The Dual Horospherical Radon Transform for Polynomials

J. Hilgert
A. Pasquale
E.B. Vinberg

Vienna, Preprint ESI 1064 (2001)

Supported by Federal Ministry of Science and Transport, Austria
Available via http://www.esi.ac.at
The dual horospherical Radon transform for polynomials

J. Hilgert*, A. Pasquale† and E.B. Vinberg‡

1 Introduction

A Radon transform is generally associated to a double fibration

\[\begin{array}{c}
 P \\
 q \\
 X \\
 \overrightarrow{Z} \\
 \overrightarrow{Y},
\end{array} \]

where one may assume without loss of generality that the maps \(p \) and \(q \) are surjective and \(Z \) is embedded into \(X \times Y \) via \(z \mapsto (p(z), q(z)) \). Let some measures be chosen on \(X, Y, Z \) and on the fibers of \(p \) and \(q \) so that

\[\int_X \left(\int_{p^{-1}(x)} f(u) du \right) dx = \int_Z f(z) dz = \int_Y \left(\int_{q^{-1}(y)} f(v) dv \right) dy. \tag{1} \]

Then the Radon transform \(\mathcal{R} \) is the linear map assigning to a function \(\varphi \) on \(X \) the function on \(Y \) defined by

\[(\mathcal{R}\varphi)(y) = \int_{q^{-1}(y)} (p^* \varphi)(v) dv, \]

where we have set \(p^* \varphi := \varphi \circ p \). In a dual fashion, one defines a linear transform \(\mathcal{R}^* \) from functions on \(Y \) to functions on \(X \) via

\[(\mathcal{R}^* \psi)(x) = \int_{p^{-1}(x)} (q^* \psi)(u) du. \]

It is dual to \(\mathcal{R} \). Indeed, formally,

\[(\mathcal{R} \varphi, \psi) := \int_Y \left(\int_{q^{-1}(y)} (p^* \varphi)(v) dv \right) \psi(y) dy \\
= \int_Y \left(\int_{q^{-1}(y)} (p^* \varphi)(q^* \psi)(v) dv \right) dy \\
= \int_Z (p^* \varphi)(z)(q^* \psi)(z) dz \]

*Institut für Mathematik, Technische Universität Clausthal, 38678 Clausthal-Zellerfeld, Germany. E-mail: hilgert@math.tu-clausthal.de

†Institut für Mathematik, Technische Universität Clausthal, 38678 Clausthal-Zellerfeld, Germany. E-mail: pasquale@math.tu-clausthal.de

‡Department of Algebra, Moscow State University, 119899 Moscow, Russia. E-mail: vinberg@elv.pv.t.msu.su

¶The work of the third author was partially supported by CRDF grant RM1-2088 and the Erwin Schrödinger International Institute for Mathematical Physics.
\[
\int_{X} \varphi(x) \left(\int_{\rho^{-1}(x)} (q^* \psi)(u) \, du \right) \, dx =: (\varphi, R^* \psi).
\]

In particular, if \(X = G/K \) and \(Y = G/H \) are homogeneous spaces of a Lie group \(G \), one can take \(Z = G/(K \cap H) \), with \(p \) and \(q \) being \(G \)-equivariant maps sending \((K \cap H) \) to \(eK \) and \(eH \), respectively. Assume that there exist \(G \)-invariant measures on \(X \), \(Y \) and \(Z \). If such measures are fixed, one can uniquely define measures on the fibers of \(p \) and \(q \) so that the condition (1) holds. (Here, speaking about a measure on a smooth manifold, we mean a measure defined by a differential form of top degree.) In this setting we can consider the transforms \(R \) and \(R^* \), and if \(\dim X = \dim Y \), one can hope that they are invertible. The basic example is provided by the classical Radon transform, which acts on functions on the Euclidean space \(\mathbb{R}^n = (\mathbb{R}^n \times SO(n))/SO(n) \) and maps them to functions on the space \(H \mathbb{R}^n = (\mathbb{R}^n \times SO(n))/(\mathbb{R}^{n-1} \times O(n-1)) \) of hyperplanes in \(\mathbb{R}^n \).

For a semisimple Riemannian symmetric space \(X = G/K \) of noncompact type, one can consider the horospherical Radon transform as proposed by I.M. Gelfand and M.I. Graev in [GG59]. Namely, generalizing the classical notion of a horosphere in Lobachevsky space, one can define a horosphere in \(X \) as an orbit of a maximal unipotent subgroup of \(G \). The group \(G \) naturally acts on the set \(\text{Hor} X \) of all horospheres. This action is transitive, so we can identify \(\text{Hor} X \) with some quotient space \(G/S \) (see §5 for details). It turns out that \(\dim X = \dim \text{Hor} X \). Moreover, the groups \(G, K, S \) and \(K \cap S = M \) are unimodular, so there exist \(G \)-invariant measures on \(X \), \(\text{Hor} X \) and \(Z = G/M \). The Radon transform \(R \) associated to the double fibration

\[
\begin{array}{ccc}
G/M & \xrightarrow{p} & X = G/K \\
& \searrow & \\
& & \text{Hor} X \xrightarrow{q} G/S
\end{array}
\]

is called the horospherical Radon transform.

The space \(Z = G/M \) can be interpreted as the set of pairs \((x, \mathcal{H}) \in X \times \text{Hor} X \) with \(x \in \mathcal{H} \), so that \(p \) and \(q \) are just the natural projections. The fiber \(p^{-1}(\mathcal{H}) \) with \(\mathcal{H} \in \text{Hor} X \) is then identified with the horosphere \(\mathcal{H} \), and the fiber \(\rho^{-1}(x) \) with \(x \in X \) is identified with the submanifold \(\text{Hor}_x X \subset \text{Hor} X \) of all horospheres passing through \(x \). Note that, in contrast to the horospheres, all submanifolds \(\text{Hor}_x X \) are compact, since \(\text{Hor}_x X \) is the orbit of the stabilizer of \(x \) in \(G \), which is conjugate to \(K \).

In this paper, we describe the dual horospherical Radon transform \(R^* \) in terms of its action on polynomial functions. Here a differentiable function \(\varphi \) on a homogeneous space \(Y = G/H \) of a Lie group \(G \) is called polynomial, if the linear span of the functions \(g \varphi \) with \(g \in G \) is finite dimensional. The polynomial functions constitute an algebra denoted by \(\mathbb{R}[Y] \).

For \(X = G/K \) as above, the algebra \(\mathbb{R}[X] \) is finitely generated and \(X \) is naturally identified with a connected component of the corresponding affine real algebraic variety (the real spectrum of \(\mathbb{R}[X] \)). The natural linear representation of \(G \) in \(\mathbb{R}[X] \) decomposes into a sum of mutually non-isomorphic absolutely irreducible finite dimensional representations whose highest weights \(\lambda \) form a semigroup \(\Lambda \). Let \(\mathbb{R}[X]_\lambda \) be the irreducible component of \(\mathbb{R}[X] \) with highest weight \(\lambda \), so

\[
\mathbb{R}[X] = \bigoplus_{\lambda \in \Lambda} \mathbb{R}[X]_\lambda.
\]

Denote by \(\varphi_\lambda \) the highest weight function in \(\mathbb{R}[X]_\lambda \) normalized by the condition

\[
\varphi_\lambda (e) = 1,
\]
where $o = eK$ is the base point of X. Then the subgroup S is the intersection of the stabilizers of all φ_λ‘s. Its unipotent radical U is a maximal unipotent subgroup of G.

The algebra $\mathbb{R}[\text{Hor} X]$ is also finitely generated. The manifold $\text{Hor} X$ is naturally identified with a connected component of a quasi-affine algebraic variety, which is a Zariski open subset in the real spectrum of $\mathbb{R}[\text{Hor} X]$. The natural linear representation of G in $\mathbb{R}[\text{Hor} X]$ is isomorphic to the representation of G in $\mathbb{R}[X]$. Let $\mathbb{R}[\text{Hor} X]_\lambda$ be the irreducible component of $\mathbb{R}[\text{Hor} X]$ with highest weight λ, so that

$$
\mathbb{R}[\text{Hor} X] = \bigoplus_{\lambda \in \Lambda} \mathbb{R}[\text{Hor} X]_\lambda.
$$

Denote by ψ_λ the highest weight function in $\mathbb{R}[\text{Hor} X]_\lambda$ normalized by the condition

$$
\psi_\lambda(sU o) = 1,
$$

where s is the symmetry with respect to o and $sU o = (sUs^{-1})o$ is considered as a point of $\text{Hor} X$.

The decomposition (2) defines a filtration of the algebra $\mathbb{R}[X]$ (see §4 for the precise definition). Let $\text{gr} \mathbb{R}[X]$ be the associated graded algebra. There is a canonical G-equivariant algebra isomorphism

$$
\Gamma : \text{gr} \mathbb{R}[X] \rightarrow \mathbb{R}[\text{Hor} X]
$$

mapping each φ_λ to ψ_λ. As a G-module, $\text{gr} \mathbb{R}[X]$ is canonically identified with $\mathbb{R}[X]$, so we can view Γ as a G-module isomorphism from $\mathbb{R}[X]$ to $\mathbb{R}[\text{Hor} X]$.

The horospherical Radon transform \mathcal{R} is not defined for polynomial functions on X but its dual transform \mathcal{R}^* is defined for polynomial functions on $\text{Hor} X$, since it reduces to integrating along compact submanifolds. Moreover, as follows from the definition of polynomial functions, it maps polynomial functions on $\text{Hor} X$ to polynomial functions on X. Obviously, it is G-equivariant. Thus, we have G-equivariant linear maps

$$
\mathbb{R}[X] \xrightarrow{\Gamma} \mathbb{R}[\text{Hor} X] \xrightarrow{\mathcal{R}^*} \mathbb{R}[X].
$$

Their composition $\mathcal{R}^* \circ \Gamma$ is a G-equivariant linear operator on $\mathbb{R}[X]$, so

$$
(\mathcal{R}^* \circ \Gamma)(\varphi) = c_\lambda \varphi \quad \forall \varphi \in \mathbb{R}[X]_\lambda,
$$

where the c_λ are constants. To give a complete description of \mathcal{R}^*, it is therefore sufficient to find these constants. Our main result is the following theorem.

Theorem 1 $c_\lambda = \mathfrak{c}(\lambda + \rho)$, where \mathfrak{c} is the Harish-Chandra c-function and ρ is the half-sum of the positive roots of X (counted with multiplicities).

The Harish-Chandra c-function governs the asymptotic behavior of the zonal spherical functions on X. A product formula for the c-function was found by S.G. Gindikin and F.I. Karpelevich [GK62]: for a rank-one Riemannian symmetric space of the noncompact type, the c-function is a ratio of gamma functions involving only the root multiplicities; in the general case, it is the product of the c-functions for the rank-one symmetric spaces defined by the indivisible roots of the space. Thus, known the root structure of the symmetric space, the product formula makes the c-function, and hence our description of the dual horospherical Radon transform, explicitly computable.

For convenience of the reader, we collect some crucial facts about the c-function in an appendix to this paper.

The following basic notation will be used in the paper without further comments.
• Lie groups are denoted by capital Latin letters, and their Lie algebras by the corresponding small Gothic letters.

• The dual space of a vector space V is denoted by V^*.

• The complexification of a real vector space V is denoted by $V(\mathbb{C})$.

• The centralizer (resp. the normalizer) of a subgroup H in a group G is denoted by $Z_G(H)$ (resp. $N_G(H)$).

• The centralizer (resp. the normalizer) of a subalgebra \mathfrak{h} in a Lie algebra \mathfrak{g} is denoted by $Z_{\mathfrak{g}}(\mathfrak{h})$ (resp. $N_{\mathfrak{g}}(\mathfrak{h})$).

• If a group G acts on a set X, we denote by X^G the subset of fixed points of G in X.

2 Groups, spaces, and functions

For any connected semisimple Lie group G admitting a faithful (finite-dimensional) linear representation, there is a connected complex algebraic group defined over \mathbb{R} such that G is the connected component of the group of its real points. Among all such algebraic groups, there is a unique such that all the others are its quotients. It is called the complex hull of G and is denoted by $G(\mathbb{C})$. The group of real points of $G(\mathbb{C})$ is denoted by $G(\mathbb{R})$. If $G(\mathbb{C})$ is simply connected, then $G = G(\mathbb{R})$.

The restrictions of polynomial functions on the algebraic group $G(\mathbb{R})$ to G are called polynomial functions on G. They are precisely those differentiable functions φ for which the linear span of the functions $g\varphi, g \in G$, is finite dimensional (see e.g., [CSM95], §II.8). (Here G is supposed to act on itself by left multiplications.) The polynomial functions on G constitute an algebra which we denote by $\mathbb{R}[G]$ and which is naturally isomorphic to $\mathbb{R}[G(\mathbb{R})]$.

For any subgroup $H \subseteq G$, we denote by $H(\mathbb{C})$ (resp. $H(\mathbb{R})$) its Zariski closure in $G(\mathbb{C})$ (resp. $G(\mathbb{R})$). If H is Zariski closed in G, i.e. $H = H(\mathbb{R}) \cap G$, then H is a subgroup of finite index in $H(\mathbb{R})$; if H is a semidirect product of a connected unipotent group and a compact group, then $H = H(\mathbb{R})$.

For a homogeneous space $Y = G/H$ with H Zariski closed in G, set $Y(\mathbb{C}) = G(\mathbb{C})/H(\mathbb{C})$. This is an algebraic variety defined over \mathbb{R}, and Y is naturally identified with a connected component of the variety $Y(\mathbb{R})$ of real points of $Y(\mathbb{C})$. We call $Y(\mathbb{C})$ the complex hull of Y.

If H is reductive, then also $H(\mathbb{C})$ is reductive and the variety $Y(\mathbb{C})$ is affine, the algebra $\mathbb{C}[Y(\mathbb{C})]$ being naturally isomorphic to the algebra $\mathbb{C}[G(\mathbb{C})]^H(\mathbb{C})$ of $H(\mathbb{C})$-right-invariant polynomial functions on $G(\mathbb{C})$ (see e.g., [VP89], Section 4.7 and Theorem 4.10). Correspondingly, the algebra $\mathbb{R}[Y(\mathbb{R})]$ is naturally isomorphic to $\mathbb{R}[G(\mathbb{R})]^H(\mathbb{R})$.

In general, the functions on $Y(\mathbb{R})$ arising from $H(\mathbb{R})$-right-invariant polynomial functions on $G(\mathbb{R})$ are called polynomial functions on $Y(\mathbb{R})$, and their restrictions to Y are called polynomial functions on Y. They are precisely those differentiable functions φ for which the linear span of the functions $g\varphi, g \in G$, is finite dimensional. They form an algebra which we denote by $\mathbb{R}[Y]$.

In the following we consider a semisimple Riemannian symmetric space $X = G/K$ of non-compact type. This means that G is a connected semisimple Lie group without compact factors and K is a maximal compact subgroup of G. We do not assume that the center of G is trivial, so the action of G on X may be non-effective. We do, however, require that G has a faithful linear representation. According to the above, the space X is then a connected component of the affine algebraic variety $X(\mathbb{R})$.

4
3 Subgroups and subalgebras

We recall some facts about the structure of Riemannian symmetric spaces of noncompact type (see [Hel78] for details). Let \(X = G/K \) be as above and \(\theta \) be the Cartan involution of \(G \) with respect to \(K \), so \(K = G^\theta \). Let \(a \) be a Cartan subalgebra for \(X \), i.e. a maximal abelian subalgebra in the \((-1)\)-eigenspace of \(\theta \). Its dimension \(r \) is called the rank of \(X \). Under any representation of \(G \), the elements of \(a \) are simultaneously diagonalizable. The group \(A = \exp a \) is a maximal connected abelian subgroup of \(G \) such that \(\theta(a) = a^{-1} \) for all \(a \in A \). It is isomorphic to \((\mathbb{R}^r)^\times \).

Its Zariski closure \(A(\mathbb{R}) \) in \(G(\mathbb{R}) \) is a split algebraic torus which is isomorphic to \((\mathbb{R}^+)^r \). Let \(X(A) \) denote the (additively written) group of real characters of the torus \(A(\mathbb{R}) \). It is a free abelian group of rank \(r \). We identify each character \(\chi \) with its differential \(d\chi \in a^* \).

The root decomposition of \(g \) with respect to \(A \) (or with respect to \(A(\mathbb{R}) \), which is the same) is of the form

\[
g = g_0 + \sum_{\alpha \in \Delta} g_\alpha,
\]

where \(g_\alpha = z_\alpha(a) \). If \(m = z_e(a) \), then \(g_0 = m + a \).

The set \(\Delta \subset X(A) \) is the root system of \(X \) (or the restricted root system of \(G \)) with respect to \(A \) and \(g_\alpha \) is the root subspace corresponding to \(\alpha \). The dimension of \(g_\alpha \) is called the multiplicity of the root \(\alpha \) and is denoted by \(m_\alpha \). By the identification of a character with its differential, we will consider \(\Delta \) as a subset of \(a^* \). Choose a system \(\Delta^+ \) of positive roots in \(\Delta \). Let \(\Pi = \{ \alpha_1, \dots, \alpha_r \} \subset \Delta^+ \) be the corresponding system of simple roots. Then

\[
C = \{ x \in a : \alpha_i(x) \geq 0 \text{ for } i = 1, \ldots, r \}
\]

is called the Weyl chamber with respect to \(\Delta^+ \). The subspace

\[
u = \sum_{\alpha \in \Delta^+} g_\alpha
\]

is a maximal unipotent subalgebra of \(g \).

Set

\[
G_0 = Z_G(A), \quad M = Z_K(A).
\]

Then \(G_0 = M \times A \) and the Lie algebras of \(G_0 \) and \(M \) are \(g_0 \) and \(m \), respectively. Clearly, \(G_0 \) is Zariski closed in \(G \).

The group \(U = \exp \nu \) is a maximal unipotent subgroup of \(G \). It is normalized by \(A \) and the map

\[
U \times A \times K \rightarrow G, \quad (u, a, k) \mapsto uk,
\]

is a diffeomorphism. The decomposition \(G = UAK \) (or \(G = KAU \)) is called the Iwasawa decomposition of \(G \). Since every root subspace is \(G_0 \)-invariant, \(G_0 \) normalizes \(U \), so

\[
P := UG_0 = U \times G_0
\]

is a subgroup of \(G \). Moreover, \(P = N_G(U) \) (see e.g. [War72], Proposition 1.2.3.4), so \(P \) is Zariski closed in \(G \).

We say that a Zariski closed subgroup of \(G \) is parabolic, if its Zariski closure in \(G(\mathbb{C}) \) is a parabolic subgroup of \(G(\mathbb{C}) \). Then \(P \) is a minimal parabolic subgroup of \(G \). The subgroup

\[
S := UM = U \times M
\]

of \(P \) is normal in \(P \) and \(P/S \) is isomorphic to \(A \). It follows from the Iwasawa decomposition that \(K \cap S = M \).
4 Representations

For later use we collect some well-known facts about finite-dimensional representations of G.

The natural linear representation of G in $\mathbb{R}[X]$ decomposes into a sum of mutually non-isomorphic absolutely irreducible finite-dimensional representations called (finite-dimensional) spherical representations (see e.g. [GW98], chap. 12).

Theorem 2 (see [Hel84], § V.4) An irreducible finite dimensional representation of G on a real vector space V is spherical if and only if the following equivalent conditions hold:

\begin{enumerate}
 \item $V^K \neq \{0\}$.
 \item $V^S \neq \{0\}$.
\end{enumerate}

If these conditions hold, then $\dim V^K = \dim V^S = 1$ and the subspace V^S is invariant under P.

For a spherical representation, the group P acts on V^S via multiplication by some character of P vanishing on S. The restriction of this character to A is called the highest weight of the representation. A spherical representation is uniquely determined by its highest weight. The highest weights of all irreducible spherical representations constitute a subsemigroup $\Lambda \subset X(A)$.

An explicit description of Λ as a subset of a^* can be given as follows. Let Δ_s denote the set of roots $\alpha \in \Delta$ such that $2\alpha \notin \Delta$. Then Δ_s is a root system in a^*, and a system of simple roots corresponding to $\Delta_s^+ := \Delta^+ \cap \Delta_s$ can be obtained from the system $\Pi = \{\alpha_1, \ldots, \alpha_r\}$ of simple roots in Δ^+ by setting for $j = 1, \ldots, r$,

$$\beta_j := \begin{cases} a_j & \text{if } 2a_j \notin \Delta^+, \\ 2a_j & \text{if } 2a_j \in \Delta^+. \end{cases}$$

Let $\omega_1, \ldots, \omega_r \in a^*$ be defined by

$$\frac{[\omega_j, \beta_k]}{[\beta_j, \beta_k]} = \delta_{ij},$$

where (\cdot, \cdot) denotes the scalar product in a^* induced by an invariant scalar product in g.

Proposition 3 (see [Hel94], Proposition 4.23) The semigroup Λ is freely generated by $\omega_1, \ldots, \omega_r$. \hfill \Box

For $\lambda \in \Lambda$, let $\mathbb{R}[X]_{\lambda}$ denote the irreducible component of $\mathbb{R}[X]$ with highest weight λ. Then we have

$$\mathbb{R}[X] = \bigoplus_{\lambda \in \Lambda} \mathbb{R}[X]_{\lambda}.$$

We denote by φ^S_λ the highest weight function of $\mathbb{R}[X]_{\lambda}$ normalized by the condition

$$\varphi^S_\lambda(0) = 1.$$

(Since $P_0 = PK_0 = Go = X$, we have $\varphi^S_\lambda(0) \neq 0$.) Obviously,

$$\varphi^S_\lambda \varphi^S_\mu = \varphi^S_{\lambda + \mu}.$$

In general, the multiplication in $\mathbb{R}[X]$ has the property

$$\mathbb{R}[X]_{\lambda} \mathbb{R}[X]_{\mu} \subset \bigoplus_{\nu \leq \lambda + \mu} \mathbb{R}[X]_{\nu},$$

6
where "\(\leq \)" is the ordering in the group \(\mathbf{X}(A) \) defined by the subsemigroup generated by the simple roots. In other words, the subspaces

\[
\mathbb{R}[X]_{\leq \lambda} = \bigoplus_{\mu \leq \lambda} \mathbb{R}[X]_{\mu}
\]

constitute a \(\mathbf{X}(A) \)-filtration of the algebra \(\mathbb{R}[X] \) with respect to the ordering "\(\leq \)".

The functions \(\varphi \in \mathbb{R}[X]_{\lambda} \) vanishing at \(o \) constitute a \(K \)-invariant subspace of codimension 1. The \(K \)-invariant complement of it is a 1-dimensional subspace, on which \(K \) acts trivially. Let \(\varphi_{\lambda}^K \) denote the function of this subspace normalized by the condition \(\varphi_{\lambda}^K (o) = 1 \). It is called the zonal spherical function of weight \(\lambda \).

Lemma 4 (see e.g. [Hel84], p. 537) For any finite dimensional irreducible representation of \(G \) on a real vector space \(V \) there is a positive definite scalar product \(\langle \cdot , \cdot \rangle \) on \(V \) such that

\[
\langle gx \mid \theta(g)y \rangle = \langle x \mid y \rangle \quad \text{for all } g \in G \text{ and } x, y \in V.
\]

This scalar product is unique up to a scalar multiple.

The scalar product given by Lemma 4 is called \(G \)-skew-invariant. Note that it is \(K \)-invariant.

With respect to the \(G \)-skew-invariant scalar product on \(\mathbb{R}[X]_{\lambda} \), the zonal spherical function \(\varphi_{\lambda}^K \) is orthogonal to the subspace of functions vanishing at \(o \in X \). Let \(a_{\lambda} \) denote the angle between \(\varphi_{\lambda}^K \) and \(\varphi_{\lambda}^S \). Then the projection of \(\varphi_{\lambda}^K \) to \(\mathbb{R}[X]_{\lambda}^\perp = \mathbb{R}[X]_{\lambda}^S \) is equal to \((\cos^2 a_{\lambda}) \varphi_{\lambda}^S \) (see Figure 1). In particular, we see that \(\varphi_{\lambda}^K \) and \(\varphi_{\lambda}^S \) are not orthogonal.

![Figure 1](image-url)

The weight decomposition of \(\varphi_{\lambda}^K \) is of the form

\[
\varphi_{\lambda}^K = (\cos^2 a_{\lambda}) \varphi_{\lambda}^S + \sum_{\mu < \lambda} \varphi_{\mu, \lambda, \mu},
\]

for some weight vector \(\varphi_{\mu, \lambda, \mu} \) of weight \(\mu \) in \(\mathbb{R}[X]_{\lambda} \). This gives the asymptotic behavior of \(\varphi_{\lambda}^K \) on \((\exp(-C^\circ))o \), where \(C^\circ \) is the interior of the Weyl chamber \(C \) in \(a \). More precisely, for \(\xi \in C^\circ \) we have

\[
\varphi_{\lambda}^K (\exp(-t\xi))o \sim (\exp(t\xi) \varphi_{\lambda}^K)(o) \quad t \to +\infty \quad (\cos^2 a_{\lambda}) e^{\lambda(t\xi)}.
\]

But it is known (see [Hel84], § IV.6) that the same asymptotics is described in terms of the Harish-Chandra \(e \)-function:

\[
\varphi_{\lambda}^K (\exp(-t\xi))o \sim t \to +\infty \quad e(\lambda + \rho) e^{\lambda(t\xi)},
\]

where \(\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} m_\alpha \alpha \) is the half-sum of positive roots. This shows that

\[
\cos^2 a_{\lambda} = e(\lambda + \rho).
\]
5 Horospheres

Definition 5 A *horosphere* in X is an orbit of a maximal unipotent subgroup of G.

Since all maximal unipotent subgroups are conjugate to U, any horosphere is of the form $g U x$ ($g \in G$, $x \in X$). Moreover, since $X = \mathfrak{p} o$ and \mathfrak{p} normalizes U, any horosphere can be represented in the form $g U o$ ($g \in G$). In other words, the set $\text{Hor} X$ of all horospheres is a homogeneous space of G. The following lemma shows that the G-set $\text{Hor} X$ is identified with G / S if we take the horosphere $U o$ as the base point for $\text{Hor} X$.

Lemma 6 (see also [Hel94], Theorem 1.1, p. 77) The stabilizer of the horosphere $U o$ is the algebraic subgroup

$$S = U M = U \rtimes M,$$

Proof. Obviously, S stabilizes $U o$. Hence the stabilizer of $U o$ can be written as $\tilde{S} = U \tilde{M}$, where $M \subseteq \tilde{M} \subseteq K$.

Since U is a maximal unipotent subgroup in G (and hence in \tilde{S}), it contains the unipotent radical \tilde{U} of \tilde{S}. The reductive group \tilde{S} / \tilde{U} can be decomposed as

$$\tilde{S} / \tilde{U} = (U / \tilde{U}) \tilde{M},$$

so the manifold $(\tilde{S} / \tilde{U}) / (U / \tilde{U})$ is compact. But then the Iwasawa decomposition for \tilde{S} / \tilde{U} shows that the real rank of \tilde{S} / \tilde{U} equals 0, that is \tilde{S} / \tilde{U} is compact. This is possible only if $U = \tilde{U}$. Hence,

$$\tilde{S} \subseteq N(U) = P = S \rtimes A.$$

It follows from the Iwasawa decomposition $G = AU K$ that $\tilde{S} \cap A = \{e\}$. Thus $\tilde{S} = S$. \hfill \square

As follows from [NP72], the G-module structure of $\mathbb{R}[\text{Hor} X]$ is exactly the same as that of $\mathbb{R}[X]$, but in contrast to the case of $\mathbb{R}[X]$, the decomposition of $\mathbb{R}[\text{Hor} X]$ into the sum of irreducible components is a $\mathbb{X}(A)$-grading.

Let $\mathbb{R}[\text{Hor} X]_\lambda$ be the irreducible component of $\mathbb{R}[\text{Hor} X]$ with highest weight λ, so

$$\mathbb{R}[\text{Hor} X] = \bigoplus_{\lambda \in \Lambda} \mathbb{R}[\text{Hor} X]_\lambda.$$

Denote by ψ^S_λ and ψ^K_λ the highest weight function and the K-invariant function in $\mathbb{R}[\text{Hor} X]_\lambda$ normalized by

$$\psi^S_\lambda(s U o) = \psi^K_\lambda(s U o) = 1.$$

To see that this is possible, note that the horosphere $s U o$ is stabilized by $s S s^{-1} = \theta(S)$. Hence the subspace V_0 of functions in $\mathbb{R}[\text{Hor} X]_\lambda$ vanishing at $s U o$ is $\theta(S)$-invariant. Its orthogonal complement is therefore S-invariant and must coincide with $\mathbb{R}[\text{Hor} X]_\lambda^S$. This implies $\psi^S_\lambda(s U o) \neq 0$, so we can normalize ψ^S_λ as asserted. Since $\mathbb{R}[\text{Hor} X]_\lambda^K$ and $\mathbb{R}[\text{Hor} X]_\lambda^K$ are not orthogonal in $\mathbb{R}[\text{Hor} X]_\lambda$, we have $\mathbb{R}[\text{Hor} X]_\lambda^K \cap V_0 = \{0\}$ and we can normalize also ψ^K_λ as asserted. Notice that the horospheres passing through o form a single K-orbit and therefore ψ^K_λ takes the value 1 on each of them.

Consider the $\mathbb{X}(A)$-graded algebra $\text{gr} \mathbb{R}[X]$ associated with the $\mathbb{X}(A)$-filtration of $\mathbb{R}[X]$ defined in §4. As a G-module, $\text{gr} \mathbb{R}[X]$ can be identified with $\mathbb{R}[X]$, but when we multiply elements $\varphi_\lambda \in \mathbb{R}[X]_\lambda$ and $\varphi_\mu \in \mathbb{R}[X]_\mu$ in $\text{gr} \mathbb{R}[X]$, only the highest term in their product in $\mathbb{R}[X]$ survives. Moreover, there is a unique G-equivariant linear isomorphism

$$\Gamma : \mathbb{R}[X] = \text{gr} \mathbb{R}[X] \rightarrow \mathbb{R}[\text{Hor} X]$$

such that $\Gamma(\varphi^S_\lambda) = \psi^S_\lambda$.

8
Proposition 7 The map Γ is an isomorphism of the algebra $gr\mathbb{R}[X]$ onto the algebra $\mathbb{R}[\text{Hor } X]$.

Proof. For any semisimple complex algebraic group, the tensor product of the irreducible representations with highest weights λ and μ contains a unique irreducible component with highest weight $\lambda + \mu$. It follows that, if we identify the irreducible components of $\mathbb{R}[X]$ with the corresponding irreducible components of $\mathbb{R}[\text{Hor } X]$ via Γ, the product of functions $\varphi_\lambda \in \mathbb{R}[X]_\lambda$ and $\varphi_\mu \in \mathbb{R}[X]_\mu$ in $gr\mathbb{R}[X]$ differs from their product in $\mathbb{R}[\text{Hor } X]$ only by some factor $a_{\lambda, \mu}$ depending only on λ and μ. Taking $\varphi_\lambda = \varphi^K_\lambda$ and $\varphi_\mu = \varphi^K_\mu$, we conclude that $a_{\lambda, \mu} = 1$.

Remark 8 The definition of Γ makes use of the choice of a base point o in X and a maximal unipotent subgroup U of G, but it is easy to see that all such pairs (o, U) are G-equivalent. It follows that Γ is in fact canonically defined.

6 Proof of the Main Theorem

Consider the double fibration

$$
p: X = G/K \longrightarrow G/M \quad q: G/M \longrightarrow G/S = \text{Hor } X
$$

Since all the involved groups are unimodular, there are invariant measures on the homogeneous spaces X, Hor X, G/M and on the fibers of p and q, which are the images under the action of G of K/M and S/M, respectively. Let us normalize these measures so that:

(1) the volume of K/M is 1;

(2) the measure on G/M is the product of the measures on K/M and X;

(3) the measure on G/M is the product of the measures on S/M and Hor X.

(This leaves two free parameters).

Consider the dual horospherical Radon transform

$$
\mathcal{R}^*: \mathbb{R}[\text{Hor } X] \rightarrow \mathbb{R}[X].
$$

Combining it with the map Γ defined in §5, we obtain a G-equivariant linear isomorphism

$$
\mathcal{R}^* \circ \Gamma: \mathbb{R}[X] \rightarrow \mathbb{R}[X].
$$

In view of absolute irreducibility, Schur’s lemma shows that $\mathcal{R}^* \circ \Gamma$ acts on each $\mathbb{R}[X]_\lambda$ by scalar multiplication. The scalars are given by the following theorem:

Theorem 9 For $\varphi \in \mathbb{R}[X]_\lambda$,

$$
(\mathcal{R}^* \circ \Gamma)(\varphi) = c(\lambda + \rho) \varphi,
$$

where c is the Harish-Chandra c-function.

Proof. We test the map at the zonal spherical function $\psi^K_\lambda \in \mathbb{R}[X]_\lambda$. The map Γ takes it to $c_\lambda \psi^K_\lambda$ for some $c_\lambda \in \mathbb{R}$. Since the function ψ^K_λ has value 1 on the horospheres passing through o, the map \mathcal{R}^* takes it to φ^K_λ. Thus we have

$$
(\mathcal{R}^* \circ \Gamma)(\varphi^K_\lambda) = c_\lambda \varphi^K_\lambda.
$$

Identifying $\mathbb{R}[X]_\lambda$ and $\mathbb{R}[\text{Hor } X]_\lambda$ via Γ, we now find $c_\lambda = \cos^2 \alpha_\lambda$ (see Figure 2), and this proves the claim.
A Appendix: The c-function

Because of the Iwasawa decomposition $G = KAU$, every $g \in G$ can be written as $g = k \exp H(g)u$ for a uniquely determined $H(g) \in \mathfrak{a}$. Let $\overline{U} := \theta(U)$, and let $d\overline{u}$ denote the invariant measure on \overline{U} normalized by the condition
\[
\int_{\overline{U}} e^{-2 \rho(H)} \, d\overline{u} = 1.
\]

The c-function has been defined by Harish-Chandra as the integral
\[
c(\lambda) := \int_{\overline{U}} e^{-(\lambda + \rho)(H(U))} \, d\overline{u},
\]
which absolutely converges for all $\lambda \in \mathfrak{a}(\mathbb{C})^*$ satisfying $\text{Re}(\lambda, \alpha) > 0$ for all $\alpha \in \Delta^+$. The computation of the integral gives the so-called Gindikin-Karpelevich product formula [GK62] (see also [He84], Section IV.6.4, or [GV88], p. 179):
\[
c(\lambda) = \kappa \prod_{\alpha \in \Delta^{++}} \frac{2^{-\lambda_\alpha}}{\Gamma \left(\frac{\lambda_\alpha}{2} + \frac{m_\alpha}{4} + \frac{1}{2} \right) \Gamma \left(\frac{\lambda_\alpha}{2} + \frac{m_\alpha}{4} + \frac{m_\alpha}{2} \right)},
\]
where Δ^{++} denotes the set of indivisible roots in Δ^+, $\lambda_\alpha := \frac{1}{2} (\lambda, \alpha)$, and the constant κ is chosen so that $c(\rho) = 1$. This formula provides the explicit meromorphic continuation of c to the entire $\mathfrak{a}(\mathbb{C})^*$.

Formula (5) simplifies in the case of a reduced root system (i.e. when $\Delta^{++} = \Delta^+$), since the duplication formula
\[
\Gamma (2z) = 2^{2z-1} \sqrt{\pi} \Gamma (z) \Gamma (z + 1/2)
\]
for the gamma function yields
\[
c(\lambda) = \kappa \prod_{\alpha \in \Delta^+} \frac{\Gamma (\lambda_\alpha)}{\Gamma (\lambda_\alpha + m_\alpha/2)},
\]
with
\[
\kappa = \prod_{\alpha \in \Delta^+} \frac{\Gamma (\rho_\alpha + m_\alpha/2)}{\Gamma (\rho_\alpha)}.
\]
If, moreover, all the multiplicities \(m_\alpha \) are even (which is equivalent to the property that all Cartan subalgebras of \(g \) are conjugate), then the functional equation \(z\Gamma(z) = \Gamma(z + 1) \) implies

\[
e(\lambda) = \prod_{\alpha \in \Delta^+} \frac{\rho_\alpha (\rho_\alpha + 1) \cdots (\rho_\alpha + m_\alpha/2 - 1)}{\lambda_\alpha (\lambda_\alpha + 1) \cdots (\lambda_\alpha + m_\alpha/2 - 1)}.
\]

Finally, suppose that the group \(G \) admits a complex structure. In this case the root system is reduced and \(m_\alpha = 2 \) for every root \(\alpha \), and (7) reduces to

\[
e(\lambda) = \prod_{\alpha \in \Delta^+} \frac{\rho_\alpha}{\lambda_\alpha}.
\]

Example 10 For \(n \)-dimensional Lobachevsky space, there is only one positive root \(\alpha \), with \(m_\alpha = n - 1 \), so \(\rho = (n - 1)\alpha/2 \). Let \(\lambda = l\alpha \). Then formula (7) gives

\[
e(l) = \frac{\Gamma(n - 1)\Gamma(l)}{\Gamma\left(\frac{n - 1}{2}\right)\Gamma\left(l + \frac{n - 1}{2}\right)}.
\]

The semigroup \(\Lambda \) is generated by \(\alpha \). For \(\lambda = l\alpha (l \in \mathbb{N}) \), we obtain

\[
c_\lambda = e(\lambda + \rho) = \frac{\Gamma(n - 1)\Gamma(l + \frac{n - 1}{2})}{\Gamma\left(\frac{n - 1}{2}\right)\Gamma\left(l + n - 1\right)} = \begin{cases} \frac{(n - l - 1)(n + l) \cdots (n + 2 - 3)}{2^{l - 1} \frac{n}{2} \cdot \frac{n + 1}{2} \cdots \frac{n + l - 2}{2}}, & n \text{ even,} \\ \frac{(n - l - 1)(n - l + 2) \cdots (n - l + 1)}{2n(n + 1) \cdots (n + l - 2)}, & n \text{ odd.} \end{cases}
\]

References

