $H^{q_u(\lambda)}(D; E_\mu)$ by the discrete series representation $\pi_{\chi, \lambda}$ of infinitesimal character λ.

An interesting variation on this result realizes the discrete series on spaces of L_2 bundle-valued harmonic spinors.

Indication of Proof. The proof of Theorem 11.9 has three major components. The first is the alternating sum formula

\begin{equation}
\sum_{q \geq 0} (-1)^q \Theta_{\pi_{\mu, \mu}} = (-1)^{\Sigma^+(\mathfrak{k}, t)} \Theta_{\pi_{\chi, \lambda}}
\end{equation}

where $0_{\pi_{\mu}}$ is the discrete series component of the natural unitary representation π_{μ} of G_0 on $H^q(D; E_\mu)$, and $\Theta_{\pi_{\mu, \mu}}$ is its distribution character. It is implicit here that $\Theta_{\pi_{\mu, \mu}}$ exists. The second major component of the proof is the consequence

\begin{equation}
\pi_{\mu} = 0_{\pi_{\mu}}
\end{equation}

of the Plancherel formula (10.7). The third major component of the proof is the vanishing theorem

\begin{equation}
H^q(D; E_\mu) = 0 \text{ for } q \neq q_u(\lambda).
\end{equation}

To simplify the argument one should carry out three reductions. First, one may assume that $G_0 = G_0^\dagger$, for the discrete series representations of G_0 are induced from those of G_0^\dagger and one has the character relation (8.7). Second, one may assume that G_0 is connected, $G_0 = G_0^0$, for the discrete series characters of G_0^\dagger are just products $\Theta_{\pi_{\chi, \lambda}}(z x) = \text{trace } (z) \Theta_{\pi_{\chi, \lambda}}(x)$, as in the second equation of (8.6a). Third, one may assume that P is a Borel subgroup of G, so $U_0 = T_0$, by using the Borel–Weil Theorem 7.15 on the fibres of $G_0/T_0 \to G_0/U_0$ to make the Leray spectral sequence explicit.

We will assume that G_0 is connected and $U_0 = T_0$ for the discussion of formulae (11.11).

We indicate the argument for the alternating sum formula (11.11a). Use the Plancherel formula to express

\begin{equation}
P_{\mu}^{(0, q)}(D; E_\mu) = \int_{\widehat{G}_0} H_{\pi} \hat{\otimes} (H_{\pi}^* \otimes \wedge^q n^* \otimes E_\mu) U_0 \, dm(\pi)
\end{equation}

where m is Plancherel measure on \widehat{G}_0. Here $n = \sum_{\alpha \in \Sigma^+} \mathfrak{g}_{-\alpha}$ is the nilradical $p^- = b^-$ as in (1.1), so n represents the antiholomorphic tangent space and
n* represents the fibre for the bundle of (0,1)–forms. Also, \otimes denotes projective tensor product and the integral is a direct integral of Hilbert spaces. One now writes out the formulae for $\widehat{\partial}$ and $\widehat{\partial'}$ and pushes them inside the integral of (11.12). They commute with the left action of G_0 and so act on the second projective tensor product factor $(H^n* \otimes \wedge^q n* \otimes E_{\mu})^U_0$. There they ignore the E_{μ} factor and act on $H_n^* \otimes \wedge^n n*$. The action on $H_n^* \otimes \wedge^n n*$ produces a certain finite dimensional Lie algebra cohomology $H^q(\pi)$ as follows.

Let H_π^0 denote the space of K_0–finite vectors in H_π. Then $\pi \otimes \text{ad}^*$ gives a representation of $t = p^*$ on $H_\pi^0 \otimes \wedge^* n*$. If $\{y_i\}$ is a basis of n and $\{\omega^i\}$ is the dual basis of n^* then the coboundary, for Lie algebra cohomology of t relative to its representation on H_π^0, is

\[(1.13a) \delta = \sum (d\pi(y_i) \otimes \epsilon(\omega^i) + \frac{1}{2} \otimes \epsilon(\omega^i) \text{ad}^*(y_i)) : H_\pi^0 \otimes \wedge^n n* \rightarrow H_\pi^0 \otimes \wedge^{q+1} n* \]

where $\epsilon(\cdot)$ denotes exterior product. Let $i(\cdot)$ denote the dual operation, interior product. Then δ has adjoint

\[(1.13b) \delta^* = \sum (-d\pi(\tau(y_i)) \otimes i(\omega^i) + \frac{1}{2} \otimes \text{ad}^*(y_i) i(\omega^i)) : H_\pi^0 \otimes \wedge^{q+1} n* \rightarrow H_\pi^0 \otimes \wedge^n n* . \]

Then $\delta + \delta^*$ is essentially self–adjoint on $H_\pi^0 \otimes \wedge^* n*$ and has finite dimensional kernel $H^q(\pi)$ on $H_\pi^0 \otimes \wedge^q n*$. One now combines (11.12) and (11.13) to obtain

\[(1.14a) \quad H^q_\pi (D; E, \mu) = \int_{G_0} H^q(\pi^* \otimes E, \mu)^U_0 \, dm(\pi) \]

In particular, the discrete series part $^0 \pi_\mu^q$ of π_μ^q is given by

\[(1.14b) \quad ^0 \pi_\mu^q = \sum_{\pi \in G_0, q} \dim (H^q(\pi^* \otimes E, \mu)^U_0) \pi . \]

If $f \in C^\infty(K_0)$ then $\pi|_{K_0}(f) = \int_{K_0} f(k) \tau(k) dk$ is a trace class operator on H_π, $f \mapsto T_\pi(f) = \text{trace } \tau|_{K_0}(f)$ is a distribution on K_0, and $T_\pi|_{K_0 \cap G^*_0} = \Theta_\pi|_{K_0 \cap G^*_0}$. These are delicate results of Harish–Chandra. The connection with (11.11a) and (11.14b) is that

\[(1.15a) \quad f_\pi = \sum_{q \geq 0} (-1)^q (\text{character of } T_0 = U_0 \text{ on } H^q(\pi)) \]

satisfies

\[(1.15b) \quad f_\pi|_{T_0 \cap G^*_0} = (-1)^{q+1} \Delta G_0, T_0 \, e^{\psi} T_\pi|_{T_0 \cap G_0} . \]
Now let \(F_\lambda = \sum_{q \geq 0} (-1)^q \Theta_\pi \tau_\lambda^q \) and compute
\[
F_\lambda = \sum_{q \geq 0} (-1)^q \sum_{\pi \in G_{0,d}} \dim \left(H^q(\pi^*) \otimes E_\mu \right) \Theta_\pi
\]
\[
= \sum_{\pi \in G_{0,d}} \left(\sum_{q \geq 0} (-1)^q \dim \left(H^q(\pi^*) \otimes E_\mu \right) \right) \Theta_\pi
\]
\[
= \sum_{\pi \in G_{0,d}} \left(\text{coefficient of } e^{-\lambda + \rho_0} \text{ in } f_{\pi^*} \right) \Theta_\pi.
\]

But
\[
f_{\pi^*} = (-1)^{\Sigma^+ + q_0(\nu)} \sum_{w \in W(G_0, T_\theta)} e^{-(w(\nu) - \rho_0)},
\]
in which the coefficient of \(e^{-\lambda} \) is equal to 0 if \(\lambda \notin W(G_0, T_\theta)(\nu) \), is equal to \((-1)^{\Sigma^+ + q_0(\lambda)}\) if \(\lambda \in W(G_0, Y_0)(\nu) \). Thus we have
\[
F_\lambda = (-1)^{\Sigma^+ + q_0(\lambda)} \Theta_{\pi^*}.
\]

That proves the alternating sum formula (11.11a).

The Plancherel Formula (10.7) implies that
\[
\{ \pi \in \widehat{G_0} \setminus \widehat{G_{0,d}} \mid T_{\pi^*} |_{K_0 \cap G_0} = \Theta_{\pi^*} |_{K_0 \cap G_0} \neq 0 \}
\]
has Plancherel measure 0. It follows from (11.14) and (11.17) that \(^0\pi^q = \pi^q \), and (11.11b) follows.

References for §11.

§12. Partially Measurable Orbits and Tempered Series.

Choose a Cartan subgroup $H_0 \subset G_0$. We are going to realize the H_0–series representations of G_0 in a way analogous to the way we realized the principal series in §7, with Theorem 11.9 in place of the Bott–Borel–Weil Theorem 7.15.

Let θ be the Cartan involution of G_0 that stabilizes H_0, split $H_0 = T_0 \times A_0$ and let $Z_{G_0}(A_0) = M_0 \times A_0$ as before. Fix a positive root system $\Sigma^+ = \Sigma^+(\mathfrak{g}, \mathfrak{h})$ defined by positive root systems $\Sigma^+(\mathfrak{m}, \mathfrak{t})$ and $\Sigma^+(\mathfrak{g}_0, \mathfrak{a}_0)$ as in (7.3). Let $P_0 = M_0 A_0 N_0$ be the corresponding cuspidal parabolic subgroup of G_0 associated to H_0.

Following the idea of the geometric realization of the principal series, we fix a set $\Phi \subset \Psi_m$ where Ψ_m is the simple root system for $\Sigma^+(\mathfrak{m}, \mathfrak{t})$. Then as in (7.5) we have

$$\begin{align*}
\Psi = \{ \xi \in \mathfrak{t} \mid \phi(\xi) = 0 \ \forall \phi \in \Phi \} \text{ and its real form } \\
\Psi_\Phi = Z_M(\mathfrak{z}_\Phi), U_{\Phi,0} = M_0 \cap U_{\Phi}, \text{ and Lie algebras } u_{\Phi} \text{ and } u_{\Phi,0}, \\
(12.1) \quad \mathfrak{r}_\Phi = u_{\Phi} + \sum_{\gamma \in \Sigma^+(\mathfrak{m}, \mathfrak{t})} \mathfrak{m}_{-\gamma}, \text{ parabolic subalgebra of } \mathfrak{m}, \\
R_{\Phi} = N_M(\mathfrak{r}_\Phi), \text{ corresponding parabolic subgroup of } M, \text{ and } \\
S_{\Phi} = M/R_{\Phi}, \text{ associated complex flag manifold.}
\end{align*}$$

Let r_{Φ} denote the base point, $r_{\Phi} = 1 R_{\Phi} \in R_{\Phi}$. As T_0 is a compact Cartan subgroup of M_0 contained in $U_{\Phi,0}$,

(12.2a) \quad $D_{\Phi} = M_0(r_{\Phi}) \subset S_{\Phi}$ is a measurable open M_0–orbit on R_{Φ}.

We now assume that

(12.2b) \quad $U_{\Phi,0}$ is compact, so the considerations of §11 apply to $D_{\Phi} \subset S_{\Phi}$.

Fix $[\mu] = [\chi \otimes \mu^0] \in \widehat{U_{\Phi,0}}$ as before. Given $\sigma \in \alpha_0^*$ we will use the Theorem 11.9 to find the H_0–series representation $\pi_{\chi \otimes \alpha_0^*}$ on a cohomology space related to a particular orbit in the complex flag manifold $Z_{\Phi} = G/P_{\Phi}$. Here as before, the simple root system $\Psi_{m} \subset \Psi$ by the coherence in our choice of $\Sigma^+(\mathfrak{g}, \mathfrak{h})$, so $\Phi \subset \Psi$ and Φ defines a parabolic subgroup $P_{\Phi} \subset G$.

Let $z_{\Phi} = 1 P_{\Phi} \subset G/P_{\Phi} = Z_{\Phi}$. As $A_0 N_0 \subset G_0 \cap P_{\Phi}$ we have $G_0 \cap P_{\Phi} = U_{\Phi,0} A_0 N_0$. Thus $Y_{\Phi} = G_0(z_{\Phi})$ is a G_0–orbit on Z_{Φ}, and D_{Φ} sits in Y_{Φ} as the orbit $M_0(z_{\Phi})$. Here note that $P_0 = M_0 A_0 N_0 = \{ g \in G_0 \mid g D_{\Phi} = D_{\Phi} \}$.

12.3. Lemma. The map $Y_{\Phi} \to G_0/P_0$, given by $g(z_{\Phi}) \mapsto g P_0$, defines a G_0–equivariant fibre bundle with structure group M_0 and whose fibres $g D_{\Phi}$ are the maximal complex analytic submanifolds of Y_{Φ}.

The data (μ, σ) defines a representation $\gamma_{\mu, \sigma}$ of $U_{\Phi,0} A_0 N_0$ by

(12.4a) \quad $\gamma_{\mu, \sigma}(uan) = e^{(\rho_{\Phi} \otimes i \sigma) (\log u)} \mu(u)$ where $\rho_{\Phi} = \frac{1}{2} \sum_{\alpha \in \Sigma^+} \alpha_0$.

That defines a G_0-homogeneous vector bundle

(12.4b) \[\mathbb{E}_{\mu, \sigma} \to G_0/U_{\Phi, 0}A_0N_0 = Y_\Phi \text{ such that } \mathbb{E}_{\mu, \sigma}|_{D_\Phi} = \mathbb{E}_\mu \].

Each $\mathbb{E}_{\mu, \sigma}|_{D_\Phi}$ is an $\text{Ad}(g)P_0$-homogeneous holomorphic vector bundle.

Since $|\mu|$ is unitary and K_0 acts transitively on G_0/P_0 we have a K_0-

invariant hermitian metric on $\mathbb{E}_{\mu, \sigma}$. We will use it without explicit reference.

Consider the subbundle of the complexified tangent bundle to Y_Φ ,

(12.5a) \[T \to Y_\Phi \text{ defined by: } T|_{D_\Phi} \to gD_\Phi \text{ is the holomorphic tangent bundle of } gD_\Phi . \]

It defines

\[
\begin{align*}
\mathbb{E}^{p,q}_{\mu, \sigma} &= \mathbb{E}_{\mu, \sigma} \otimes \Lambda^p(T^*) \otimes \Lambda^q(T^*) \to D_\Phi, \\
A^{p,q}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma}) &\colon C^\infty \text{ compactly supported sections of } \mathbb{E}_{\mu, \sigma} \to Y_\Phi , \\
\mathcal{O}(\mathbb{E}_{\mu, \sigma}) &\colon \text{sheaf of germs of } C^\infty \text{ sections of } \mathbb{E}_{\mu, \sigma} \to Y_\Phi \\
&\text{holomorphic over every } gD_\Phi .
\end{align*}
\]

(12.5b) \[A^{p,q}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma}) \text{ is the space of } \mathbb{E}_{\mu, \sigma}-\text{valued partially } (p,q)-\text{forms on } Y_\Phi , \text{ and } A^{p,q}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma}) \text{ is the subspace of compactly supported forms.} \]

The fibre \mathbb{E}_μ of $\mathbb{E}_\mu \to D_\Phi$ has a positive definite $U_{\Phi, 0}$-invariant hermitian inner product because μ is unitary; we translate this around by K_0 to obtain a

K_0-invariant hermitian structure on the vector bundle $\mathbb{E}^{p,q}_{\mu, \sigma} \to Y_\Phi$. Similarly $T \to Y_\Phi$ carries a K_0-invariant hermitian metric. Using these hermitian metrics we have K_0-invariant Hodge–Kodaira orthocomplementation operators

\[
\begin{align*}
\mathcal{J}^{\sigma} &\colon A^{p,q}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma}) \to A^{-p,q}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma}) \\
\mathcal{J}^{\sigma} &\colon A^{n-p,n-q}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma}) \to A^{p,q}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma})
\end{align*}
\]

where $n = \dim_{\mathbb{C}} D_\Phi$. The global G_0-invariant hermitian inner product on $A^{p,q}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma})$ is given by taking the M_0-invariant inner product along each fibre of $Y_\Phi \to G_0/P_0$ and integrating over G_0/P_0 ,

(12.7) \[\langle F_1, F_2 \rangle_{Y_\Phi} = \int_{K_0/(K_0 \cap M_0)} \left(\int_{kD_\Phi} F_1 \wedge \mathcal{J}^{\sigma} F_2 \right) d(k(K_0 \cap M_0)) , \]

where \wedge means exterior product followed by contraction of E_μ against E_μ^\ast .

The $\overline{\partial}$ operator of Z_Φ induces the $\overline{\partial}$ operators on each of the gD_Φ , so they fit together to give us an operator

(12.8a) \[\overline{\partial} : A^{p,q}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma}) \to A^{p,q+1}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma}) \]

that has formal adjoint

(12.8b) \[\overline{\partial}^* : A^{p,q+1}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma}) \to A^{p,q}_{\mu, \sigma}(Y_\Phi; \mathbb{E}_{\mu, \sigma}) \text{ given by } \overline{\partial}^* = -\mathcal{J}^{\sigma} \overline{\partial}^* . \]
That in turn defines an elliptic operator, the “partial Kodaira–Hodge–Laplace operator”

\[(12.8c) \quad \Box = \overline{\partial} \overline{\partial} + \partial \overline{\partial} : A_{0}^{p,q}(Y_{\Phi}; E_{\mu,\sigma}) \to A_{0}^{p,q}(Y_{\Phi}; E_{\mu,\sigma}).\]

\(A_{0}^{p,q}(Y_{\Phi}; E_{\mu,\sigma})\) is a pre Hilbert space with the global inner product (12.7). Denote

\[(12.9) \quad \mathcal{H}_{2}^{p,q}(Y_{\Phi}; E_{\mu,\sigma}) : \text{Hilbert completion of } A_{0}^{p,q}(Y_{\Phi}; E_{\mu,\sigma}).\]

Apply Andreotti–Vesentini along each \(g D\Phi\) to see that the closure of \(\Box\) of \(\Box\), as a densely defined operator on \(L_{2}^{p,q}(Y_{\Phi}; E_{\mu,\sigma})\) from the domain \(A_{0}^{p,q}(Y_{\Phi}; E_{\mu,\sigma})\), is essentially self-adjoint. Its kernel

\[(12.10) \quad \mathcal{H}_{2}^{p,q}(Y_{\Phi}; E_{\mu,\sigma}) = \{ \omega \in \text{Domain}(\Box) \mid \Box \omega = 0 \}\]

is the space of \textbf{square integrable partially harmonic} \((p, q)\)-forms on \(Y_{\Phi}\) with values in \(E_{\mu,\sigma}\).

The factor \(e^{\gamma_{\mu,\sigma}}\) in the representation \(\gamma_{\mu,\sigma}\) that defines \(E_{\mu,\sigma}\) insures that the global inner product on \(A_{0}^{p,q}(Y_{\Phi}; E_{\mu,\sigma})\) is invariant under the action of \(G_{0}\). The other ingredients in the construction of \(\mathcal{H}_{2}^{p,q}(Y_{\Phi}; E_{\mu,\sigma})\) are invariant as well, so \(G_{0}\) acts naturally on \(\mathcal{H}_{2}^{p,q}(Y_{\Phi}; E_{\mu,\sigma})\) by isometries. This action is a unitary representation of \(G_{0}\).

Essentially as before, we write \(\mathcal{H}_{2}^{q}(Y_{\Phi}; E_{\mu,\sigma})\) for \(\mathcal{H}_{2}^{0,q}(Y_{\Phi}; E_{\mu,\sigma})\), because those are the only harmonic spaces that we will use, and because \(\mathcal{H}_{2}^{q}(Y_{\Phi}; E_{\mu,\sigma})\) is closely related to the sheaf cohomology \(H^{q}(Y_{\Phi}, O_{E_{\mu,\sigma}})\). The relation, which we will see later, is that they have the same underlying Harish–Chandra module.

We can now combine Theorem 11.9 with the definition ((9.2) and (9.3)) of the \(H_{0}\)-series, obtaining

\[12.11. \textbf{Theorem.} \text{ Let } [\mu] = [\chi \otimes \mu_{0}] \in \mathcal{U}_{\Phi,0} \text{ where } \mu_{0} \text{ has highest weight } \beta - \rho_{u} \text{ and thus has infinitesimal character } \beta. \text{ Let}
\]

\[(12.12) \quad \nu = \beta - \rho_{u} + \rho_{m},\]

suppose \(\sigma \in \mathfrak{a}_{\nu}^{*}\), and fix an integer \(q \geq 0\).

1. If \(\langle \nu, \alpha \rangle = 0\) for some \(\alpha \in \Sigma(m, t)\) then \(\mathcal{H}_{2}^{q}(Y_{\Phi}; E_{\mu,\sigma}) = 0\).

2. If \(\langle \nu, \alpha \rangle \neq 0\) for all \(\alpha \in \Sigma(m, t)\), define

\[(12.13) \quad q_{u_{\Phi}}(\nu) = \left| \{ \alpha \in \Sigma^{+}(m, \mu, t) \setminus \Sigma^{+}(u, t) \mid \langle \nu, \alpha \rangle < 0 \} \right|
\]

\[\quad + \left| \{ \beta \in \Sigma^{+}(m, \mu, t) \setminus \Sigma^{+}(u, t) \mid \langle \nu, \beta \rangle > 0 \} \right|.\]

Then \(\mathcal{H}^{q}(D; E_{\mu,\sigma}) = 0\) for \(q \neq q_{u_{\Phi}}(\nu)\), and the action of \(G_{0}\) on \(\mathcal{H}^{0,q-\langle \nu \rangle}(D; E_{\mu,\sigma})\) is the \(H_{0}\)-series representation \(\pi_{\chi,\nu,\sigma}\) of infinitesimal character \(\nu + i\sigma\).

A variation on this theorem realizes the tempered series on spaces of \(L_{2}\) bundle-valued partially harmonic spinors.
References for §12.

Part 5. The Linear Cycle Space.

In this part we indicate the geometric setting for double fibration transforms, one of the current approaches to geometric construction of non-tempered representations.

§13. Exhaustion Functions on Measurable Open Orbits.

Bounded symmetric domains $D \subset \mathbb{C}^n$ are convex, and thus Stein, so cohomologies $H^k(D; \mathcal{F}) = 0$ for $k > 0$ whenever $\mathcal{F} \to D$ is a coherent analytic sheaf. This is a key point in dealing with holomorphic discrete series representations. More generally, for general discrete series representations and their analytic continuations, one has

13.1. Theorem. Let $Z = G/P$ be a complex flag manifold, G semisimple and simply connected, and let G_0 be a real form of G. Let $D = G_0(z) \subset Z = G/P$ be a measurable open orbit. Let $Y = K_0(z)$, maximal compact subvariety of D, and let $s = \dim_{\mathbb{C}} Y$. Then D is $(s+1)$–complete in the sense of Andreotti-Grauert. In particular, if $\mathcal{F} \to D$ is a coherent analytic sheaf then $H^k(D; \mathcal{F}) = 0$ for $k > s$.

Indication of Proof. Let $\mathbb{K}_Z \to Z$ and $\mathbb{K}_D = K_Z|_D \to D$ denote the canonical line bundles. Their dual bundles

$$L_Z = \mathbb{K}_Z^* \to Z \quad \text{and} \quad L_D = \mathbb{K}_D^* \to D$$

are the homogeneous holomorphic line bundles over Z associated to the character

$$e^\lambda : P_z \to \mathbb{C} \text{ defined by } e^\lambda(p) = \text{ trace } \text{Ad}(p)|_{p_z^\circ}.$$

Write $D = G_0/V_0$ where V_0 is the real form $G_0 \cap P_z$ of P_z°. Write V for the complexification P_z° of V_0, ρ_G/V for half the sum of the roots that occur in p_z^n, and $\lambda = 2\rho_G/V$. If $\alpha \in \Sigma(G, \mathfrak{h})$ then (i) $\langle \alpha, \lambda \rangle = 0$ and $\alpha \in \Phi^+$, or (ii) $\langle \alpha, \lambda \rangle > 0$ and $\alpha \in \Phi^n$, or (iii) $\langle \alpha, \lambda \rangle < 0$ and $\alpha \in \Phi^-$. Now $\tau \lambda = -\lambda$.

Decompose $\mathfrak{g}_0 = \mathfrak{t}_0 + \mathfrak{a}_0$ under the Cartan involution with fixed point set \mathfrak{t}_0, thus decomposing the Cartan subalgebra $\mathfrak{h}_0 \subset \mathfrak{g}_0 \cap p_z$ as $\mathfrak{h}_0 = \mathfrak{t}_0 + \mathfrak{a}_0$ with $t_0 = \mathfrak{h}_0 \cap \mathfrak{t}_0$ and $a_0 = \mathfrak{h}_0 \cap \mathfrak{a}_0$. Then $\lambda(a_0) = 0$.

View $D = G_0/V_0$ and $Z = G_u/V_0$ where G_u is the analytic subgroup of G for the compact real form $\mathfrak{g}_u = \mathfrak{t}_0 + \sqrt{-1}\mathfrak{a}_0$. Then e^λ is a unitary character.
on V_0 so

\begin{align}
L_Z \to Z &= G_u/V_0 \text{ has a } G_u\text{-invariant hermitian metric } h_u. \\
L_D \to D &= G_0/V_0 \text{ has a } G_0\text{-invariant hermitian metric } h_0.
\end{align}

We now have enough information to carry out a computation that results in

13.5. Lemma. The hermitian form $\sqrt{-1}\partial\bar{\partial}h_u$ on the holomorphic tangent bundle of Z is negative definite. The hermitian form $\sqrt{-1}\partial\bar{\partial}h_0$ on the holomorphic tangent bundle of D has signature $n - 2s$ where $n = \dim \mathbb{C}D$.

13.6. Corollary. Define $\phi : D \to \mathbb{R}$ by $\phi = \log(h_0/h_u)$. Then the Levi form $L(\phi)$ has at least $n - s$ positive eigenvalues at every point of D.

The next point is to show that ϕ is an exhaustion function for D, in other words that

$$\{ z \in D \mid \phi(z) \leq c \}$$

is compact for every $c \in \mathbb{R}$.

It suffices to show that $e^{-\phi}$ has a continuous extension from D to the compact manifold Z that vanishes on the topological boundary ∂D of D in Z. For that, choose a G_u-invariant metric h_u^* on $L_Z^* = \mathbb{K}_Z$ normalized by $h_u h_u^* = 1$ on Z, and a G_0-invariant metric h_0^* on $L_D^* = \mathbb{K}_D$ normalized by $h_0 h_0^* = 1$ on D. Then $e^{-\phi} = h_0^*/h_u^*$. So it suffices to show that h_0^*/h_u^* has a continuous extension from D to Z that vanishes on ∂D.

The holomorphic cotangent bundle $T_Z^* \to Z$ has fibre $\text{Ad}(g)(p_z^*)^* = \text{Ad}(g)(p_z^{-n})$ at $g(z)$. Thus its G_u-invariant hermitian metric is given on the fibre $\text{Ad}(g)(p_z^{-n})$ at $g(z)$ by $F_u(\xi, \eta) = -\langle \xi, \tau \eta \rangle$ where $\langle \cdot, \cdot \rangle$ is the Killing form. Similarly the G_0-invariant indefinite-hermitian metric on $T_D^* \to D$ is given on the fibre $\text{Ad}(g)(p_z^{-n})$ at $g(z)$ by $F_0(\xi, \eta) = -\langle \xi, \tau \eta \rangle$. But $\mathbb{K}_Z = \det T_Z^*$ and $\mathbb{K}_D = \det T_D^*$, so

$$h_0^*/h_u^* = e \cdot (\text{determinant of } F_0 \text{ with respect to } F_u)$$

for some nonzero real constant e. This extends from D to a C^∞ function on Z given by

$$f(g(z)) = e \cdot (\text{det } F_0|_{\text{Ad}(g)(p_z^{-n})} \text{ relative to } \text{det } F_u|_{\text{Ad}(g)(p_z^{-n})}).$$

It remains only to show that the function f of (13.7) vanishes on ∂D. If $g(z) \in \partial D$ then $G_0(g(z))$ is not open in Z, so $\text{Ad}(g)(p_z) = \tau \text{Ad}(g)(p_z) \neq g$. Thus $g_0 \subset \text{Ad}(g)(p_z^{-n})$ while there exists an $a \in \Sigma(\mathfrak{g}, \text{Ad}(g)\mathfrak{h})$ such that $g(a) \subset \text{Ad}(g)(p_z) + \tau \text{Ad}(g)(p_z)$. If $b \in \Sigma(\mathfrak{g}, \text{Ad}(g)\mathfrak{h})$ with $g(b) \subset \text{Ad}(g)(p_z^{-n})$ then $F_0(g(a), g(b)) = 0$, so $f(g(z)) = 0$. Thus ϕ is an exhaustion function for D in Z. In view of Corollary 13.6 now D is $(s + 1)$–complete. Theorem 13.1 follows.
References for §13.

§14. The Exhaustion Function on a General Open Orbit.

We extend Theorem 13.1 to arbitrary open orbits. The result is

14.1. Theorem. Let $Z = G/P$ be a complex flag manifold, G semisimple and simply connected, and let G_0 be a real form of G. Let $D = G_0(z) \subset Z = G/P$ be an open orbit. Let $Y = K_0(z)$, maximal compact subvariety of D, and let $s = \dim_Y$. Then D is $(s + 1)$-complete in the sense of Andreotti-Grauert. In particular, if $\mathcal{F} \to D$ is a coherent analytic sheaf then $H^k(D; \mathcal{F}) = 0$ for $k > s$.

The idea of the proof is to show that the arbitrary open orbit $D = G_0(z) \subset Z$ is the base of a canonical holomorphic fibration $\pi_D : \tilde{D} \to D$ where \tilde{D} is a measurable open G_0-orbit in a certain flag manifold W that lies over Z. We then take a close look at that fibration and its relation to the maximal compact linear subvarieties.

Fix the open orbit $D = G_0(z) \subset Z = G/P$ and consider the parabolic subalgebra $p^+ = p^r + p^\mathfrak{n} \subset \mathfrak{g}$ opposite to $p_2 = p^r + p^{-\mathfrak{n}}$. Denote

$$q = p \cap \tau p^+.$$

As D is open, so $p^{-\mathfrak{n}} \cap \tau p^{-\mathfrak{n}} = 0$, q is the sum of a nilpotent ideal $q^{-\mathfrak{n}}$ and a reductive subalgebra q^r given by

$$q^r = p^r \cap \tau p^r$$

and

$$q^{-\mathfrak{n}} = (p^r \cap \tau p^r)+(p^{-\mathfrak{n}} \cap \tau p^r)+(p^{-\mathfrak{n}} \cap \tau p^r) = (p^r \cap \tau p^r)+p^{-\mathfrak{n}}.$$

Then q is a parabolic subalgebra of \mathfrak{g}, and $q \cap \tau q = p^r \cap \tau p^r$, which is reductive. Let Q denote the parabolic subgroup of G corresponding to $q \subset \mathfrak{g}$ and let W denote the corresponding flag manifold G/Q. Our choice of P was such that $p = p_2$ where $z \in Z$ and $D = G_0(z)$ is the open orbit under study. Note that we have implicitly made the corresponding choice on W:

14.4. Lemma. Define $w \in W$ by $q = q_w$. Then $\tilde{D} = G_0(w)$ is a measurable open G_0-orbit on W, and $gw \mapsto gz$ defines a surjective holomorphic projection $\pi_D : \tilde{D} \to D$. Finally, the following are equivalent: (i) D is measurable, (ii) $\tilde{D} = D$, (iii) π_D is one to one, and (iv) $Q = P$.

The structure of the fibre of $\pi_D : \tilde{D} \to D$ is given by
14.5. Lemma. Let $u = (p^n \cap \tau p^{-n}) + (p^{-n} \cap \tau p^n)$, nilradical of $p \cap \tau p$, and let U be the corresponding complex analytic subgroup of G. Then U is unipotent, $u_0 = g_0 \cap u$ is a real form of u, $U_0 = G_0 \cap U$ is a real form of U, $U(w) = U_0(w)$, and $\tau_D : \tilde{D} \to D$ is a holomorphic fibre bundle with structure group U and affine fibres $\tau_D^{-1}(gz) = gU_0(w)$. If $g \in G_0$ then the holomorphic tangent space to $gU_0(w)$ at $g(w)$ is represented by $\text{Ad}(g)(p \cap \tau p^{-n})$ and the antiholomorphic tangent space is represented by $\text{Ad}(g)(p \cap \tau p^n)$.

Proof. Here U is the nilradical of $P \cap \tau P$ so $U_0 = G_0 \cap U$ is the nilradical of the isotropy subgroup $G_0 \cap P$ and is a real form of U. Note $u = v + \tau v$ where $v = p^n \cap \tau p^{-n} = u \cap q^n$, and where $\tau v = u \cap q^{-n}$. Both are subalgebras; v represents the holomorphic tangent space of $U_0(w)$ at w and τv represents the antiholomorphic tangent space. Note $[v, \tau v] = 0$.

Now $U(w) = V(w) = U_0(w)$ is the fibre over z of $\tau_D : \tilde{D} \to D$, and $G_0 \cap P$ is the semidirect product of its unipotent radical U_0 and a Levy complement $G_0 \cap Q$. Thus $\tau_D : \tilde{D} \to D$ satisfies $\tau_D^{-1}(g \cdot (G_0 \cap P)) = gU_0 \cdot (G_0 \cap Q)$; in terms of the complex groups this is the same as $gV : Q$. Now we can express τ_D as quotient of $G_0 / (G_0 \cap Q)$ by the action of U_0 on the right. This the surjective holomorphic map τ_D is the projection of a principle U_0-bundle. The assertions follow.

\[\square \]

14.6. Corollary. Denote $\bar{Y} = K_0(w)$. Then $\bar{Y} = K(w)$, \bar{Y} is a maximal compact complex subvariety of \tilde{D}, and $\tau_D | \bar{Y}$ is a biholomorphic diffeomorphism of \bar{Y} onto Y.

Now we push down the exhaustion function $\bar{\phi}$ of Corollary 13.6 from the measurable open orbit $\tilde{D} = G_0(w) \subset W$ to our given open orbit $D = G_0(z) \subset Z$. We keep the notation h_0 and h_u of §13, but applied to \tilde{D} rather than to D.

14.7. Lemma. If $g \in G_0$ then $\sqrt{-1} \partial \bar{\partial} \log h_0 |_{\bar{U}_0(w)} = 0$.

Proof. The holomorphic tangent space $u \cap q^n = \mathfrak{r}^n \cap \tau \mathfrak{r}^{-n}$ to $U_0(w)$ at w has basis given by elements $\xi_\alpha \in \mathfrak{g}_\alpha$ as α runs over $\mathfrak{g}^n = \Phi^r \cap (-\tau \Phi^r)$. Let $\alpha, \beta \in \mathfrak{g}^n$. If $\xi_\alpha \in \mathfrak{g}_\alpha$ then $\alpha \in \Phi^r \cap \Phi^u$, so then $\alpha \in \Phi^r \cap (-\tau \Phi^u) \cap \tau \Phi^r \cap \Phi^u \subset \mathfrak{g}^r \cap \mathfrak{g}^n$, which is empty. The Lie algebra cohomology computation that leads to Lemma 13.5 shows $\sqrt{-1} \partial \bar{\partial} \log h_0(\xi_\alpha, \xi_\beta) = 0$. Take linear combinations to conclude that $\sqrt{-1} \partial \bar{\partial} \log h_0 |_{\bar{U}_0(w)}$ is identically zero at w. As $\sqrt{-1} \partial \bar{\partial} \log h_0$ is G_0-invariant, $\sqrt{-1} \partial \bar{\partial} \log h_0 |_{\bar{U}_0(w)}$ is identically zero at gw, for every $g \in G_0$.

\[\square \]

14.8. Lemma. If $g \in G_0$ then $\mathcal{L}(\bar{\phi}) |_{\bar{U}_0(w)}$ is positive definite.

This shows in particular that the fibres $gU_0(w)$ of $\tau_D : \tilde{D} \to D$ are Stein manifolds. We already knew that for another reason: U is unipotent, so those fibres are affine varieties.

Proof. $\sqrt{-1} \partial \bar{\partial} \log h_0 |_{\bar{U}_0(w)}$ is identically zero, by Lemma 14.7. $\sqrt{-1} \partial \bar{\partial} \log h_u$ is negative definite, so $\sqrt{-1} \partial \bar{\partial} \log h_u |_{\bar{U}_0(w)}$ is negative definite, and the dif-
ference $\mathcal{L}(\bar{\phi})|_{S^U(w)} = \sqrt{-1} \nabla \bar{\phi} \log h_0|_{S^U(w)} - \sqrt{-1} \nabla \bar{\phi} \log h_0$ is positive definite.

\[\square \]

14.9. Proposition

If $g \in G_0$ then $\bar{\phi}|_{S^U(w)}$ has a unique minimum point $m(g)$, so the function $\phi : D \to \mathbb{R}$ given by

$$
\phi(g(z)) = \bar{\phi}(m(g)) = \min \{ \bar{\phi}(w') \mid w' \in \pi_D^{-1}(g(z)) \}
$$

is well defined. Furthermore, ϕ is a real analytic exhaustion function on D.

Indication of Proof. Let $g \in G_0$. If $c > 0$ then $\bar{D}_c = \{ w' \in D \mid \bar{\phi}(w') \leq c \}$ is compact because $\bar{\phi}$ is an exhaustion function. Thus $D \cap gU_0(w)$ is compact. In particular $\bar{\phi}|_{S^U(w)}$ has an absolute minimum. Let $w_1 \neq w_2$ be relative minima of $\bar{\phi}|_{S^U(w)}$. Choose a smooth curve s in $gU_0(w)$ from w_1 to w_2, say $s(0) = w_1$ and $s(1) = w_2$, with $s'(t) \neq 0$ for $0 < t < 1$. Set $f(t) = d \bar{\phi}(s'(t)) = \nabla \bar{\phi}(s(t))$. Then f has a relative maximum at some t_0 between 0 and 1. Here we use $w_1 \neq w_2$. But Lemma 14.8 says $f''(t) > 0$ for $0 < t < 1$. Thus $w_1 = w_2$. We have proved that $\bar{\phi}|_{S^U(w)}$ has a unique minimum point $m(g) \in gU_0(w)$.

Now $\phi : D \to \mathbb{R}$ is well defined by (14.10). Each $\pi_D(\bar{D}_c) = D_c$, compact, so $\phi : D \to \mathbb{R}$ is an exhaustion function. ϕ is C^∞ because $M = \{ m(g) \mid g \in G_0 \}$, the minimum locus just described, is a C^∞ subvariety of D.

\[\square \]

14.11. Remark

The first part of the argument of Proposition 14.9 shows that $m(g)$ is the unique critical point of $\bar{\phi}|_{S^U(w)}$. The second part of the argument shows that the minimum locus $M = \{ m(g) \mid g \in G_0 \}$ is a C^∞ subvariety of D.

Define $\zeta = \phi \cdot \pi_D$, so $\zeta : D \to \mathbb{R}$ by $\zeta(g(w)) = \bar{\phi}(m(g)) = \phi(\pi_D(g(w)))$. Then the holomorphic tangent spaces of the fibres of π_D are in the kernel of the Levi form $\mathcal{L}(\zeta)$, and if $g \in G_0$ then $\mathcal{L}(\zeta)|_{S^U(w)}$ has the same number of positive eigenvalues as $\mathcal{L}(\bar{\phi})|_{S^U(w)}$.

Denote complex dimensions of our spaces by

$$
n = \dim \mathbb{C} D , \quad \bar{n} = \dim \mathbb{C} \bar{D} , \quad s = \dim \mathbb{C} Y , \quad \bar{s} = \dim \mathbb{C} \bar{Y}
$$

where $Y = K_0(z) \subset D$ and $\bar{Y} = K_0(w) \subset \bar{D}$ are the maximal compact subvarieties. Lemma 14.6 implies $s = \bar{s}$.

14.13. Lemma

Recall the minimum locus $M \subset \bar{D}$ of Proposition 14.9 and Remark 14.11. Let $m \in M$ and let $T^{(1,0)}_m(M)$ denote the part of the holomorphic tangent space to D tangent to M at m. Then $\mathcal{L}(\bar{\phi})|_{T^{(1,0)}_m(M)}$ has at least $n - s$ eigenvalues > 0.

Proof. Proposition 13.6, applied to \bar{D}, says that $\mathcal{L}(\bar{\phi})$ has at least $\bar{n} - \bar{s}$ eigenvalues > 0 at m, and $\dim \mathbb{C} \pi_D^{-1}(\pi_D(m)) = \bar{n} - n$. So $\mathcal{L}(\bar{\phi})|_{T^{(1,0)}_m(M)}$ has at least $n - \bar{s} = n - s$ eigenvalues > 0.

\[\square \]
14.14. Corollary. \(L(\zeta) \) has at least \(n - s \) eigenvalues greater than zero at every point of \(\overline{D} \).

Theorem 14.1 follows.

References for §14.

§15. The Stein Property.

Theorem 4.4 says that

\[
Y = K_0(z) \cong K_0/(K_0 \cap P_z) \cong K/(K \cap P_z)
\]

is a complex submanifold of \(D \). Furthermore, \(Y \) is not contained in any compact complex submanifold of \(D \) of greater dimension. So \(Y \) is a maximal compact subvariety of \(D \). We will refer to

\[
M_D = \{ gY \mid g \in G \text{ and } gY \subset D \}
\]

as the linear cycle space or the space of maximal compact linear subvarieties of \(D \). Since \(Y \) is compact and \(D \) is open in \(Z \), \(M_D \) is open in

\[
M_Z = \{ gY \mid g \in G \} \cong G/L
\]

where

\[
L = \{ g \in G \mid gY = Y \}, \text{ closed complex subgroup of } G.
\]

Thus \(M_D \) has a natural structure of complex manifold. Its structure is given by

15.4. Theorem. Let \(D \) be an open \(G_0 \)-orbit on a complex flag manifold \(Z = G/P \). Then the linear cycle space \(M_D \) is a Stein manifold.

The first step is Proposition 15.5 below, which gives the structure of \(L \). Note that the kernel of the action of \(L \) on \(Y \) is \(E = \bigcap_{k \in K_0} kP_zk^{-1} = \bigcap_{k \in K} kP_zk^{-1} \) and that \(K \subset E \subset L \subset K P_z \).

In general, \(G, P, Z, D, K \) and \(Y \) break up as direct products according to any decomposition of \(G_0 \) as a direct sum of ideals, equivalently any decomposition of \(G_0 \) as a direct product. Here we use our assumption that \(G \) is connected and simply connected. So, for purposes of determining \(L \) we may, and do, assume that \(G_0 \) is noncompact and simple, in other words that \(G_0/K_0 \) is an irreducible riemannian symmetric space of noncompact type.
As before we say that G_0 is of **hermitian type** if the irreducible riemannian symmetric space G_0/K_0 is an hermitian symmetric space.

Let θ be the Cartan involution of G_0 with fixed point set K_0 and $\mathfrak{g} = \mathfrak{k} + \mathfrak{s}$ under θ, as usual. By irreducibility of G_0/K_0, the adjoint action of K_0 on $\mathfrak{a}_0 = \mathfrak{g}_0 \cap \mathfrak{s}$ is irreducible. G_0 is of hermitian type if and only if this action fails to be absolutely irreducible. Then there is a positive root system $\Sigma^+ = \Sigma^+(\mathfrak{g}, \mathfrak{h})$ such that $\mathfrak{s} = \mathfrak{s}_+ + \mathfrak{s}_-$ where \mathfrak{s}_+ is a sum of Σ^+-positive root spaces and represents the holomorphic tangent space of G_0/K_0, and $\mathfrak{s}_- = \overline{\mathfrak{s}_+}$ is a sum of Σ^+-negative root spaces and represents the antiholomorphic tangent space.

Write $S_\pm = \exp(\mathfrak{a}_\pm) \subset G$. Then G_0/K_0 is an open G_0-orbit on $G/K S_-$.

Recall the compact real form $G_u = \mathfrak{k}_0 + \sqrt{-1} \mathfrak{a}_0$ of G. The corresponding real analytic subgroup G_u of G is a compact real form, thus is a maximal compact subgroup, and $K_0 = G_0 \cap G_u$. K_0 is its own normalizer in G_0, but its normalizer $N_{G_u}(K_0)$ in G_u can have several components.

15.5. Proposition. Either G_0 is of hermitian type and $L = KE = KS_\pm$, connected, or $^3L \subset K N_{G_u}(K)$ with identity component $L^0 = K$. In either case $G_0 \cap L = K_0$.

The proof is a run through the structural possibilities for G_0 and P_z. The group $V = G \cap P_z$ is compact in Cases 1 and 2 below, is noncompact in Cases 3 and 4, and can be either compact or noncompact in Cases 5 and 6. The cases are

1. G_0 is of hermitian type with $P_z \subset KS_\pm$. In this case $L = KE = KS_\pm$ and $G_0 \cap L = K_0$.
2. G_0 is of hermitian type with $P_z \subset KS_\pm$. As in Case 1, $L = KE = KS_\pm$ and $G_0 \cap L = K_0$.
3. G_0 is of hermitian type with $P_z \nsubseteq KS_\pm$, $P_z \nsubseteq KS_\mp$ and $S_\pm \subset P_z$. In this case $L = KE = KS_\pm$ and $G_0 \cap L = K_0$.
4. G_0 is of hermitian type with $P_z \nsubseteq KS_\pm$, $P_z \nsubseteq KS_\mp$ and $S_\pm \subset P_z$. Arguing as in Case 3, we conclude that $L = KE = KS_\pm$ and $G_0 \cap L = K_0$.
5. G_0 is of hermitian type with $P_z \nsubseteq KS_\mp$, $P_z \nsubseteq KS_\mp$, $S_\pm \nsubseteq P_z$ and $S_\pm \nsubseteq P_z$. In this case $L^0 = K$, and $G_0 \cap L = K_0$.
6. G_0 is not of hermitian type. In this case $L^0 = K$ and $G_0 \cap L = K_0$.

15.6. Corollary. Either L is a parabolic subgroup KS_\pm of G and $M_Z = G/L$ is a projective algebraic variety, or L is a reductive subgroup of G with identity component K and $M_Z = G/L$ is an affine algebraic variety.

Consider the first of the two cases of Corollary 15.6. There the result is

15.7. Proposition. Suppose that M_Z is a projective algebraic variety. Then the open orbit $D \subset Z$ is measurable and M_D is a bounded symmetric domain. In particular M_D is a Stein manifold.

^3This latter situation occurs both for G_0 of hermitian type and for G_0 not of hermitian type.
\textbf{Indication of Proof.} \(G_0\) is of hermitian type and we may assume \(L = KS_+\). Also, \(M_Z = G/L\) is the standard complex realization of the compact hermitian symmetric space \(G_u/K\). Now
\begin{equation}
G\{D\} = \{g \in G \mid gY \subset D\},
\end{equation}
is open in \(G\) and \(M_D = \{gY \mid g \in G\{D\}\}\). \(M_D\) is stable under the action of \(G_0\) so
\begin{equation}
G\{D\} \text{ is a union of double cosets } G_0gL \text{ with } g \in G.
\end{equation}

The proof of Proposition 15.7 consists of showing that only the identity double coset occurs in \(G\{D\}\). The double cosets \(G_0gL\) of (15.9) are in one to one correspondence with the \(G_0\)-orbits on \(M_Z\). Those orbits are completely understood, as described in §5. Following Theorem 5.9 there is a (necessarily finite) set \(\mathcal{C}\) of transforms \(c_T^2\Delta\), where \(\Gamma\) and \(\Delta\) are disjoint subsets of \(\Xi\) (see (5.8), such that (i) if \(c_T^2\Delta, c_T'^2\Delta \in \mathcal{C}\) with \(|\Gamma| = |\Gamma'|\) and \(|\Delta| = |\Delta'|\) then \(\Gamma = \Gamma'\) and \(\Delta = \Delta'\) and (ii) \(G_C\{D\} = \bigcup_{c \in \mathcal{C}} GcL\). So if \(c_T^2\Delta \in \mathcal{C}\) then \(c_T^2\Delta \in \mathcal{C}\) for every subset \(\Delta' \subset \Delta\). In particular, if \(c_T^2 \not\in \mathcal{C}\) whenever \(\emptyset \neq \Delta \subset \Xi\) then \(C = \{1\}\) and \(G\{D\} = GL\).

Now the proof of Proposition 15.7 is reduced to the proof that \(c_T^2 \not\in \mathcal{C}\) for all non-empty subsets \(\Delta \subset \Xi\). That is seen by an analysis of the boundary of \(G_0(1:L)\) in terms of some natural norms on \(g\) and certain of its subspaces.

Next consider the second of the two cases of Corollary 15.6. There the result is

\textbf{15.10. Proposition.} Suppose that \(M_Z\) is an affine algebraic variety. Then \(M_D\) is an open Stein subdomain of the Stein manifold \(M_Z\).

\textbf{Indication of Proof.} Recall the real analytic exhaustion function \(\phi : D \rightarrow \mathbb{R}\) of Proposition 14.9. We use it to define \(\phi_M : M_D \rightarrow \mathbb{R}^+\) by
\begin{equation}
\phi_M(gY) = \sup_{y \in Y} \phi(g(y)) = \sup_{k \in K} \phi(gk(z)).
\end{equation}
\(W = G\{D\} = \{g \in G \mid gY \subset D\}\) is open in \(G\), so
\[\psi : W \times K_0 \rightarrow \mathbb{R}^+ \text{ by } \psi(g, k) = \phi(gk(z))\]
is a \(C^\infty\) function on the \(C^\infty\) manifold \(W \times K_0\). Thus the set defined by vanishing of the differential in the \(K_0\)-variable,
\[\bar{U} = \{(g, k) \in W \times K_0 \mid d_{K_0} \psi(g, k) = 0\},\]
is a \(C^\infty\) subvariety of \(W \times K_0\). \(\bar{U}\) is a union of \(C^\infty\) subvarieties, one of which is
\[U = \{(g, k) \in W \times K_0 \mid \psi(g, k) = \sup_{k' \in K_0} \phi(gk(z))\}.
\]The map \(f : U \rightarrow M_D\) given by \(f(g, k) = gY\) is \(C^\infty\). If \((g, k) \in U\) then \(\phi(gk(z)) = \psi(g, k) = \phi_M(gY)\). Since \(f : U \rightarrow M_D\) is \(C^\infty\) and surjective, and since \(\psi\) is \(C^\infty\), now \(\phi_M\) is \(C^\infty\).

By construction, \(\psi(g, k)\) is constant in the second variable \(k \in K_0\). The Levi form \(\mathcal{L}(\phi)\) has its positive eigenvalues in directions transversal to the \(gY = gK_0(z)\), so the Levi form \(\mathcal{L}(\phi_M)\) on \(M_D\) is positive semidefinite and \(\phi_M\) is plurisubharmonic. Now, using the fact that \(\phi\) is an exhaustion function on \(D\),
15.12. Lemma. \(\phi_M \) is a real analytic plurisubharmonic function on \(M_D \). If \(Y_\infty \) is a point on the boundary of \(M_D \) in \(M_Z \) and \(\{ Y_i \} \) is a sequence in \(M_D \) that tends to \(Y_\infty \) then \(\lim_{Y_i \to Y_\infty} \phi_M(Y_i) = \infty \).

The last step is to modify \(\phi_M \) to obtain a strictly plurisubharmonic exhaustion function on \(M_D \). Since \(M_Z \) is an affine algebraic variety, it is Stein. Now \(M_Z \) carries a strictly plurisubharmonic exhaustion function \(N \), and \(\zeta = \phi_M + N : M_D \to \mathbb{R} \) is a strictly plurisubharmonic exhaustion function on \(M_D \). It follows that \(M_D \) is Stein.

Proof of Theorem 15.4. Theorem 15.4 follows from Proposition 15.7 when \(M_Z \) is a projective algebraic variety, from Proposition 15.10 when \(M_Z \) is an affine algebraic variety. Proposition 15.5 says that these are the only cases.

References for §15.

In general let \(D = G_0(z) \) be an open orbit in the complex flag manifold \(Z = G/P \), let \(Y \) be the maximal compact linear subvariety \(K_0(z) \), and consider the linear cycle space \(M_D = \{ gY \mid g \in G \text{ and } gY \subset D \} \). Then we have a double fibration

\[
\begin{array}{ccc}
\mathcal{Y}_D & \xrightarrow{p_M} & M_D \\
\downarrow p_D & & \downarrow p_D \\
D & & D
\end{array}
\]

(16.1)

where \(\mathcal{Y}_D = \{ (Y', y') \mid y' \in Y' \in M_D \} \), and the projections \(p_M(Y', y') = Y' \) and \(p_D(Y', y') = y' \).

Let \(n = \dim \mathbb{C} D \) and \(s = \dim \mathbb{C} Y \) as before. Consider a negative homogeneous holomorphic vector bundle \(E \to D \). Then we can expect nonzero cohomology only in degree \(s \). For many purposes, for example for making estimates of one sort or another, it would be preferable to have representations of
G_0 occur on spaces of functions rather than on cohomology spaces, and here we use a double fibration transform to carry $H^s(D; O(E))$ to a space of functions on M_D. For this, one first considers the pullback $p_D^*O(E) \to Y_D$ and then the G_0-homogeneous sth Leray direct image sheaf $F = \mathcal{R}^s(p_D^*O(E)) \to M_D$. Here F is locally free so it corresponds to a G_0-homogeneous holomorphic vector bundle $F \to M_D$, and $F \to M_D$ is holomorphically trivial because M_D is Stein. In this way one carries the G_0-module $H^s(D; O(E))$ to a space of sections of F and thus to a space of functions with values in the typical fibre $F = H^s(Y; p_D^*O(E))$ of F. Of course, if M_Z is a projective algebraic variety then, by Proposition 15.7, G_0 is of hermitian type and M_D is the bounded symmetric domain G_0/K_0.

Consider the special case where $G_0 = SU(2,2)$ and Z is the complex projective space $P^2(\mathbb{C})$ and $E \to D$ is a negative line bundle. Here there are two open orbits, the positive definite lines in $\mathbb{C}^{2,2}$ and the negative definite lines, and $s = 1$ for each of them. The maps of $H^s(D; O(E))$ to a space of F-valued functions of G_0/K_0 are the classical Penrose Transforms.

In the general case, in order to make the double fibration transform explicit one needs to know

- the exact structure of M_D and
- the differential equations that pick out the functions $f_\sigma : M_D \to F$ that correspond to cohomologies $\sigma \in H^s(D; O(E))$.

The second item here is relatively straightforward. There is some recent progress on the first item by Dunne, Novak, Zierau and myself. In almost all cases Zierau and I have shown that if G_0 is of hermitian type and if M_Z is not a projective algebraic variety then M_D has a natural identification with $(G_0/K_0) \times (\overline{G_0/K_0})$.

References for §16.

- R. O. Wells, “Parametrizing the compact submanifolds of a period matrix domain by a Stein manifold”, in Symposium on Several Complex Variables, Springer Lecture Notes in Mathematics 184 (1971), 121–150.